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We determine that the connectivity and the edge-
connectivity of the Cartesian product G; x G, of
two strongly connected and finite digraphs G; and
G, are equal to min{m«z, Mpky,85 + 85,87 + &5} and
min[n1)~2,n2)»1,61+ + 8+,81— + &5}, respectively, where n;,
Kiy Aj, 6,.+, é; are the order, the connectivity, the edge-
connectivity, the minimum out-degree and the minimum
in-degree of G;j, respectively, for i = 1,2. © 2008 Wiley
Periodicals, Inc. NETWORKS, Vol. 52(4), 202-205 2008
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1. INTRODUCTION

Graph theory has become one of the most powerful math-
ematical tools in the analysis and study of the architecture of
an interconnection network. It is well known that when the
underlying topology of an interconnection network is mod-
eled by a connected graph G = (V,E), where V is the set
of processors and E is the set of communication links in
the network, the connectivity x (G) and the edge-connectivity
A(G) are two important features determining reliability and
fault tolerance of the network. It is also well known that, for
designing large-scale interconnection networks, the Carte-
sian product is an important method to obtain large graphs
from smaller ones, with a number of parameters that can
be easily calculated from the corresponding parameters for
those small initial graphs. The Cartesian product preserves
many nice properties such as regularity, existence of Hamil-
ton cycles and Euler circuits, and transitivity of the initial
graphs (see, e.g., [10]). In this note, we deal with the con-
nectivity and the edge-connectivity of the Cartesian product
of graphs.

We use the symbols n;, §;, «;, and A; to denote the order, the
minimum degree, the connectivity, and the edge-connectivity
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of a graph Gj, respectively, fori = 1,2.1In 1957, Sabidussi [8]
first discussed the connectivity of the Cartesian product
G1 x Gy of two undirected graphs G| and G; and proved
that k(G| x G2) > k1 + k3 if G and G, are connected. In
1998, Xu [9] generalized this result to strongly connected
digraphs. In 1999, Chiue and Shieh [4] proved that for con-
nected undirected graphs G| and G2, A(G1 X G2) > A| + Ao
The authors [12, 13] completely determined the connectivity
and the edge-connectivity of the Cartesian product of two
connected undirected graphs G| and G;: namely,

k(G1 x G2) = min{n k3, nok1, 81 + 82},
MGy x G2) = min{ni A2, mA1,81 + 82}

Very recently, Lu et al. [6] have further considered the super
edge-connectivity of Cartesian product graphs.

Balbuena et al. [1] considered a generalization of the
Cartesian product of graphs, the product graph G| x G, of
two undirected graphs G and G», and obtained

k(G1 X Gp) > min{kny, (81 + k2,81 + 62}.

Moreover, they stated some sufficient conditions that guar-
antee these product graphs to be maximally connected or
superconnected.

Motivated by the technique in [1], in this note, we com-
pletely determine the connectivity and the edge-connectivity
of the Cartesian product of two digraphs G; and G; as
follows:

k(G1 x Gz) = min {nik2,nzk1,8) + 85,87 + 85},
MGy x Gp) = min {niAa, mA1, 87 + 85,87 + 685},

where G is a strongly connected digraph with minimum out-
degree 8i+ and minimum in-degree §;”, fori = 1, 2.

The proofs of these results are in Section 3. In Section
2, we present some preliminaries and the definition of the
Cartesian product of two digraphs.

2. PRELIMINARIES

We follow [11] for graph-theoretical terminology and
notation not defined here. Let G = (V, E) be a strongly con-
nected digraph. A subset S C V(G) (resp. B € E(G)) is said



to be a separating set (an edge-separating set) of Gif G — S
(resp. G— B) is not strongly connected. The connectivity of G
is defined as k (G) = min{|S] : S is a separating set of G} if
G is not a complete digraph; and « (G) = n—1if G is acom-
plete digraph of order n. The edge-connectivity of G is defined
as A(G) = min{|B| : B is an edge-separating set of G}. For
any digraph G, we have x < A < 8 = min{§™,57}.

Let D and D’ be two disjoint nonempty proper sub-
sets of V(G) or subgraphs of G. The symbols NZ;' (D) and
Ng (D) denote the set of out-neighbors of D and the set
of in-neighbors of D, Eg (D), and E (D) denote the set of
out-going edges of D and the set of in-coming edges of D,
respectively, and Eg(D, D") denotes the set of edges with tails
in D and heads in D’. The following two facts are simple and
useful for the proofs of our main results.

Remark 1. Let G beadigraph. Ifitis not strongly connected
and has a finite number of strongly connected components,
then G has at least two strongly connected components C and
C’ such that Nj; (C) = ¢ and N; (C') = 0.

Remark 2. Let G be a digraph and let D be a nonempty
proper subset of V(G). Then |D|+ |Ng (D)| = 8T (G)+1and
ID|+|Ng (D)| > 8~ (G)+1. Also |D|+|EL (D)| = §7(G)+1
and |D| + |[E;(D)| = 6~ (G) + 1.

The Cartesian product digraph G; x G, = (V,E) of
digraphs G| = (V1, E1) and G, = (V,, E») has the vertex set
V= V1 X V2 = {xy X € Vl,y € Vz}, and (xlxz,ylyz) eE
if and only if either x; = y; and (xp,y2) € E; or xp = y»
and (x1,y1) € Ej. Obviously, §7(Gy x G») = 8] + 85 and
87 (G1 x Go) =48] +6,.

We now introduce some notations for convenience. For
x € V(Gy) andy € V(Gy), the symbols G; and G{ denote the
subgraph of G| x G, induced by {x} x V(G7) and V(G1) x {y},
respectively. For a separating set S and an edge-separating set
B of G; x G», denote

Se=8SNV(G), $=85nV(G)),
B, =BNE(G)), B =BnNE(G),
By. = BN Eg(G5,Gj) if (x,2) € E(Gy).
For a strongly connected component C of G — S (or G — B),
denote
Ci={xeV;:xyeV(C)forsomey e V,},
Cry={yeVy:xyeV(C) for some x € Vi}.
Lemma 1. Let Gy and G, be two strongly connected
digraphs, S and B be a separating set and an edge-separating
set of G1 x Gy, respectively, and C be a strongly connected
component of G1 x Gy — S (resp. G1 x G — B) with-

out out-neighbors. If C1 # Vi, then there exists an edge
(x,x') € Egl (C1) such that

IS¢l + [Sy| > 85 +1 (resp. |By| + [Bur| > 55 + 1). (1

Proof. Let G = G x Gy. Since C; # V; and Gy is
strongly connected, E(J;r] (C1) # ¢ and there exist x € C1 and

x' € Vi\Cy such that (x,x') € Ef (C). Let D = V(C) N
V(G}) and F = N{ (D) N V(G3). Then

N(J;SZC (D) C Sy, FC Sy (resp. Eg,zc (D) € By,EG(D,F) C Byy)

since C has no out-neighbors in G — § (resp. G — B), which
means that

|Sxl + ISv| = [NG; (D)| + |F|

2
(resp. |Bi| + |Bev| = [ES (D)| + |Eg(D, F))). @

Note that |F| = |D| = |Eg(D, F)| since (x,x") € E(Gy). It
follows from (2) that

IS¢| +ISv| = [N (D)| + D

3
(resp. Bul + IBul = [E; )| +1D)). )

It follows from (3) and Lemma 2 that
[Sx| + ISy | = 6; +1 (ICSP- [Bx| + [Bxr'| = 8;_ + 1)

as required. "

3. MAIN RESULT

Theorem 1. For every two nontrivial strongly connected
digraphs Gy and G,

k(Gy x Gp) = min {nika,nok1, 8 + 85,87 + 65 }.
Proof. Let G = G| x G;. Clearly,
«(G) < min{8(G),8(G)} = min {8} + 85,87 + 65 }.

If G, is not a complete digraph, let Sp be a minimum sep-
arating set of G,. Then Vi x §j is a separating set of G,
which implies «(G) < nik2. If G» is a complete digraph,
then kp = 8; , therefore

K(G) <8 +8; < (8 +1)8; <mika.

By symmetry, we have « (G) < nk;.
So it remains to show

k(G1 x Gp) > min {knp, kony, 87 + 85,87 +85 }.

Evidently, G is not a complete digraph since neither G| nor
Gy is trivial. Let S be a minimum separating set in G.
Assume C; # Vi and C; # V, for each strongly
connected component C of G — S. Then
S| > 1 foreachx € V. “4)
Otherwise, there is a strongly connected component C’ con-
taining G5 for some x € Vi, which implies C), = V;, a
contradiction. Let C be a strongly connected component of
G — S without out-neighbors. Since C; # Vi, by Lemma 1
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there exist x € C; and x' € V{\Cj such that |S,| + [Sy| >
85 + 1. It follows from (4) that

S| =1Sel + ISel+ D> IS:]
zeVi\{xx'}
>8F+1+m—2)
>68 + 1+ (57 +1)—2
=57 +55.

Now, suppose there exists such a strongly connected com-
ponent C of G — S where either C; = V; or C, = V,. By
symmetry, we can without loss of generality assume C1 = V.
ByLemma I, let C'(# C) be astrongly connected component

without out-neighbors in G — S (if C’ has no in-neighbors,
the proof is similar). Then
IS| > k2 ifx € Cy. 5)

If C] = Vi, then from (5) we have
S>> 1Skl = nika.

xeCi=V,

If C; # Vi, then by Lemma 1 there exist x € C| and
x" € Vi \ C] such that [S| 4 [S¢| > 8; + 1. And we can also
see that

S.| = 1 foreachz € NZ (Cy). (6)
It follows from (1), (6), and Lemma 2 that

ISI= 1S+ 1Sel+ Y IS:I+ > IS

€Ci\l) NG (CO\W)
= ot 1[N ()] -1
= 53+ (|ci |+ NG ()~ 1
=8+ (87 +1)—1
=5/ +46F.
This completes the proof. n

Corollary 1. ([13]) For every two nontrivial connected
undirected graphs Gy and G,

k(G1 x Gp) = min{nxy, nok1,81 + 82}

Theorem 2. For every two nontrivial strongly connected
digraphs Gy and G,

MG1 x Gy) = min {nida, o1, 8 + 85,87 + 685 }.
Proof. To prove the equality, we only need to prove that
MGy x Gy) > min {Aina, Aony, 87 + 85,87 + 85 }

since the reverse inequality clearly holds. Let G = G| x Gy
and B be a minimum edge-separating set of G.
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Suppose that C; # Vi and C; # V, for each strongly
connected component C of G — B. Then

[By| > 1
|B"| > 1

for each x € V| and

for each y € Vj.
Thus,

Bl= B+ Y 1Bl =m+n =58 +685 +2.

xeV, ye V,

Now, suppose there exists such a strongly connected com-
ponent C of G — B where either C; = V| or C; = V,. By
symmetry, we can without loss of generality assume C; = V.
Let C'(# C) be a strongly connected component without
out-neighbors in G — B. Note that

|By| > Ay forx e Cj. @)

If C}] = Vj, then from (7) we have
B> > Bl =nia.
xeCi=V,

If Ci # V|, then by Lemma 1 there exists an edge (x,x') €
E{ (C) such that |B,| + |By| > 85 + 1. And we can also
see that

IB.| = 1 foreache e Ef (C}). ®)
It follows from (1), (8), and Lemma 2 that
Bl > Bl + Buel + > 1B+ Y. B
€O\ ecE (C)\ber)
=8 + 1+ -1+ [Eg ()] -1
=8 +(laif +|EG (c)) -1
>+ (87 +1)—1
=48] +55.

This completes the proof. "

Corollary 2. ([12]) For every two nontrivial connected
undirected graphs G and G,

AMG1 x G2) = min{niAa, n2A1,81 + 62}

4. REMARKS

It is well known that the Cartesian product G; x G
of two graphs G; and G, gives an important method for
designing large-scale interconnection networks. For exam-
ple, the very popular, versatile, and efficient hypercube Q,
can be expressed as O, = K> x Kp x --- X K>, where K;

n
is a complete graph of order two. In this note, we com-
pletely determine the connectivity and the edge-connectivity
of G1 x Gy for two strongly connected digraphs G; and



G», which are equal to min{nllcg,nzlq,(sr + 5;,61_ + 45}
and Illin{rzl)\g,iqg)»1,<3;L + 8+,81_ + &, }, respectively; these
generalize two corresponding results for undirected graphs,
namely Corollary 1 and Corollary 2. As another application,
we immediately obtain «(Q,) = A(Qy) = n.

We note that Chartrand and Harary [3] introduced permu-
tation graphs. For a graph G and a permutation 7 of V(G),
the permutation graph G” is defined by taking two disjoint
copies of G and adding a matching joining each vertex v in
the first copy to w(v) in the second copy. The connectivity
and edge-connectivity of G* were studied in [2, 5, 7]. It is
clear that permutation graphs cannot contain the Cartesian
product graphs. However, if we take 7 in G™ as the identity
permutation, then the permutation graph G = G x K;.

We also note that Balbuena et al. [1] defined the product
graph G; x G of two undirected graphs G; and G, which
is a generalization of both the Cartesian product graphs and
the permutation graphs. Thus, it is interesting to determine
the connectivity and edge-connectivity of G; x G».
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