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We determine that the connectivity and the edge-
connectivity of the Cartesian product G1 × G2 of
two strongly connected and finite digraphs G1 and
G2 are equal to min{n1κ2, n2κ1, δ+

1 + δ+
2 , δ−

1 + δ−
2 } and

min{n1λ2, n2λ1, δ+
1 + δ+

2 , δ−
1 + δ−

2 }, respectively, where ni ,
κi , λi , δ+

i , δ−
i are the order, the connectivity, the edge-

connectivity, the minimum out-degree and the minimum
in-degree of Gi , respectively, for i = 1, 2. © 2008 Wiley
Periodicals, Inc. NETWORKS, Vol. 52(4), 202–205 2008
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1. INTRODUCTION

Graph theory has become one of the most powerful math-
ematical tools in the analysis and study of the architecture of
an interconnection network. It is well known that when the
underlying topology of an interconnection network is mod-
eled by a connected graph G = (V , E), where V is the set
of processors and E is the set of communication links in
the network, the connectivity κ(G) and the edge-connectivity
λ(G) are two important features determining reliability and
fault tolerance of the network. It is also well known that, for
designing large-scale interconnection networks, the Carte-
sian product is an important method to obtain large graphs
from smaller ones, with a number of parameters that can
be easily calculated from the corresponding parameters for
those small initial graphs. The Cartesian product preserves
many nice properties such as regularity, existence of Hamil-
ton cycles and Euler circuits, and transitivity of the initial
graphs (see, e.g., [10]). In this note, we deal with the con-
nectivity and the edge-connectivity of the Cartesian product
of graphs.

We use the symbols ni, δi, κi, and λi to denote the order, the
minimum degree, the connectivity, and the edge-connectivity
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of a graph Gi, respectively, for i = 1, 2. In 1957, Sabidussi [8]
first discussed the connectivity of the Cartesian product
G1 × G2 of two undirected graphs G1 and G2 and proved
that κ(G1 × G2) ≥ κ1 + κ2 if G1 and G2 are connected. In
1998, Xu [9] generalized this result to strongly connected
digraphs. In 1999, Chiue and Shieh [4] proved that for con-
nected undirected graphs G1 and G2, λ(G1 ×G2) ≥ λ1 +λ2.
The authors [12,13] completely determined the connectivity
and the edge-connectivity of the Cartesian product of two
connected undirected graphs G1 and G2: namely,

κ(G1 × G2) = min{n1κ2, n2κ1, δ1 + δ2},
λ(G1 × G2) = min{n1λ2, n2λ1, δ1 + δ2}.

Very recently, Lu et al. [6] have further considered the super
edge-connectivity of Cartesian product graphs.

Balbuena et al. [1] considered a generalization of the
Cartesian product of graphs, the product graph G1 × G2 of
two undirected graphs G1 and G2, and obtained

κ(G1 × G2) ≥ min{κ1n2, (δ1 + 1)κ2, δ1 + δ2}.
Moreover, they stated some sufficient conditions that guar-
antee these product graphs to be maximally connected or
superconnected.

Motivated by the technique in [1], in this note, we com-
pletely determine the connectivity and the edge-connectivity
of the Cartesian product of two digraphs G1 and G2 as
follows:

κ(G1 × G2) = min
{
n1κ2, n2κ1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}
,

λ(G1 × G2) = min
{
n1λ2, n2λ1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}
,

where Gi is a strongly connected digraph with minimum out-
degree δ+

i and minimum in-degree δ−
i , for i = 1, 2.

The proofs of these results are in Section 3. In Section
2, we present some preliminaries and the definition of the
Cartesian product of two digraphs.

2. PRELIMINARIES

We follow [11] for graph-theoretical terminology and
notation not defined here. Let G = (V , E) be a strongly con-
nected digraph. A subset S ⊂ V(G) (resp. B ⊆ E(G)) is said
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to be a separating set (an edge-separating set) of G if G − S
(resp. G−B) is not strongly connected. The connectivity of G
is defined as κ(G) = min{|S| : S is a separating set of G} if
G is not a complete digraph; and κ(G) = n−1 if G is a com-
plete digraph of order n. The edge-connectivity of G is defined
as λ(G) = min{|B| : B is an edge-separating set of G}. For
any digraph G, we have κ ≤ λ ≤ δ = min{δ+, δ−}.

Let D and D′ be two disjoint nonempty proper sub-
sets of V(G) or subgraphs of G. The symbols N+

G (D) and
N−

G (D) denote the set of out-neighbors of D and the set
of in-neighbors of D, E+

G (D), and E−
G (D) denote the set of

out-going edges of D and the set of in-coming edges of D,
respectively, and EG(D, D′) denotes the set of edges with tails
in D and heads in D′. The following two facts are simple and
useful for the proofs of our main results.

Remark 1. Let G be a digraph. If it is not strongly connected
and has a finite number of strongly connected components,
then G has at least two strongly connected components C and
C′ such that N+

G (C) = ∅ and N−
G (C′) = ∅.

Remark 2. Let G be a digraph and let D be a nonempty
proper subset of V(G). Then |D|+|N+

G (D)| ≥ δ+(G)+1 and
|D|+|N−

G (D)| ≥ δ−(G)+1. Also |D|+|E+
G (D)| ≥ δ+(G)+1

and |D| + |E−
G (D)| ≥ δ−(G) + 1.

The Cartesian product digraph G1 × G2 = (V , E) of
digraphs G1 = (V1, E1) and G2 = (V2, E2) has the vertex set
V = V1 × V2 = {xy : x ∈ V1, y ∈ V2}, and (x1x2, y1y2) ∈ E
if and only if either x1 = y1 and (x2, y2) ∈ E2 or x2 = y2

and (x1, y1) ∈ E1. Obviously, δ+(G1 × G2) = δ+
1 + δ+

2 and
δ−(G1 × G2) = δ−

1 + δ−
2 .

We now introduce some notations for convenience. For
x ∈ V(G1) and y ∈ V(G2), the symbols Gx

2 and Gy
1 denote the

subgraph of G1×G2 induced by {x}×V(G2) and V(G1)×{y},
respectively. For a separating set S and an edge-separating set
B of G1 × G2, denote

Sx = S ∩ V
(
Gx

2

)
, Sy = S ∩ V

(
Gy

1

)
,

Bx = B ∩ E
(
Gx

2

)
, By = B ∩ E

(
Gy

1

)
,

Bxz = B ∩ EG
(
Gx

2, Gz
2

)
if (x, z) ∈ E(G1).

For a strongly connected component C of G − S (or G − B),
denote

C1 = {x ∈ V1 : xy ∈ V(C) for some y ∈ V2},
C2 = {y ∈ V2 : xy ∈ V(C) for some x ∈ V1}.

Lemma 1. Let G1 and G2 be two strongly connected
digraphs, S and B be a separating set and an edge-separating
set of G1 × G2, respectively, and C be a strongly connected
component of G1 × G2 − S (resp. G1 × G2 − B) with-
out out-neighbors. If C1 	= V1, then there exists an edge
(x, x′) ∈ E+

G1
(C1) such that

|Sx| + |Sx′ | ≥ δ+
2 + 1

(
resp. |Bx| + |Bxx′ | ≥ δ+

2 + 1
)
. (1)

Proof. Let G = G1 × G2. Since C1 	= V1 and G1 is
strongly connected, E+

G1
(C1) 	= ∅ and there exist x ∈ C1 and

x′ ∈ V1\C1 such that (x, x′) ∈ E+
G1

(C1). Let D = V(C) ∩
V(Gx

2) and F = N+
G (D) ∩ V(Gx′

2 ). Then

N+
Gx

2
(D) ⊆ Sx , F ⊆ Sx′

(
resp. E+

Gx
2
(D) ⊆ Bx , EG(D, F) ⊆ Bxx′

)

since C has no out-neighbors in G − S (resp. G − B), which
means that

|Sx| + |Sx′ | ≥ ∣∣N+
Gx

2
(D)

∣∣ + |F|(
resp. |Bx| + |Bxx′ | ≥ ∣∣E+

Gx
2
(D)

∣∣ + |EG(D, F)|).
(2)

Note that |F| = |D| = |EG(D, F)| since (x, x′) ∈ E(G1). It
follows from (2) that

|Sx| + |Sx′ | ≥ ∣∣N+
Gx

2
(D)

∣∣ + |D|(
resp. |Bx| + |Bxx′ | ≥ ∣∣E+

Gx
2
(D)

∣∣ + |D|).
(3)

It follows from (3) and Lemma 2 that

|Sx| + |Sx′ | ≥ δ+
2 + 1

(
resp. |Bx| + |Bxx′ | ≥ δ+

2 + 1
)

as required. ■

3. MAIN RESULT

Theorem 1. For every two nontrivial strongly connected
digraphs G1 and G2,

κ(G1 × G2) = min
{
n1κ2, n2κ1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}
.

Proof. Let G = G1 × G2. Clearly,

κ(G) ≤ min{δ+(G), δ−(G)} = min
{
δ+

1 + δ+
2 , δ−

1 + δ−
2

}
.

If G2 is not a complete digraph, let S0 be a minimum sep-
arating set of G2. Then V1 × S0 is a separating set of G,
which implies κ(G) ≤ n1κ2. If G2 is a complete digraph,
then κ2 = δ+

2 , therefore

κ(G) ≤ δ+
1 + δ+

2 ≤ (
δ+

1 + 1
)
δ+

2 ≤ n1κ2.

By symmetry, we have κ(G) ≤ n2κ1.
So it remains to show

κ(G1 × G2) ≥ min
{
κ1n2, κ2n1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}
.

Evidently, G is not a complete digraph since neither G1 nor
G2 is trivial. Let S be a minimum separating set in G.

Assume C1 	= V1 and C2 	= V2 for each strongly
connected component C of G − S. Then

|Sx| ≥ 1 for each x ∈ V1. (4)

Otherwise, there is a strongly connected component C′ con-
taining Gx

2 for some x ∈ V1, which implies C′
2 = V2, a

contradiction. Let C be a strongly connected component of
G − S without out-neighbors. Since C1 	= V1, by Lemma 1
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there exist x ∈ C1 and x′ ∈ V1\C1 such that |Sx| + |Sx′ | ≥
δ+

2 + 1. It follows from (4) that

|S| = |Sx| + |Sx′ | +
∑

z∈V1\{x,x′}
|Sz|

≥ δ+
2 + 1 + (n1 − 2)

≥ δ+
2 + 1 + (

δ+
1 + 1

) − 2

= δ+
1 + δ+

2 .

Now, suppose there exists such a strongly connected com-
ponent C of G − S where either C1 = V1 or C2 = V2. By
symmetry, we can without loss of generality assume C1 = V1.
By Lemma 1, let C′(	= C) be a strongly connected component
without out-neighbors in G − S (if C′ has no in-neighbors,
the proof is similar). Then

|Sx| ≥ κ2 if x ∈ C′
1. (5)

If C′
1 = V1, then from (5) we have

|S| ≥
∑

x∈C′
1=V1

|Sx| ≥ n1κ2.

If C′
1 	= V1, then by Lemma 1 there exist x ∈ C′

1 and
x′ ∈ V1 \ C′

1 such that |Sx|+ |Sx′ | ≥ δ+
2 + 1. And we can also

see that

|Sz| ≥ 1 for each z ∈ N+
G1

(
C′

1

)
. (6)

It follows from (1), (6), and Lemma 2 that

|S| ≥ |Sx| + |Sx′ | +
∑

z∈C′
1\{x}

|Sz| +
∑

z∈N+
G1

(C′
1)\{x′}

|Sz|

≥ δ+
2 + 1 + ∣∣C′

1

∣∣ − 1 + ∣∣N+
G1

(
C′

1

)∣∣ − 1

= δ+
2 + (∣∣C′

1

∣∣ + ∣∣N+
G1

(
C′

1

)∣∣) − 1

≥ δ+
2 + (

δ+
1 + 1

) − 1

= δ+
1 + δ+

2 .

This completes the proof. ■

Corollary 1. ([13]) For every two nontrivial connected
undirected graphs G1 and G2,

κ(G1 × G2) = min{n1κ2, n2κ1, δ1 + δ2}.

Theorem 2. For every two nontrivial strongly connected
digraphs G1 and G2,

λ(G1 × G2) = min
{
n1λ2, n2λ1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}
.

Proof. To prove the equality, we only need to prove that

λ(G1 × G2) ≥ min
{
λ1n2, λ2n1, δ+

1 + δ+
2 , δ−

1 + δ−
2

}

since the reverse inequality clearly holds. Let G = G1 × G2

and B be a minimum edge-separating set of G.

Suppose that C1 	= V1 and C2 	= V2 for each strongly
connected component C of G − B. Then

|Bx| ≥ 1 for each x ∈ V1 and

|By| ≥ 1 for each y ∈ V2.

Thus,

|B| =
∑

x∈V1

|Bx| +
∑

y∈V2

|By| ≥ n1 + n2 ≥ δ+
1 + δ+

2 + 2.

Now, suppose there exists such a strongly connected com-
ponent C of G − B where either C1 = V1 or C2 = V2. By
symmetry, we can without loss of generality assume C1 = V1.
Let C′(	= C) be a strongly connected component without
out-neighbors in G − B. Note that

|Bx| ≥ λ2 for x ∈ C′
1. (7)

If C′
1 = V1, then from (7) we have

|B| ≥
∑

x∈C′
1=V1

|Bx| ≥ n1λ2.

If C′
1 	= V1, then by Lemma 1 there exists an edge (x, x′) ∈

E+
G1

(C′
1) such that |Bx| + |Bxx′ | ≥ δ+

2 + 1. And we can also
see that

|Be| ≥ 1 for each e ∈ E+
G1

(
C′

1

)
. (8)

It follows from (1), (8), and Lemma 2 that

|B| ≥ |Bx| + |Bxx′ | +
∑

z∈C′
1\{x}

|Bz| +
∑

e∈E+
G1

(
C′

1

)
\{xx′}

|Be|

≥ δ+
2 + 1 + ∣∣C′

1

∣∣ − 1 + ∣∣E+
G1

(
C′

1

)∣∣ − 1

= δ+
2 + (∣∣C′

1

∣∣ + ∣∣E+
G1

(
C′

1

)∣∣) − 1

≥ δ+
2 + (

δ+
1 + 1

) − 1

= δ+
1 + δ+

2 .

This completes the proof. ■

Corollary 2. ([12]) For every two nontrivial connected
undirected graphs G1 and G2,

λ(G1 × G2) = min{n1λ2, n2λ1, δ1 + δ2}.

4. REMARKS

It is well known that the Cartesian product G1 × G2

of two graphs G1 and G2 gives an important method for
designing large-scale interconnection networks. For exam-
ple, the very popular, versatile, and efficient hypercube Qn

can be expressed as Qn = K2 × K2 × · · · × K2︸ ︷︷ ︸
n

, where K2

is a complete graph of order two. In this note, we com-
pletely determine the connectivity and the edge-connectivity
of G1 × G2 for two strongly connected digraphs G1 and
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G2, which are equal to min{n1κ2, n2κ1, δ+
1 + δ+

2 , δ−
1 + δ−

2 }
and min{n1λ2, n2λ1, δ+

1 + δ+
2 , δ−

1 + δ−
2 }, respectively; these

generalize two corresponding results for undirected graphs,
namely Corollary 1 and Corollary 2. As another application,
we immediately obtain κ(Qn) = λ(Qn) = n.

We note that Chartrand and Harary [3] introduced permu-
tation graphs. For a graph G and a permutation π of V(G),
the permutation graph Gπ is defined by taking two disjoint
copies of G and adding a matching joining each vertex v in
the first copy to π(v) in the second copy. The connectivity
and edge-connectivity of Gπ were studied in [2, 5, 7]. It is
clear that permutation graphs cannot contain the Cartesian
product graphs. However, if we take π in Gπ as the identity
permutation, then the permutation graph Gπ = G × K2.

We also note that Balbuena et al. [1] defined the product
graph G1 × G2 of two undirected graphs G1 and G2, which
is a generalization of both the Cartesian product graphs and
the permutation graphs. Thus, it is interesting to determine
the connectivity and edge-connectivity of G1 × G2.
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