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Abstract

We examine a class of problems which seeks to find tree-structured networks which
minimize the maximum cost among a subset of nodes in a graph. The cost metric is
characterized by a series of parameters which can represent distance, flow volume, and
delivery deadlines. Derived through variations in problem parameters, we present 17
different problems and discuss their worst-case complexity. Fourteen of the problems
are new to the literature. We show that some of the problems are NP-complete and
others are polynomially solvable.
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1 Introduction

To be successful in the face of fierce competition and to meet the growing demand for

time-definite services, delivery companies must design their delivery networks to reliably

and efficiently meet their promised delivery times. In the near term, however, redesign

of the network through the opening of new facilities and the closing of existing facilities

is infeasible. Rather, the network can be modified by changing how freight flows through

the network. In particular, companies can change which cities have direct connections to

one another and which cities must flow freight and packages through intermediate cities in

order to make a connection. Each city-to-city connection requires substantial investment,

so delivery companies want to minimize the number of direct connections. Consequently,

this study will focus on restricting the design of the delivery networks to tree structures,

as they connect all of the nodes in the network with the minimum number of connections.

In addition to cost minimization, Powell and Koskosidis (1992) note that tree-structured

networks are easier networks to manage because there is only one path between each origin

and destination pair.

Different tree structures offer different levels of service between customers. Delivery compa-

nies may have stricter service requirements or place more emphasis on service between certain

sets or kinds of customers, and this should be reflected in their choice of tree-structured net-

work. With this in mind, this paper considers different variants in assumptions and objective

function and examines the complexity of each. All of the problems assume a simple, con-

nected, and undirected graph G = (V, E). For each problem, the objective is to minimize

the maximum cost between a source node set S ⊆ V and sink node set U ⊆ V and involves

two parameters: fij ≥ 0 and Hij ≥ 0. A minimax objective optimizes service by minimizing

the worst-case service between customers in the source and sink sets. The definition of the

source and sink node set as well as the parameters define each variant in the class, allowing

the objective to be expressed in the following general form:

max
vi∈S

max
vj∈U

{fij(dT (vi, vj)−Hij)}. (1)
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The choice of source node set and sink node set reflects the combination of customers whose

service level is considered in the objective function. For example, if S = V and U = V ,

we want to consider the travel time from every customer to every other customer in the

objective. If S 6= V or U 6= V , we want to consider the travel time only between a subset

of nodes in the objective function. The selection of S and U is thus a reflection of priorities

among customers or cities in a delivery network. Next, the parameter fij reflects a weight

placed on the service from customer vi to customer vj. This weight may reflect, for example,

the flow of packages from city vi to city vj, so that cities with heavy flow between them

are prioritized in the objective. We may consider simpler versions where fij is constant for

all vi, vj pairs (f) or only dependent on vi (fi). We will also consider a special case of fij

where it is based on values for fi and fj. Finally, the parameter Hij represents a service

time commitment from customer vi to customer vj. Many delivery providers offer varying

levels of service between customers depending on their location and demand, so Hij forces

Equation 1 to minimize the maximum violation of these commitments. As with fij, we can

consider simpler versions such as where Hij is zero (0), a constant (H), or where Hij is

dependent only on vi (Hi). Note that when Hij = 0 for all vi, vj pairs this represents the

case where there is no established commitment, and the objective is to simply minimize the

maximum travel time between pairs.

Table 1 lists the different problem variants covered in this paper or in the literature and

their worst-case complexity status. It should be noted that each of these problems is in NP

as the objective function associated with a given tree can be evaluated in polynomial time.

For those problems that can be solved in polynomial time, we set n = |V |, m = |E|, k = |S|,
l = |U | and n̄ = |S| + |U | = k + l. Without loss of generality, we assume that k > 1 and

l > 1. Otherwise, if either S or U consists of a single node, then the optimal tree is a shortest

path spanning tree rooted at that node.

In this paper, we examine the complexity of these minimax flow tree problems and find

some to be polynomial and others to be NP -Complete. In Section 2, we review the related

literature. In Section 3, we define relevant notation for our study. Section 4 studies the

algorithms for the tractable problems. In Section 5, the NP -Completeness of the intractable

problems is established. Finally, we discuss directions for future work in Section 6.
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Problem S U fij Hij Complexity Reference

1 MDST S = V U = V 1 0 O(mn + n2 log n) Handler and Mirchandani (1979)

Kariv and Hakimi (1979)

Hassin and Tamir (1995)

2 k-MEST S ⊆ V U = V 1 0 O(mn + n2 log n) Wu (2004)

3 MEMT S ⊆ V U ⊆ V 1 0 O(mn + n2 log n) Krumme and Fragopoulou (2001),

this paper

4 UMVT S ⊆ V U ⊆ V 1 H O(mn + n2 log n) this paper

5 NMVT S ⊆ V U ⊆ V 1 Hi O(mn + n2 log n) this paper

6 PMVT S ⊆ V U ⊆ V 1 Hij NP -Complete this paper

7 NF-MDST S = V U = V fi 0 O(mn log n) this paper

8 NF-MEMT S ⊆ V U ⊆ V fi 0 O(mn + n2 log n + mn̄ log n̄) this paper

9 NF-UMVT S ⊆ V U ⊆ V fi H O(mn + n2 log n + mn̄ log n̄) this paper

10 NF-NMVT S ⊆ V U ⊆ V fi Hi O(mn + n2 log n + mn̄ log n̄) this paper

11 NF-PMVT S ⊆ V U ⊆ V fi Hij NP -Complete this paper

12 SF-MDST S = V U = V
fifj

fi+fj
0 O(mn log n) this paper

13 PF-MDST S = V U = V fij 0 NP -Complete this paper

14 PF-MEMT S ⊆ V U ⊆ V fij 0 NP -Complete this paper

15 PF-UMVT S ⊆ V U ⊆ V fij H NP -Complete this paper

16 PF-NMVT S ⊆ V U ⊆ V fij Hi NP -Complete this paper

17 PF-PMVT S ⊆ V U ⊆ V fij Hij NP -Complete this paper

Table 1: Problem Variants

2 Literature Review

The Minimum Diameter Spanning Tree Problem (MDST) is the problem of finding a span-

ning tree T of G with minimum diameter, where the diameter of T is defined as the longest

path in T among the paths between all pairs of nodes in V . Ho et al. (1991) consider the

case where the graph G is a complete Euclidean graph, induced by a set of n points in the

Euclidean plane. Ho et al. call this special case the geometric MDST. Ho et al. develop

an O(n3) algorithm to find a spanning tree of minimum diameter of a Euclidean graph, and

they mention that these results extend to any graph whose edge lengths satisfy the triangle

inequality. Handler and Mirchandani (1979) (see also Hassin and Tamir (1995)) consider the

general case where the edge lengths in a general graph do not necessarily satisfy the trian-

gle inequality. They observe that MDST is identical to the well studied Absolute 1-Center

Problem introduced by Hakimi (1964), where the absolute center of a graph is a point in the

graph whose maximum shortest distance from any node on the graph is minimal. Hassin
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and Tamir (1995) note that MDST can then be solved by the existing algorithms for the

Absolute 1-Center Problem on a general graph in O(mn+n2 log n) time (Kariv and Hakimi,

1979).

Given the source set S ⊆ V such that |S| = k and the sink set U = V in G, the k-

Source Minimum Max-Eccentricity Spanning Tree Problem (k-MEST) is defined as finding

a spanning tree to minimize the maximal source eccentricities among k sources, where the

source eccentricity in a spanning tree T is the longest distance from a source to all sink nodes.

Farley et al. (2000) explore the variant with uniform edge lengths. First, they prove that

there exists either a vertex x or an edge (y, z), such that the shortest path tree rooted from

either x or the midpoint of (y, z) minimizes the maximal source eccentricity. They introduce

an exact polynomial algorithm for k-MEST with uniform edge length based on solving many

shortest path problems. McMahan and Proskurowski (2004) generalize the result for graphs

with general edge lengths and show there exists a minimum max-eccentricity spanning tree

which is a shortest path tree rooted at either a vertex or a created vertex lying on an

edge. McMahan and Proskurowski (2004) then establish an exact polynomial algorithm

with running time O(n3 + mn log n) for a general graph. Krumme and Fragopoulou (2001)

study the Minimum Eccentricity Multicast Tree (MEMT), which is a generalized version of

k-MEST with the sink set U ⊆ V . By identifying the appropriate edge that can be cut to

create a new vertex from which to construct an optimal shortest path spanning tree, Krumme

and Fragopoulou offer a polynomial algorithm with running time O(mn + n3) for MEMT,

which computes the all pair shortest path distances in O(n3) time. We note that, if we

apply Fibonacci heaps to compute the all pair shortest path distances (Fredman and Tarjan,

1987), the complexity of the algorithm in (Krumme and Fragopoulou, 2001) improves to

O(mn + n2 log n) time. Based on a similar idea as Krumme and Fragopoulou (2001), Wu

(2004) independently describes another polynomial algorithm with O(mn + n2 log n) time

for the k-MEST.

Another problem related to source eccentricity is the k-Source Minimum Sum-Eccentricity

Spanning Tree Problem (k-SSET). This problem seeks to minimize the sum of the eccen-

tricities of the k source nodes instead of the maximum eccentricity of the k source nodes.

Connamacher and Proskurowski (2003) demonstrate that k-SSET is polynomially solvable.
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Fragopoulou et al. (2005) design an O(mn log n) time algorithm to solve the k-SSET.

The Optimal Communication Spanning Tree Problem (OCST) is the only literature known

to the authors which considers flow in conjunction with tree structures. In this problem,

given a set of communication requirements rij between vi and vj in graph G = (V, E), the

cost measure of a spanning tree is defined as follows. For a pair of nodes vi and vj, there

is a unique path in the spanning tree between them. The cost of communication for the

pair of nodes vi and vj is rij multiplied by the distance of the path, dT (vi, vj). Summing

over all (n
2 ) pairs of nodes, we have the cost of the spanning tree. Hu (1974) introduces the

OCST, and Johnson et al. (1978) show that OCST is NP-hard. Ahuja and Murty (1987)

provide an exact algorithm for small problems. Peleg (1997) and Peleg and Reshef (1998)

establish polynomial-time approximation algorithms for OCST. Hu (1974) also studies the

special OCST, which is labeled as ORST and assumes the length of every arc is one, and

demonstrates a polynomial algorithm to solve the ORST in a complete graph. Hu (1974)

introduces another special OCST, which is labeled as ODST and assumes the required flows

are one for all pairs of nodes. Wu (2002) proves that the k-source ODST (k-ODST), where

there are k source nodes, is NP-hard even if k = 2 for a metric graph. Additional ODST

research focuses on finding approximation algorithms (Wu et al., 1999, 2000a,b).

Also related to the research in this paper is the Hop-Constrained Minimum Spanning Tree

Problem (HC-MST). Referring to each arc as a hop, hop constraints limit the number of hops

between nodes and can be viewed as a distance constraint. In the literature, the objective of

HC-MST is to find the minimum spanning tree T such that the number of the hops (arcs)

in the unique path from a single root node to any other node is no greater than a constant

number H. Dahl (1998) proves that the 2-hop constrained minimum spanning tree problem

is NP-Hard. Manyem and Stallmann (1996) show that HC-MST is not APX such that it is

not possible to find a polynomial time heuristic which guarantees a constant approximation

bound. Many different IP formulations and related solution approaches have been studied

by Gouveia (1995), Gouveia (1996), Gouveia (1998), and Gouveia and Requejo (2001). Voss

(1999) uses tabu search to improve a feasible initial solution. Althaus et al. (2005) build an

algorithm with an O(log n)-approximation in running time O(n5k) for the k-hop constrained

minimum spanning tree problem.
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3 Notation

In this section, we describe the notation used throughout our paper. Let G = (V, E) be a

simple, connected, and undirected graph, where V is the set of nodes vi and E is the set of

edges eij. Without loss of generality, we assume i < j for every edge eij. Each edge eij ∈ E

is associated with a positive length lij and is assumed to be rectifiable. We note that the

literature often equates arc length with distance in the network. Because of our focus on

service-time commitments, we consider these lengths to be travel times. However, the two

measures of distance are equivalent for purposes of the results presented in this paper. Thus,

our service-time commitment can also be thought of as a distance restriction.

A node which is incident to only one edge is a leaf node, otherwise it is an internal node.

An edge incident to a leaf node is a leaf edge. A path from node vi to node vj is denoted

as the vi-vj path. A spanning tree of G is a connected subgraph T = (V, ET ⊆ E) without

cycles. The distance between node vi and node vj in T , dT (vi, vj), is the sum of the lengths

of the edges which are in the unique vi-vj path. For two nodes vi and vj, the shortest path

distance between them in a graph G is denoted by dG(vi, vj).

We define nodes vi ∈ V and vj ∈ V as adjacent in the tree T if eij ∈ ET . The endpoints of

a path are the two nodes at which the path begins and ends. In a path, all the other nodes

except the two endpoints are internal nodes of the path. Let vi1-vi2-...-via be path A and

vj1-vj2-...-vjb
be path B in the graph. We say that path A and path B are disjoint if the sets

{vi1 , ..., via} and {vj1 , ..., vjb
} are disjoint. If the above two sets are not disjoint, we say that

path A and path B intersect, and each node in their intersection is called an intersection

node.

We define a point as a location in the graph which could be either a node or a location on an

edge. We will refer to a point on a rectifiable edge by its distances from the two nodes of the

edge. Let I(G) denote the continuum set of points on the edges of G. The edge lengths of

G induce a distance function on I(G). For any two points x, y ∈ I(G), dG(x, y) will denote

the length of a shortest path in I(G) connecting x and y. We refer to I(G) as the network
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metric space induced by G and its edge lengths.

Recall, we let S ⊆ V and U ⊆ V denote the source node set and sink node set, respectively.

Further, we let k = |S|, l = |U | and n̄ = |S| + |U | = k + l. For a spanning tree T , we

define the longest intra-sink path of T , DT , to be a longest path in T among all the paths

connecting a pair of sink nodes in U . The length of DT is denoted by δT . The center point

of a tree is the middle point of a longest intra-sink path. For a source node vi ∈ S, define

hT
i = maxvj∈U{dT (vi, vj)}.

4 The Tractable Problems

This section presents polynomial-time algorithms for the tractable problems for which no

algorithm exists in the literature. For any problem with some Hij 6= 0, we will refer to the

problem as a Minimax Violation Tree Problem (MVT).

4.1 Uniform Commitment Minimax Violation Tree (UMVT)

The service-time commitment in the UMVT is the same for every pair of source and sink

nodes (Hij = H). Here, the maximum violation of a source is achieved by the longest travel-

time or distance from the source to all sinks in the tree, which is the eccentricity of the

source in the tree. As MEMT seeks to minimize the maximal source eccentricities, MEMT

and UMVT are closely related to each other. Theorem 1 states the relationship between

MEMT and UMVT.

Theorem 1 Any optimal solution to MEMT is an optimal solution to UMVT.

Proof: For UMVT, the objective is to minimize

max
vi∈S

max
vj∈U

{dT (vi, vj)−Hij} = max
vi∈S

max
vj∈U

{dT (vi, vj)} −H.
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For MEMT where Hij = 0, the objective is to minimize

max
vi∈S

max
vj∈U

{dT (vi, vj)−Hij} = max
vi∈S

max
vj∈U

{dT (vi, vj)}.

Thus, if a tree minimizes the objective of MEMT, it also minimizes the objective for UMVT.

Given this result, UMVT can be solved by the algorithms for MEMT. Thus, UMVT can

be solved in O(mn + n2 log n) time (Krumme and Fragopoulou, 2001). In addition, as the

UMVT with S = U = V is the MDST, the special case with S = U = V also takes

O(mn + n2 log n) time to find an optimal solution.

4.2 Node Commitment Minimax Violation Tree (NMVT)

For NMVT, where Hij = Hi, we shall show that it can be transformed into a special MEMT

and solved by an algorithm for MEMT.

For an instance of NMVT, we can transform it to a special case of MEMT as follows. First,

we build the input graph G′ for MEMT from G. Let H = 1+maxvi∈S{Hi}. For each source

node vi ∈ S, we create a new node v′i and connect v′i and vi by a new edge eviv′
i
with the edge

length lviv′
i
= H −Hi > 0. Let G′ be the graph with node set V ′ and edge set E ′ such that

V ′ = V ∪ {v′i : vi ∈ S} and E ′ = E ∪ {eviv′
i
: vi ∈ S}. Now, |V ′| = n + k and |E ′| = m + k.

Next, we set the source and sink node sets for MEMT such that S ′ = {v′i : vi ∈ S} and

U ′ = U , respectively. Clearly, all source nodes in S ′ are leaf nodes in G′. Figure 1 shows an

example of NMVT and the transformed MEMT.

For MEMT, if we denote C(T ) as the maximal source eccentricity in a tree T , then C(T ) =

maxvi∈S{maxvj∈U{dT (vi, vj)}}. For NMVT, if we let F (T ) denote the maximal violation of

a tree T , then F (T ) = maxvi∈S{maxvj∈U{dT (vi, vj) − Hi}}, where Hi is the service-time

commitment for the source vi ∈ S. Let T ′ be any solution tree for the transformed MEMT

of G′. As all the source nodes in S ′ are leaf nodes in G′, they are still leaf nodes in T ′. If

we delete all the source nodes in S ′ and all their adjacent leaf edges from T ′, we can obtain
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1

Example for NMVT k-MEST

NMVT:
Source set S={v1, v2, v3};
Sink set  U={v2, v3, v4};
Node Restriction {H1=2, H2=4, H3=6}.

MEMT:
Source set S’={v’1, v’2, v’3};
Sink set  U’={v2, v3, v4}.

Figure 1: An example of NMVT and the transformed special MEMT

a new tree T of G. Conversely, given any T of G, we can also construct a tree T ′ of G′ by

adding all the source nodes of S ′ and all their adjacent leaf edges in G′ to T . We have the

following observation for C(T ′) and F (T ).

Lemma 1 C(T ′) = F (T ) + H, where H = 1 + maxvi∈S{Hi}.

Proof: Clearly, dT (vi, vj) = dT ′(vi, vj) for any vi, vj ∈ V . Because vi ∈ S and v′i ∈ S ′ are

one to one corresponding and U ′ = U ,

C(T ′) = max
v′

i∈S′
max
vj∈U ′

{dT ′(v′i, vj)}

= max
vi∈S

max
vj∈U

{dT ′(vi, vj) + lviv′
i
}

= max
vi∈S

max
vj∈U

{dT (vi, vj) + H −Hi}

= F (T ) + H.

We present the following theorem that follows directly from Lemma 1.
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Theorem 2 A tree T is an optimal solution to the NMVT in G if and only if the corre-

sponding T ′ is optimal for the transformed MEMT in G′.

Given this result, the algorithm for MEMT can be applied to NMVT. As an optimal solution

for MEMT can be found in O(mn + n2 log n) time (Krumme and Fragopoulou, 2001) and

|V ′| = n + k ≤ 2n and |E ′| = m + k ≤ m + n, NMVT can be solved in O(mn + n2 log n)

computation time as well.

4.3 Node Flow Minimax Violation Tree (NF-MVT)

Now we consider the problem variants with node flow, where fij = fi. We shall study four

polynomially solvable variants in this class. These variants are NF-MDST, NF-MEMT, NF-

UMVT, and NF-NMVT. From Table 1, we can see that NF-NMVT is the most general of

these variants. Therefore, we shall first focus on establishing a polynomial algorithm for

NF-NMVT and later adjust it for the other three variants.

4.3.1 Preliminaries

To begin, we present the following lemma from Connamacher and Proskurowski (2003),

which characterizes the longest travel time or distance from a source node to all the sink

nodes in a tree. A similar result is also described by Handler (1973), for the case where

U = V .

Lemma 2 Given a spanning tree T , let sink nodes v1 and v2 be the two endpoints of DT .

For any source node vi ∈ S, hT
i is obtained by either the vi-v1 path or the vi-v2 path.

Handler (1973) further clarifies from a node to which other node it obtains the longest travel

time or distance in a tree. We extend this result in the next lemma, which specifies which
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endpoint of DT defines hT
i for any source vi ∈ S and the value of hT

i . The proof follows

directly from Handler (1973) and is omitted.

Lemma 3 Given a spanning tree T , let sink nodes v1 and v2 be the two endpoints of DT .

Let o be the center point of T . Let vi ∈ S be any source node.

When vi is not on DT , let node vs be the node on DT where the path connecting vi with DT

intersects DT . If vs lies in the v1-o path, then hT
i = dT (vi, v2). If vs lies in the v2-o path, then

hT
i = dT (vi, v1). Similarly, when vi is on DT , if vi lies on the v1-o path, then hT

i = dT (vi, v2).

If vi lies on the v2-o path, then hT
i = dT (vi, v1).

In addition, hT
i = dT (vi, o) + 1

2
δT .

An important result for the shortest path tree rooted at the center point of an optimal tree

for k-MEST is proved by Farley et al. (2000) and restated by Krumme and Fragopoulou

(2001) and McMahan and Proskurowski (2004). We now extend the result to a more general

form and revisit its proof as it leads to the development of our algorithm.

Lemma 4 Given a spanning tree T in graph G and its center point o, let tree To be the

shortest path tree rooted at o in G. For any source node vi ∈ S, hTo
i ≤ hT

i .

Proof: For any source vi ∈ S and any sink node vj ∈ U , because of the triangle inequality,

the shortest paths from o in To, the definition of longest intra-sink path, and Lemma 3, we

obtain

dTo(vi, vj) ≤ dTo(vi, o) + dTo(o, vj)

≤ dT (vi, o) + dT (o, vj)

≤ dT (vi, o) +
1

2
δT

= hT
i .
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Therefore, maxvj∈U{dTo(vi, vj)} = hTo
i ≤ hT

i .

For the same spanning trees T and To, we can also characterize the relationship between the

length of the longest intra-source paths in T and To.

Lemma 5 Given a spanning tree T in graph G and its center point o, let tree To be the

shortest path tree rooted at o in G. Then, δTo ≤ δT .

Proof: Let vj1 , vj2 ∈ U be any two sinks. By the triangle inequality, shortest paths from o

in To, and the longest intra-sink path,

dTo(vj1 , vj2) ≤ dTo(vj1 , o) + dTo(o, vj2)

≤ dT (vj1 , o) + dT (o, vj2)

≤ 1

2
δT +

1

2
δT

= δT .

This result implies

δTo = max
vj1

∈U
max
vj2

∈U
{dTo(vj1 , vj2)} ≤ δT .

For NF-NMVT, we now further describe the relationship of hT
i for any source vi ∈ S in a

tree T and the maximal violation for vi in T .

Lemma 6 For NF-NMVT, the maximal violation for any source vi ∈ S in a spanning tree

T is equal to fih
T
i − fiHi.

Proof: Let Hi and fi be the node restriction and node flow for vi, respectively. The maximal

violation of vi in T equals

max
vj∈U

{fi(dT (vi, vj)−Hi)} = fi max
vj∈U

{dT (vi, vj)} − fiHi

= fih
T
i − fiHi.
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This result implies that, given the node restriction Hi and the node flow fi, the maximal

violation for any source vi ∈ S in T depends on only hT
i .

Based on Lemma 4 and Lemma 6, we can show that for any optimal solution to NF-NMVT,

there exists a shortest path spanning tree which is also optimal.

Theorem 3 For NF-NMVT, given an optimal tree T ∗, let o be the center point of T ∗. The

shortest path spanning tree rooted at o, To, is also an optimal tree.

Proof: The result follows directly from Lemmas 4 and 6.

In the light of Theorem 3, given an optimal tree T ∗ and its center point o, we can build

another optimal tree which is the shortest path tree To rooted at o. Because the longest

intra-sink path of To may move, however, the center point of To may no longer be located

at o. In fact, o is not even guaranteed to be on a longest intra-sink path. Nevertheless, we

can prove that there does exist an optimal shortest path tree whose root coincides with its

center point.

Theorem 4 For NF-NMVT, there exists an optimal shortest path spanning tree whose root

is also its center point.

Proof: By Theorem 3, for any optimal tree T ∗ with center point r, we can generate a new

optimal tree Tr, which is a shortest path spanning tree rooted at r. If r is the center point

of Tr, we are done. If r is not the center point of Tr, we must construct another optimal

shortest path tree whose root coincides with its center point.

Let o be the center point of Tr. Let the v1-v2 path be a longest intra-sink path DTr of Tr

with length δTr . Then, o divides Tr into two subtrees, T 1
r and T 2

r , containing v1 and v2,
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respectively. Because r is either in T 1
r or in T 2

r , without loss of generality, let r be in T 1
r . If

o is a node rather than a point, we let o belong to T 2
r . As v2 is in T 2

r , o is on the r-v2 path.

Thus, by the principle of optimality, a shortest path spanning tree To rooted at o contains T 2
r

such that T 2
r ⊂ To. Let S1 and S2 be two source node subsets, such that S1 and S2 contain

all the sources whose violations are equal to the maximal violation among all the sources in

T 1
r and T 2

r , respectively. The maximal violation of Tr is obtained by either the sources in S1

or those in S2. For example, let vi1 and vi2 be two sources such that vi1 ∈ S1 and vi2 ∈ S2.

By Lemma 3, the maximal violation for vi1 and vi2 are obtained by the vi1-v2 path and the

vi2-v1 path, respectively. This situation is shown in Figure 2.

2

v5

v3O
r

vi1

v1 v2

vi2

v4

Figure 2: Two subtrees of Tr separated by its center point o

Given the above characterization of Tr, we construct a shortest path spanning tree To rooted

at o, which must also be optimal by Theorem 3. Without loss of generality, we assume that,

in the construction of To, if for a node v ∈ V , the path from o to v in Tr is a shortest path,

then the path is maintained in the new spanning tree To. We now demonstrate the existence

of an optimal shortest path tree rooted at its center point.

Continuing the proof, we next demonstrate that the maximum violation in To must be ob-

tained by a source belonging to either the set S1 or S2. Let F ∗ denote the optimal maximum

violation. By construction of S1 and S2, maxvi /∈S1∪S2{fih
Tr
i − fiHi} < maxvi∈S1∪S2{fih

Tr
i −
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fiHi} = F ∗ for all sources vi ∈ S. Therefore, because hTo
i ≤ hTr

i for all sources vi ∈ S by

Lemma 4, we have

max
vi /∈S1∪S2

{fih
To
i − fiHi} ≤ max

vi /∈S1∪S2

{fih
Tr
i − fiHi} < F ∗.

Thus, the maximal violation in To must be still obtained by a source either in S1 or in S2. In

addition, by the optimality of To, there exists such a source vi ∈ S1∪S2 that fih
To
i −fiHi = F ∗

and thus hTo
i = hTr

i .

Suppose the maximal violation in To is obtained by a source vi2 ∈ S2. We will show that in

this case o is also the center point of To. Because, by Lemma 2, hTr
i2

is obtained by the vi2-v1

path in Tr and T 2
r is contained in To, hTo

i2
must be obtained by the path from vi2 to a sink vj

belonging to T 1
r in Tr. Otherwise, the vi2-v1 path in Tr would not have led to the maximal

violation for source vi2 .

We now show that the vj-o path in To contains no nodes belonging to T 2
r except o. Suppose

the vj-o path in To contains some nodes belonging to T 2
r . By our assumption that To

maintains shortest paths from o that also exist in Tr, we know that dTo(o, vj) < dTr(o, vj).

Thus, because dTr(o, vj) ≤ 1
2
δTr , we also have that dTo(o, vj) < 1

2
δTr . Then,

hTo
i2

= dTo(vi2 , vj)

≤ dTo(o, vj) + dTo(o, vi2)

<
1

2
δTr + dTo(o, vi2)

= hTr
i2

,

where the first inequality follows from the triangle inequality and the last equality from

Lemma 3. This result creates a contradiction. Therefore, the vj-o path in To must consist

entirely of nodes originally belonging to T 1
r .

As the vj-o path in To contains no nodes belonging to T 2
r except o and the vi2-o path in To

contains nodes belonging to only T 2
r , hTo

i2
= dTo(vj, vi2) = dTo(o, vi2) + dTo(o, vj). Moreover,

because hTr
i2

= dTr(o, vi2) + 1
2
δTr = dTo(o, vi2) + 1

2
δTr and hTr

i2
= hTo

i2
, we have that dTo(o, vj) =

1
2
δTr . Therefore, as the v2-o path contains nodes belonging to only T 2

r in To, dTo(vj, v2) =
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dTo(vj, o)+dTo(o, v2) = 1
2
δTr + 1

2
δTr = δTr . By Lemma 5, the v2-vj path is a longest intra-sink

path of To and consequently o must be center point of DTo . The result then follows.

We are left to consider the case that a source vi1 ∈ S1 achieves the optimal violation in

To. We will show that in this case the center point o1 of To is on the o-v2 path in T 2
r and

dTr(o1, v2) ≤ dTr(o, v2). We first show that dTo(vi1 , o) = dTr(vi1 , o). Because To is a shortest

path tree rooted at o, dTo(vi1 , o) ≤ dTr(vi1 , o). Suppose dTo(vi1 , o) < dTr(vi1 , o). For any sink

vj ∈ U ,

dTo(vi1 , vj) ≤ dTo(vi1 , o) + dTo(o, vj)

< dTr(vi1 , o) + dTr(o, vj)

≤ dTr(vi1 , o) +
1

2
δTr

= hTr
i1

.

The derivation implies that hTo
i1

= maxvj∈U{dTo(vi1 , vj)} < hTr
i1

, which is a contradiction.

Therefore, dTo(vi1 , o) = dTr(vi1 , o). This result implies that the vi1-o path and consequently

the vi1-v2 path in Tr are kept in To, such that dTo(vi1 , v2) = dTr(vi1 , v2) = hTr
i1

= hTo
i1

. That

is, the vi1-v2 path is a longest path from vi1 to all sinks in To.

By Lemma 3, the longest path from source vi1 to all sinks in To must pass the center point

of To and end at one endpoint of DTo . Then, v2 is one endpoint of DTo and o1 lies in the

vi1-v2 path. In addition, because δTo ≤ δTr by Lemma 5, we have

dTo(o1, v2) =
1

2
δTo ≤

1

2
δTr = dTr(o, v2)

Therefore, o1 lies in the o-v2 path in To.

By the above, we can iteratively build optimal shortest path trees rooted at the center point

of former optimal shortest path tree. If the center point of the new tree does not coincide

with its root, then it is closer to v2 on the vi1-v2 path. Although in each such construction,

the center point oθ+1 in the new tree Tθ moves a positive distance towards v2 , oθ+1 can never

reach v2 because dTθ
(oθ+1, v2) = 1

2
δTθ

must be greater than 0. Therefore, due to the fact that

there is a finite number of tree center points (Kariv and Hakimi, 1979), after a finite number
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of such iterations, the center point cannot move any further towards v2. In other words, the

center point will eventually coincide with the root of an optimal shortest path tree before v2

is reached.

Theorem 4 characterizes a special property of the structure of an optimal tree for NF-

NMVT. We now provide the notation for the special tree set containing all the trees with

this property. Let T SP be the set of all the shortest path trees rooted at a point in I(G).

Then, T SP
o denotes the subset of T SP containing all the trees whose roots coincide with

their center point. Based on Theorem 4, we can identify the optimal tree that minimizes the

maximal violation for NF-NMVT in Corollary 1.

Corollary 1 The tree with the minimax violation among all the trees in T SP
o is the optimal

tree for NF-NMVT.

However, the set T SP
o is potentially infinite in size. Fortunately, Kariv and Hakimi (1979)

provide an efficient way for us to further examine the set T SP
o by studying the points on

an edge which could be the root of a shortest path tree in T SP
o . Before introducing these

results, the following definitions are necessary. In a connected graph G, for an arbitrary

edge epq, let x be a point on epq. Let dp(x) and dq(x) denote the distances along the edge

from vp and vq to x, respectively, such that dp(x) + dq(x) = lpq. For any node v ∈ V , the

shortest path distance to x in G is dG(v, x) = min{dG(v, vp) + dp(x), dG(v, vq) + dq(x)}. If

we denote Ipq ⊆ I(G) as all the points on the line segment of epq, then for each node v ∈ V ,

the distance function dG(v, x), such that x ∈ Ipq, is a roof function with slopes 1 or -1. We

define a bottleneck point γv on epq for each node v ∈ V as the unique maximum point of the

distance function dG(v, x). There are at most O(n) different bottleneck points on epq and

the location of γv on epq can be decided by dp(γv) = 1
2
(dG(vq, v)− dG(vp, v) + lpq). Further,

given any point x ∈ Ipq, we can define the maximum distance function from all sinks vj ∈ U

to x as

D(x) : Ipq → R s.t. D(x) = max
vj∈U

{dG(vj, x)}.

For example, the solid line in Figure 3 represents the maximum distance function for an

edge epq. Kariv and Hakimi (1979) provide the following properties for D(x):
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D(x)

vp vq

Figure 3: An example of the maximum distance function D(x) for epq

1. D(x) is a piecewise linear function with slopes -1 or 1.

2. D(x) has at most l local maximum points, each of which is a bottleneck point for a

sink.

3. D(x) has at most l + 1 local minimum points.

4. Given the shortest distance matrix, the set of local maxima and local minima can be

constructed in O(|U |) = O(l) time.

We now establish the relationship between certain points x ∈ Ipq and the trees in T SP
o .

Theorem 5 An interior point x of the edge (p, q) is the root of a shortest path tree Tx ∈ T SP
o

if and only if there are at least two sinks in Tx, say vj1 and vj2, such that D(x) = dG(vj1 , x) =

dG(vj2 , x).

Proof: First, if Tx ∈ T SP
o , then x is the center point of Tx. Thus, if we let the vj1-vj2 path be

a longest intra-sink path of Tx, then the vj1-vj2 path contains x and dG(vj1 , x) = dG(vj2 , x) =

D(x) = 1
2
δTx . Clearly, the vj1-vj2 path contains epq as well, such that the shortest paths from

vj1 to x and from vj2 to x in Tx approach x from different directions, through vp and vq,

respectively.
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Second, suppose that there are two sinks vj1 and vj2 such that D(x) = dG(vj1 , x) = dG(vj2 , x)

and the shortest paths from vj1 to x and from vj2 to x in Tx approach x from different

directions, through vp and through vq, respectively. In order to show Tx ∈ T SP
o , we need to

show that x is the center point of Tx. We claim the vj1-vj2 path is a longest intra-sink path

of Tx. First of all, the vj1-vj2 path consists of the vj1-vp path, edge epq, and the vq-vj2 path

because the shortest paths from vj1 to x and from vj2 to x in Tx approach x from different

directions, through vp and vq, respectively. In addition, if we let the va-vb path be any other

simple intra-sink path in Tx, then by the triangle inequality

dTx(va, vb) ≤ dTx(va, x) + dTx(vb, x)

≤ 2D(x)

= dG(vj1 , x) + dG(vj2 , x)

= dTx(vj1 , vj2).

Hence, the vj1-vj2 path is a longest intra-sink path such that x is the center point of Tx.

Based on the above, it follows that each interior local minimum point of D(x), which excludes

the endpoints vp and vq of epq, is a potential root for an optimal tree. In addition, any other

point x on epq is a potential root for an optimal tree, if there are two sinks vj1 , vj2 with

D(x) = dG(vj1 , x) = dG(vj2 , x) and x is a bottleneck point for vj1 or vj2 . To conclude, each

potential root for an optimal tree is either an interior local minimum point of D(x) or a

bottleneck point for a sink on D(x), and there are at most 2|U |+ 1 = 2l + 1 such points.

4.3.2 Polynomial-Time Algorithm for NF-NMVT

In the algorithm, we shall check all those points described above to find the one offering an

optimal tree. Before proceeding, we present definitions for calculating the objective function.

For any point x ∈ Ipq, let Tx be a shortest path tree rooted at x. Let Vp(x) and Vq(x) be

the sets of nodes v ∈ V , such that Vp(x)∪ Vq(x) = V , and vp, vq are on the path connecting

v to x in Tx, respectively. If x is not a bottleneck point, Vp(x) and Vq(x) are uniquely

defined. Otherwise, x is a bottleneck point such that x = γv for some v ∈ V , then v could
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be in either Vp(x) or Vq(x). In this case, we shall specify v ∈ Vp(x) or v ∈ Vq(x) later in

the algorithm. We define the sets Sp(x) and Sq(x) of sources vi such that vi ∈ Vp(x) and

vi ∈ Vq(x), respectively. Similarly, the sets Up(x) and Uq(x) of sinks vj are defined such

that vj ∈ Vp(x) and vj ∈ Vq(x), respectively. We define the longest distance from all sinks

vj ∈ Up(x) to vp and from all sinks vj ∈ Uq(x) to vq in Tx as α(x) and β(x), respectively,

such that

α(x) = max
vj∈Up(x)

{dG(vj, vp)} and β(x) = max
vj∈Uq(x)

{dG(vj, vq)}.

In addition, based on Lemma 6, we define the maximal violation among nodes in Sp(x) and

Sq(x) in Tx as

Fp(x) = max
vi∈Sp(x)

{fi(h
Tx
i −Hi)} and Fq(x) = max

vi∈Sq(x)
{fi(h

Tx
i −Hi)},

where hTx
i is the longest distance from the source vi to all sinks in Tx. The objective function

valued at x, which is the maximal violation of Tx, is

F (x) = max{Fp(x), Fq(x)}.

Based on Theorem 5, if the point x is the root of a shortest path tree Tx ∈ T SP
o , then

α(x) = D(x)− dp(x) (2)

and

β(x) = D(x)− dq(x). (3)

Therefore, given the function D(x) and the location of x represented by dp(x) or dq(x), it

takes constant time to obtain α(x) and β(x). In addition, in this case,

Fp(x) = max
vi∈Sp(x)

{fi(dG(vi, vp) + lpq + β(x)−Hi)} (4)

and

Fq(x) = max
vi∈Sq(x)

{fi(dG(vi, vq) + lpq + α(x)−Hi)}. (5)
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Therefore, given the node flow fi and node restriction Hi for vi ∈ S and given the shortest

path distance matrix in G, for any point x ∈ Ipq, the objective value F (x) depends on only

Sp(x), Sq(x), α(x), and β(x).

For each edge epq ∈ E, the algorithm identifies the set of points offering a tree T ∈ T SP
o and

finds the point in the set which offers the best shortest path tree among all of the points in

the set. After finding the best points for all edges, we choose the best one among these points

and construct the shortest path tree rooted at this point as the optimal tree for NF-NMVT.

Now we describe the algorithm in detail.

Algorithm: Edge-Examination

Before we examine the edges, we first compute all pairs shortest path distances in G and

obtain the sorted sequence of shortest path distances from each node v ∈ V . For each edge

epq ∈ E, do

1. Preprocessing step:

(a) Calculate all the bottleneck points γv for all v ∈ S ∪ U by dp(γv) = 1
2
(dG(vq, v)−

dG(vp, v) + lpq) and sort them in non-decreasing order according to dp(γv).

(b) Using the algorithm in (Kariv and Hakimi, 1979), calculate the piecewise linear

maximum distance function D(x) for x ∈ Ipq, and record its sorted sequence

of break points including local minimum and local maximum points with their

respective values of D(x) and dp(x).

(c) Merge the lists of bottleneck points in (1a) and the break points in (1b) into a

combined and sorted list Lpq.

2. Initialization step:

(a) Check whether x = vp is the center point of a shortest path tree rooted at x. If it

is, evaluate the objective function F (vp) = maxvi∈S{fi(dG(vi, vp) + D(vp)−Hi)}.
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(b) Define the set Sp(x) and Sq(x) such that x is sufficiently close to vp. For example,

let x be any point between vp and the point closest to vp in the merged list of the

preprocessing step.

(c) Using the data structures described in (Hershberger and Suri, 1996), maintain the

following two piecewise linear convex function for y ∈ R,

Gp(x(y)) = max
vi∈Sp(x)

{fi(dG(vi, vp) + lpq + y −Hi)

and

Gq(x(y)) = max
vi∈Sq(x)

{fi(dG(vi, vp) + lpq + y −Hi).

Note that for any x, Fp(x) = Gp(x(β(x))) and Fq(x) = Gq(x(α(x))). The above

functions are defined as upper envelopes of collections of linear functions. There-

fore, these data structures can support an insertion or a deletion of a linear func-

tion from the respective collection, as well as the evaluation of Gp(x(y)) and

Gq(x(y)) at any given value of y in O(log |S|) = O(log k) time.

3. Updating step:

Consider the next point in the list Lpq generated in the preprocessing step which has

not been visited. Let x̄ denote this point. The following cases shown in Figure 4 are

considered.

(a) Case 1: x̄ is a local minimum point of D(x). Compute α(x̄), β(x̄), Fp(x̄), and

Fq(x̄) by Equation 2, Equation 3, Equation 4, and Equation 5, respectively,

and evaluate the objective value F (x̄) = max{Fp(x̄), Fq(x̄)}. Additionally, if there

exist some sources vi ∈ S such that γvi
= x̄, then for each source vi such that

γvi
= x̄, delete vi from Sp(x̄) and insert it into Sq(x̄).

(b) Case 2: x̄ is a local maximum point of D(x) such that there is a sink vj0 ∈ U

such that dG(vj0 , x̄) = D(x̄). Also, there is another sink vj1 6= vj0 , such that

γvj1
= x̄ and dG(vj1 , x̄) = D(x̄). Compute α(x̄), β(x̄), Fp(x̄), and Fq(x̄) by

Equations 2, 3, 4, and 5, respectively, and evaluate the objective value F (x̄) =

max{Fp(x̄), Fq(x̄)}. Additionally, if there exist some sources vi ∈ S such that
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Figure 4: Examples for the cases in the algorithm

γvi
= x̄, then for each source vi such that γvi

= x̄, delete vi from Sp(x̄) and insert

it into Sq(x̄).

(c) Case 3: x̄ is such that D(x) is strictly increasing in the interval [x̄− ε, x̄ + ε] for

some ε > 0 sufficiently small. Also, there is a sink vj0 , such that γvj0
= x̄ and

dG(vj0 , x̄) = D(x̄). Compute α(x̄), β(x̄), Fp(x̄), and Fq(x̄) by Equations 2, 3, 4,

and 5, respectively, and evaluate the objective value F (x̄) = max{Fp(x̄), Fq(x̄)}.
Additionally, if there exist some sources vi ∈ S such that γvi

= x̄, then for each

source vi such that γvi
= x̄, delete vi from Sp(x̄) and insert it into Sq(x̄).

(d) Case 4: x̄ is such that the function D(x) is strictly decreasing in the interval

[x̄ − ε, x̄ + ε] for some ε > 0 sufficiently small. Also, there is a sink vj0 , such

that γvj0
= x̄ and dG(vj0 , x̄) = D(x̄). Compute α(x̄), β(x̄), Fp(x̄), and Fq(x̄)

by Equations 2, 3, 4, and 5, respectively, and evaluate the objective value

F (x̄) = max{Fp(x̄), Fq(x̄)}. Additionally, if there exist some sources vi ∈ S such

that γvi
= x̄, then for each source vi such that γvi

= x̄, delete vi from Sp(x̄) and

insert it into Sq(x̄).

(e) Case 5: If none of the above cases apply at x̄, if there exist some sources vi ∈ S
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such that γvi
= x̄, then for each source vi such that γvi

= x̄, delete vi from Sp(x̄)

and insert it into Sq(x̄).

In the above algorithm, it takes O(mn+n2 log n) to compute all pairs shortest path distances

in G. For each of the m edges, step 1 calculates and sorts the list of bottleneck points for

nodes v ∈ S ∪ U in O(|S| + |U |) = O(n̄ log n̄) time, generates the maximum distance

function D(x) and calculates the sorted list of its local minimum points and local maximum

points in O(|U |) = O(l) time (Kariv and Hakimi, 1979), and merges the two sorted lists of

points to the list Lpq in O(n̄) time. Step 3 scans the values in the merged list Lpq defined

in step 1 to calculate F (x) at all potential points on an edge. In step 3, for each such

potential point, it takes constant time to compute α(x), β(x). We will use the dynamic

data structure in (Hershberger and Suri, 1996) for calculating Fp(x) and Fq(x) in step 3.

Since there are O(|S|) = O(k) insertions, deletions, updates, and O(|U |) = O(l) evaluations

of Fp(x) and Fq(x) and each such operation takes O(log |S|) = O(log k) time with this

data structure, the effort for finding the best solution on an edge is O((|S|+ |U |) log |S|) =

O(n̄ log k). Thus, the total time for the algorithm to find an optimal tree for NF-NMVT is

O(mn + n2 log n + mn̄ log n̄).

4.3.3 NF-MDST, NF-MEMT, and NF-UMVT

Because each of the three variants is a special case of NF-NMVT, they can be solved by

specifically modifying the above algorithm for NF-NMVT. We describe the modifications of

the above algorithm for finding an optimal solution for NF-MDST, NF-MEMT, and NF-

UMVT as follows.

For NF-MDST, set S = V and U = V . For NF-MEMT, set S ⊆ V and U ⊆ V . Further, for

both NF-MDST and NF-MEMT, replace Equations 4 and 5 in the algorithm, respectively,

by

Fp(x) = max
vi∈Sp(x)

{fi(dG(vi, vp) + lpq + β(x))} (6)
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and

Fq(x) = max
vi∈Sq(x)

{fi(dG(vi, vq) + lpq + α(x))}. (7)

For NF-UMVT, set S ⊆ V and U ⊆ V and replace Equations 4 and 5 in the algorithm,

respectively, by

Fp(x) = max
vi∈Sp(x)

{fi(dG(vi, vp) + lpq + β(x)−H)} (8)

and

Fq(x) = max
vi∈Sq(x)

{fi(dG(vi, vq) + lpq + α(x))−H}. (9)

Therefore, the algorithm solves NF-MEMT and NF-UMVT in O(mn + n2 log n + mn̄ log n̄)

time, which is the same as NF-NMVT problem. For NF-MDST, the algorithm finds the

optimal solution in O(mn + n2 log n + mn log n) = O(mn log n) time.

4.4 Special Flow Minimax Diameter Spanning Tree (SF-MDST)

In the next section we will prove that PF-MDST is generally NP -hard. Nevertheless, there

are some interesting special cases which are polynomially solvable. In this section, we study

one solvable case, which is equivalent to the classical Weighted Absolute 1-Center problem

(WAC). This problem is a variant of PF-MDST, where S = U = V , Hij = 0, and fij =
fifj

fi+fj

for all pairs of nodes vi, vj ∈ V . We label this variant as SF-MDST.

We now show that SF-MDST is equivalent to WAC on a graph G. Recall that the goal of

WAC is to find a point x ∈ I(G) minimizing the objective

max
vi∈V

{fidG(x, vi)}.

Assuming without loss of generality that there are at least two nodes with positive flow

weights, WAC is equivalent to finding a minimum spanning tree T of G minimizing

rT = min
x∈I(T )

max
vi∈V

{fidT (x, vi)}.

26



Using the results in Dearing and Francis (1974) (see also Section 7.4 in (Francis et al., 1992)),

we observe that

rT = max
vi,vj∈V

{ fifj

fi + fj

dT (vi, vj)}.

Therefore, we conclude that WAC is equivalent to SF-MDST, whose objective function is the

minimization of rT . Moreover, a spanning tree T ∗ optimizing the SF-MDST can be obtained

in O(mn log n) time as follows. Use the algorithm in Kariv and Hakimi (1979) to find x∗,

an optimal weighted absolute 1-center. T ∗ is a shortest path spanning tree rooted at x∗.

5 The Intractable Problems

In this section, we shall show that all the problem variants with either pairwise service-time

commitments or pairwise flow are NP-Complete. All of the intractable problems involve

transformations with the Tree t-Spanner problem.

5.1 Pairwise Commitment Minimax Violation Tree (PMVT)

We now establish the NP-Completeness of all the problem variants with pairwise service-

time commitment. This class includes PMVT, NF-PMVT, and PF-PMVT. We shall focus

on PMVT and show it is NP-Complete. The NP-Completeness of NF-PMVT and PF-

PMVT follows because PMVT is a special case of the other two problems. We first state

the decision version of PMVT.

Instance: Graph G = (V, E), source set S ⊆ V , sink set U ⊆ V , pairwise service-time

commitment Hij for any pairs of source vi ∈ S and sink vj ∈ U , integer bound K ∈ Z+.

Question: Is there a spanning tree T for G such that the maximum violation in T over all

pairs of source vi ∈ S and sink vj ∈ U , maxvi∈S maxvj∈U{dT (vi, vj)−Hij}, is no more than

K?
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In order to demonstrate the NP-Completeness of PMVT, we need to first introduce the Tree

t-Spanner problem. The following is the decision version of the Tree t-Spanner problem.

Instance: For a graph G = (V, E), let dG(vi, vj) be the shortest path distance between any

two nodes vi, vj ∈ V in G and dT (vi, vj) be the length of the unique path connecting vi and

vj in a spanning tree T . Given an integer t ∈ Z+.

Question: Is there a spanning tree T for G such that for each pair of nodes vi, vj ∈ V ,

dT (vi, vj) ≤ tdG(vi, vj)?

Chew (1986) and Peleg and Ullman (1987) introduce the notation of Tree t-Spanner. For

general nonnegative edge lengths, Cai and Corneil (1995) demonstrate the Tree t-Spanner

problem is NP-Complete even for t = 2, and it remains NP-Complete for t ≥ 4 for unit

edge lengths. The NP-Completeness of PMVT is presented in the following theorem.

Theorem 6 PMVT is NP-Complete.

Proof: As stated in Section 1, PMVT is in NP , so we need only to prove PMVT is NP-

hard. We shall next prove PMVT is NP-hard by transforming the Tree t-Spanner problem

into a special case of PMVT.

Given an instance of the Tree t-spanner problem, we can define a special case of PMVT by

setting S = V , U = V , the service-time commitment between any source vi ∈ V and sink

vj ∈ V as Hij = tdG(vi, vj), and the integer bound K = 0. We claim that this special case

of PMVT has a solution if and only if the Tree t-Spanner problem has a solution.

Suppose first that this special PMVT has a solution. If we let source vi ∈ V and sink vj ∈ V

be any pair of source and sink nodes in the graph, there exists a tree T such that the violation

between vi and vj is FT (vi, vj) = dT (vi, vj) −Hij = dT (vi, vj) − tdG(vi, vj) ≤ K = 0. Then,

dT (vi, vj) ≤ tdG(vi, vj) for any nodes vi ∈ V and vj ∈ V in T . Hence, the tree T is also the

solution of the Tree t-Spanner problem.
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Next, suppose the Tree t-Spanner problem has a solution. Thus, there exists a tree T

such that dT (vi, vj) ≤ tdG(vi, vj) for any two nodes vi ∈ V and vj ∈ V in T . The violation

between any source vi ∈ V and any sink vj ∈ V in the tree T is FT (vi, vj) = dT (vi, vj)−Hij =

dT (vi, vj)− tdG(vi, vj) ≤ 0 = K. Hence, the tree T is a solution of the special PMVT as well.

Therefore, because the Tree t-Spanner problem is NP-hard, PMVT is NP-hard as well.

Since PMVT is in NP , it is NP-Complete.

Based on the above reduction, we present two additional observations which demonstrate

that, given the pairwise service-time commitment, both the problem of minimizing a mono-

tone function of violation among all pairs of sources and sinks in a tree and the problem of

finding an approximation solution to PMVT within any constant factor are NP-hard. We

state these results but omit their proofs for the sake of brevity.

Corollary 2 Suppose that S = U = V for the pairwise service-time commitment model.

For each spanning tree T and pair (vi, vj), i < j, define HT
ij = max(0, dT (vi, vj)−Hij). Let

g(x11, x12, ..., x1n, x23, ..., x2n, ..., xn−1,n) be a monotone nondecreasing function of its n(n −
1)/2 arguments. Suppose that g(0, ..., 0) = 0, and g is positive for any nonnegative nonzero

vector. Then, the problem of finding a tree minimizing g(HT
11, H

T
12, ..., H

T
1n, H

T
23, ..., H

T
2n, ..., H

T
n−1,n)

is NP-hard.

Corollary 3 Finding an approximation solution to PMVT within any constant factor is

NP-hard.

5.2 Pairwise Flow Minimax Violation Tree (PF-MVT)

We shall study the problem variants with pairwise flow. This class includes PF-MDST, PF-

MEMT, PF-UMVT, and PF-NMVT problems. From Table 1, we can see that PF-MDST

is a special case of the other three problems. Therefore, we shall focus on establishing the
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NP-Completeness for PF-MDST. We will first offer the decision version of PF-MDST and

demonstrate that it is NP-Complete by the transformation from Tree t-Spanner problem.

Instance: Graph G = (V, E) and pairwise flow fij for any pair of two nodes vi ∈ V and

vj ∈ V , integer bound K ∈ Z+.

Question: Is there a spanning tree T for G such that fijdT (vi, vj) ≤ K for all pairs of nodes

vi, vj ∈ V ?

Theorem 7 PF-MDST is NP-Complete.

Proof: As stated in Section 1, PF-MDST is in NP , so we need only to prove it is NP-hard.

We shall prove this result by transforming the Tree t-Spanner problem to a special case of

PF-MDST.

Given an instance of the Tree t-Spanner problem, we can define a special case of PF-MDST

as follows. Let the pairwise flow fij = 1
tdG(vi,vj)

and the integer bound K = 1. We claim

that this special PF-MDST has a solution if and only if the Tree t-Spanner problem has a

solution.

For this special PF-MDST, the violation for a pair of node vi and vj in tree T is

fijdT (vi, vj) =
1

tdG(vi, vj)
dT (vi, vj)

=
dT (vi, vj)

tdG(vi, vj)
.

This special PF-MDST is to find a tree T such that
dT (vi,vj)

tdG(vi,vj)
≤ K = 1, that is,

dT (vi,vj)

dG(vi,vj)
≤ t

for all pairs of nodes vi, vj ∈ V .

Therefore, any solution tree for this special PF-MDST is also a solution tree for the Tree

t-Spanner problem, and vice versa. Because the Tree t-Spanner problem is NP-hard, PF-

MDST is NP-hard as well.

30



In addition, because we can specify S, U , and Hij for each of PF-MEMT, PF-UMVT, and

PF-NMVT to obtain PF-MDST, PF-MEMT, PF-UMVT, and PF-NMVT are NP-Complete

as well.

6 Future Work

There are several directions deserving further investigation. In this study, we treat the

service-time commitment as a soft constraint. However, in reality it may be a hard constraint

for certain customers. If a spanning tree cannot satisfy the distance constraints, it may

become necessary to find a subgraph, other than a spanning tree, in order to eliminate the

violation. Furthermore, because a delivery company has limited facilities in each city, it may

only be able to support a limited number of connections in each city. Hence, it may be useful

to consider the spanning tree with degree constraints. Likewise, arcs in the network are often

capacity constrained due to the limitations on the number of trucks and truck capacities.

Thus, another interesting variant would be a capacitated minimax flow tree problem.

In this paper, we have discussed minimax objectives. However, companies may instead prefer

to measure the sum of violations in their network. This objective motivates an additional

interesting problem, the minisum violation tree problem. Chen et al. (2007) explore the

complexity and solution approaches for the minisum problem.
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