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Probabilistic models for the steiner tree problem

Vangelis Th. Paschos∗ Orestis A. Telelis† Vassilis Zissimopoulos‡

June 29, 2007

Abstract

In this paper we consider probabilistic models for steiner tree. Under these models,
the problem is defined in a two-stage setting over a complete weighted graph whose vertices
are associated with a probability of presence in the second stage. A first-stage feasible
solution on the input graph might become infeasible in the second stage, when certain vertices
of the graph fail (with the specified probability). Therefore, a well defined modification

strategy is devised which transforms a partial solution to a feasible second-stage solution.
The objective is to devise an algorithm for the first-stage solution (sometimes called the a

priori or anticipatory solution) so that the expected second-stage solution cost is minimized.
An important feature of this framework is that the modification strategy is essentially a part
of the problem, while algorithmic treatment is required in the construction of the anticipatory
solution. We essentially provide approximation results regarding two modification strategies.
Furthermore, for the first of them we also formulate the associated objective function and
prove complexity results for the computation of the anticipatory solution optimizing it.

1 Preliminaries

Given an edge-weighted complete graph G(V,E, ~w), where ~w is a metric |E|-vector that represents
the edge weights, and a subset of “terminal” vertices T ⊆ V , the steiner tree problem consists
of determining a minimum total-cost tree S connecting the vertices of T . We study here the
following 2-stage robust optimization model. Consider an instance G(V,E, ~w) of steiner tree

and assume that our problem is not to be necessarily solved on the whole G, but rather on a
(unknown a priori) subgraph G′. Suppose that any vertex vi ∈ V has a probability pi, indicating
how vertex vi is likely to be present in the final subgraph G′. Suppose also that any vi ∈ T has
presence-probability 1 (this, in our context seems natural as we will see in Section 2). Consider
finally that once G′ is specified, the solver has no opportunity to solve it directly (for example
assume that she/he has to react quasi-immediately, so no sufficient time is given her/him). Then,
in order to tackle such constraints, the solver computes an anticipatory Steiner tree S in G, i.e.,
a solution for the entire instance G, and once G′ becomes known, she/he modifies S by means
of a quick algorithm, in order to get a tree S′ that remains a Steiner tree with respect to G′.
The objective in such approach is to determine an initial Steiner tree S for G such that, for any
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subgraph G′, induced by a subset V ′ ⊆ V (containing, as assumed just before, all the vertices
of T ), that will be presented for optimization, the obtained Steiner tree S′ respects some pre-
defined quality criterion (for example, it is optimal for G′, or it achieves, say, approximation
ratio of a certain level).

Acquisition, validation and pertinence of input data are tackled in almost any operations
research application. Although several well established theoretical models exist for problems
arising in real world, direct application of these models may be difficult or even impossible
due to incompleteness of data, or due to their questionable validity. Occasionally, one may be
asked to produce an optimal operational design even before a complete deterministic picture
of input data is provided, but only based on estimations and statistical measures. There are
several applications where it might be impossible to obtain a current snapshot of the required
information, since this information may be subject to constant high-rate change.

Several optimization frameworks have been introduced by the operations research community
for handling these deficiencies, the most known being the stochastic programming (see [5, 7, 26]
for basics, [27] for latest news, bibliography, and related software and [12, 13, 15, 28, 30, 31, 32]
for recent hardness results and approximation algorithms) and the robust discrete optimization
(see [2, 8, 18, 20, 21] for details). These frameworks constitute a means of structuring uncertainty
and taking its existence into account during the optimization process. Robustness of the designed
solution from both feasibility and cost perspectives in the presence of uncertainty is the main
purpose of devising these frameworks during an operational design process.

As we have already mentioned, the model we deal with in this paper is a 2-stage optimization
stochastic model. For graph-problems it can be sketched as follows. Consider an instance G(V,E)
of an optimization graph-problem Π and assume that instead of G Π will need to be solved on an
unknown a priori subgraph G′ of G. Any vertex vi ∈ V has a presence probability pi. Assume also
that a quick algorithm M is given, modifying any solution S for Π on G into a solution S′ for Π in
any subgraph G′ of G (this algorithm is usually called modification strategy). The objective is to
determine an anticipatory solution S∗ for G such that, for any subgraph G′, induced by a subset
V ′ ⊆ V , that will be presented for optimization, the solution S′ respects some pre-defined quality
criterion. Such a goal amounts to compute an anticipatory solution S optimizing the expectation
of its adaptation to any V ′ ⊆ V , i.e., optimizing the sum of the occurrence probability of V ′

multiplied by the value of S′ over any V ′ ⊆ V . Indeed, under the hypotheses just stated, the
objective is to determine some solution S∗ optimizing the quantity (called also functional):

E(G,S, M) =
∑

V ′⊆V

Pr
[

V ′
]

m
(

G
[

V ′
]

, S′
)

(1)

where m(G[V ′], S′) denotes the cost of S′ in G[V ′] and Pr[V ′] the occurrence probability of V ′

as second-stage portion expressed by: Pr[V ′] =
∏

vi∈V ′ pi

∏

vi∈V \V ′(1 − pi). The optimization
goal for E(G,S, M) is identical to the one for the (deterministic) original problem Π. The derived
stochastic problem will be denoted by probabilistic Π. It can easily be seen by the discussion
just above that for an underlying deterministic problem Π, different modification strategies give
rise to different probabilistic models of Π. In other words, for a problem Π any modification
strategy induces its own probabilistic counterpart of Π. In order to distinguish these several
counterparts we will use in what follows notation probabilistic Π(M) for a probabilistic version
of Π derived when using modification strategy M.

This stochastic model is originally introduced in [16, 3] under the name a priori probabilistic
combinatorial optimization as a means of structuring and handling uncertainty in the validity
of input data. Since then, several well-known combinatorial optimization problems have been
treated in this framework, such as the longest path ([22]), the maximum independent set ([23]),
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and the minimum coloring ([25, 6]). Less recent studies include the shortest path ([17]), the
minimum-cost spanning tree ([4]) and the travelling salesman ([16]).

Let us note that a complementary framework to the one of the a priori optimization, is the
reoptimization consisting of solving ex nihilo and optimally the portion of the instance presented
for optimization. Reoptimization is introduced in [16]. The functional for such a process can be
expressed as:

E∗(G) =
∑

V ′⊆V

Pr
[

V ′
]

opt
(

G′
)

(2)

where opt(G′) is the value of an optimal solution for Π in G′ and, as previously, G′ = G[V ′].
Obviously, for any modification strategy M, denoting by S∗ the optimal anticipatory solution of
probabilistic Π(M) and assuming that Π is a minimization problem:

E∗(G) 6 E (G,S∗, M) (3)

In this paper, we mainly study the approximation of two probabilistic models for steiner tree

derived by two modifications strategies. Given an anticipatory solution S for probabilistic

steiner tree(M) its approximation ratio is defined by E(G,S, M)/E∗(G), where E(G,S, M)
and E∗(G) are defined by (1) and (2), respectively. In Section 3 we formally introduce the
first of them. We study its objective function (also called functional) and the complexity of its
computation. Let us note that since it carries over all the possible subsets of the input vertex-set,
the functional entails an exponential number of additive terms in such a way that the complexity
of its numerical computation is not immediately polynomial. Next, we develop approximation
issues for this model. In Section 4, we study another model for probabilistic steiner tree

induced by a class of modification strategies called reapproximation and present approximation
results.

2 Motivation and related work

Study of probabilistic steiner tree can be motivated by the following real-world applica-
tion arising in the design of wireless networks. These networks consist of a set of nodes each
transmitting a signal using a certain power level, thus being able to communicate with another
network node within a range determined by the level of used power. Therefore the paradigm
of multi-hop communication is inherent in such networks. That is if a node u wishes to send
a message to some other node v, then this message is forwarded progressively from u to v by
intermediate nodes.

Wireless networks lack stable infrastructure, therefore it has been proposed in the litera-
ture ([34]), that some nodes of the network should collaborate to simulate the functionality of
such an infrastructure by means of a network backbone (also called spine). A backbone is a set
of interconnected network nodes which handles routing of transmitted messages, monitoring of
the network’s state, acquisition and cross-processing of sensed data (in the case of sensor net-
works) and several other application-specific labors. Each node of the network is assigned to a
backbone node. Backbone nodes are interconnected efficiently via a tree structure emerging as a
result of appropriate tuning of their power levels of transmission (see, for example, [19] for some
models concerning optimization of transmission power). Each node wishing to send a message
to another node simply sends this message to the backbone node it is assigned to. Subsequently
the message is routed through the backbone to the receiver.

Energy-efficient connectivity of the backbone nodes can be achieved through intermediate
network nodes, by a solution to the Steiner tree problem (see[19] for graph models related to
energy-efficiency optimization). However, nodes of a wireless network are often susceptible to
failures caused by environmental factors, energy depletion, etc. Furthermore, it is a common
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monitoring process (performed by the backbone nodes) to measure the probability of a wireless
network node being available. If we consider wireless architectures with some sort of semi-
stable infrastructure (where backbone nodes are of high reliability), then failure of backbone
connectivity is due to failures of intermediate nodes connecting the backbone. The probabilistic
Steiner tree problem (under the assumption made here on the omnipresence of terminals that
represent these backbone nodes) appears to be an appropriate model for restoring connectivity
while maintaining low energy consumption.

steiner tree is well known to be NP-hard. The first approximation algorithm for it
appeared in [1] (see also [11, 33]). This algorithm is a primal-dual generalization of the following
simple heuristic: compute the shortest paths between all pairs of terminal vertices and then
compute a minimum-cost spanning tree over the shortest-path weighted complete graph with
vertex set T . Removal of redundant edges might be needed in order to transform the tree so
computed to a Steiner tree of G. The approximation ratio achieved by this algorithm is bounded
above by 2. If G is metric, then a minimum-cost spanning tree on the induced subgraph G[T ]
achieves the same approximation ratio. This result has been improved in [29] down to 1.55 in
complete metric graphs and to 1.28 for complete graphs with edge costs 1 and 2. A survey of
approximation results for steiner tree can be found in [11]. Recently, a robust optimization
model, quite different from the model we tackle here, called demand-robust Steiner tree has been
introduced and studied in [9]. Finally, let us note that steiner tree has also been studied
extensively under the paradigm of stochastic programming; for the best known approximation
algorithms in this framework see, e.g., [10, 14].

3 A probabilistic version for steiner tree with a depth-first-search modifi-

cation strategy

Here we use the following modification strategy, called DFS (following the convention adopted in
Section 1 the problem tackled here is denoted by probabilistic steiner tree(DFS)). Given an
anticipatory Steiner tree S ⊆ E (represented by the set of its edges), DFS first orders the edges
of S by engaging a depth-first search (DFS) starting from an arbitrary leaf-vertex of S. Each
vertex of S is assigned a number equal to the order of its visitation by the DFS. The tree S is
thus partitioned into maximal edge-disjoint paths, whose edges are ordered by the numbering of
their end-vertices. Let P(S) = {P1, P2, . . . , Pk} be the set of these paths (each such path starting
at a DFS-backtracking vertex and ending at a leaf vertex of the tree), where the paths are ordered
in the order their edges appear in S. We represent S as an ordered multi-set of vertices L by
placing in L the endpoints of the edges of Pi, i = 1, . . . , k, following the order they appear in Pi

and the ordering of P(S). It is clear that some vertices will appear more than once in L. When
a vertex subset V ′ ⊆ V realizes in second-stage, DFS discards from L all copies of vertices not
present in V ′. This causes S to break down in components. Let S′′ be the surviving edge subset
of S in G[V ′] = G′(V ′, E′). Then, DFS traces the surviving portion L′ of L and, for any two
consecutive vertices vi and vj in L′, if vi is not connected to vj and i < j, then edge (vi, vj) is
inserted in S′′. This process causes reformation of all edge-disjoint paths in P(S) and results
into a feasible Steiner tree S′ for G′.

Let us note that the hypothesis that the input graph G is complete is a sine qua non condition
for the existence of feasible solutions in any of its induced subgraphs. Indeed, if G is not complete
there may exist subsets V ′ ⊆ V inducing non connected subgraphs in which patching of the
components of S′′ is impossible.

Example 1 . Let as give an example of the functionality of the modification strategy DFS

described just above. Consider the tree S shown in Figure 1(a). The numbers on vertices stem
from the DFS visitation ordering. Notice that label 1 is assigned to a leaf vertex of S. The
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DFS ordering partitions S into the following maximal edge-disjoint paths: P1 = {1, 2, 3, 4},
P2 = {2, 5, 6}, P3 = {2, 7, 8}, P4 = {7, 9, 10}.

1

2

3

4

5

6

7

8 9

10

(a) The anticipatory first-stage tree

1

3

4

5

6
8

9

10

(b) The modified second-stage tree

Figure 1: Functionality of the modification strategy.

Then P(S) = {P1, P2, P3, P4} and L = {1, 2, 3, 4, 2, 5, 6, 2, 7, 8, 7, 9, 10}. Suppose that in
second stage the realized vertex set is V ′ = V \ {2, 7}. Then DFS discards all copies of 2 and 7
from L, thus producing L′ = {1, 3, 4, 5, 6, 8, 9, 10}. Subsequently, it traces the ordered L and
adds edges as described previously. The result is shown in Figure 1(b).

It can be immediately seen that the complexity of DFS is polynomial with n, the order of the
input graph.

3.1 Complexity results for probabilistic steiner tree(DFS)

In what follows in this section, we first formulate the objective function associated with proba-

bilistic steiner tree(DFS) and next we characterize the complexity of computing the antic-
ipatory solution minimizing it. Finally, we study the complexity of “exploiting” the remainders
of an anticipatory solution in order to get an optimal second-stage solution.

Proposition 1. probabilistic steiner tree(DFS) is in NPO.

Proof. Recall that NPO, the class of the optimization problems that have their decision
counterparts in NP. For proving the proposition, it suffices to prove that the objective func-
tion E(G,S, DFS) of probabilistic steiner tree(DFS) is computable in polynomial time.

Let G(V,E) be an instance of probabilistic steiner tree(DFS) and S be an anticipatory
Steiner tree on G. Suppose that a set V ′ inducing a (complete) subgraph G′ = G[V ′] of G
is presented for optimization. Assume that S is represented by the set of its edges. Assume
finally that S′ is the Steiner tree computed as described before. Let V (S) be the set of vertices
of S. Denote by V ′′ = V (S′) the subset of V ′ consisting of the vertices of S′ and by E′′ the
edge-set of G[V ′′]. Let L be the DFS encoding performed over the anticipatory Steiner tree S
by the modification strategy DFS, given as an ordered list of vertices (in the order decided by the
DFS) and let [vi, vj ]L be the non-empty sublist of L starting at vi and ending at vj (notice that
since L corresponds to a DFS ordering, i < j) not including neither vi nor vj (it is assumed that
if [vi, vj ]L = ∅, or if i > j, then

∏

vl∈[vi,vj ]L
(1 − pl) = 0).

We will prove that the objective value (functional) of S is expressed by:

E(G,S, DFS) =
∑

(vi,vj)∈S

w (vi, vj) pipj +
∑

(vi,vj)∈E′′\S

w (vi, vj) pipj

∏

vl∈[vi,vj ]L

(1 − pl)
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The expression for E(G,S, DFS) consists of two terms, the former expressing the expected cost
of surviving edges of the anticipatory tree S, and the latter expressing the expected cost of edges
added by the modification strategy DFS.

For the first term it is straightforward to see that an edge (vi, vj) ∈ S survives if both its
endpoints survive, an event occurring with probability pipj (since the two events of survival of
each vertex are independent). Hence the expected cost of surviving edges in S is as claimed by
the first term of the given expression for E(G,S, DFS).

The second term stems by inspection of the functionality of the modification strategy DFS.
When the actual second-stage graph realizes, vertices missing from the graph are dropped from
the initial DFS encoding L, thus producing an encoding L′ ⊆ L. Then, DFS scans L′ and for any
pair of consecutive vertices vi and vj it connects them by adding (vi, vj) if the three following
conditions are satisfied:

• vi, vj are actually in L′;

• i < j (by the DFS-produced labelling);

• vi is not connected to vj.

Clearly two vertices vi, vj ∈ L are also in L′ with probability pipj. Moreover, an edge (vi, vj)
is added to the (new) solution S′, if vi is not connected to vj in second stage. This means
(since vi and vj are consecutive in L′) that all vertices that existed between vi and vj in L
have been dropped from L′. This happens with probability

∏

vl∈[vi,vj ]L
(1 − pl). Furthermore,

neither vi nor vj should also appear as intermediates within [vi, vj ]L in the original (first-stage)
list encoding L, otherwise (since all intermediate vertices are missing from L′), DFS would not
encounter them during its scan of L′. Finally, [vi, vj ]L should not be empty, otherwise this
would entail a surviving edge between vi and vj (recall that i < j in the encoding considered),
rendering these vertices connected in second-stage. Therefore, the expected cost of added edges
is as expressed by the second term of the given expression.

It is easy to see that computation of a single term in the second sum of the functional re-
quires O(n) computations (at most O(n) multiplications). Since we may do this for at most O(n2)
times (the edges in E), it follows that the whole complexity of functional’s computation is poly-
nomial (in O(n3)). So, probabilistic steiner tree(DFS) belongs to NPO.

Unfortunately, Proposition 1 does not derive a compact characterization for the optimal an-
ticipatory solution for probabilistic steiner tree(DFS). For instance, in [23, 24] probabilistic
models as the one used here are studied for max independent set and min vertex cover,
respectively, under a modification strategy consisting of taking the restriction of an anticipatory
solution as solution for the second-stage graph. Under such a strategy, it is shown that an optimal
anticipatory solution in a graph is the solution optimizing the total weight of an independent
set, or a vertex cover, where the weight of a vertex vi is either its own probability pi, if the
graph is unweighted or the product piwi if the graph is weighted and the weight of vi is wi.
Here, the form of the functional provided by Proposition 1 does not imply solution of, say, some
well-defined particular version of steiner tree (where the weight of an edge could be its initial
weight multiplied by the probabilities of its endpoints), or something else of the same order as
could be the case if the second term in E(G,S, DFS) did not exist. This is due to this second
term where the “modified weights” assigned to the edges of G depend on the structure of the
anticipatory solution chosen and of the present subgraph of G.

Proposition 2. probabilistic steiner tree(DFS) is NP-hard.

Proof. The inclusion of (the decision version of) probabilistic steiner tree(DFS) in NP
follows from Proposition 1. Then, just remark that setting occurrence-probability 1 for any vertex
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of the input graph, the objective function of probabilistic steiner tree(DFS) coincides with
the one of classical steiner tree. Hence, the NP-hardness of the former in immediately
concluded.

We now prove a second hardness result claiming that it is NP-hard to polynomially modify
the remainders of an anticipatory solution in order to get an optimal second-stage solution for
any second-stage graph.

Proposition 3. The problem of modifying the remainders of an arbitrary anticipatory solution
towards optimizing the expected second-stage weight is NP-hard, for every modification strategy,
even in the case that the anticipatory solution is optimum and the first-stage complete graph has
edge-weights in {1, 2}.

Proof. The reduction is from steiner tree in complete graphs with edge-weights 1 and 2.
Consider a complete graph H(VH , EH) with edge-weights in {1, 2} and an arbitrary subset of
vertices TH ⊆ VH , the terminals that have to be spanned by a minimum-weight tree Ŝ.

We will build a probabilistic Steiner tree instance out of H. Extend H into a complete
graph G(V,E) with V = VH ∪{v, x, y} and E being the natural extension of EH with additional
edges so that G is complete. We set w(v, u) = 1 for every u ∈ VH ∪ {x, y}, w(x, u) = 2 for every
u ∈ VH ∪{y} and w(y, u) = 2 for every u ∈ VH ∪{x}. Finally, we extend the set of terminals TH

into T = TH ∪ {x, y}. Let all vertices of G be present with probability 1 apart from v for which
the presence-probability is p, for some p ∈ (0, 1). We so have a probabilistic Steiner tree instance
and suppose that we are given an anticipatory solution S⋆ which is optimum for G. Notice that
this solution is a star graph centered at v, with each u ∈ T connected to v through an edge (v, u)
of weight 1. The weight of this solution is |T |, while every other feasible solution in G has weight
strictly greater than |T |. If M is a modification strategy, S′ is the modified solution in second
stage produced by M, and m(G′, S′) denotes the weight of S′ on G′ (the materialized second-stage
subgraph of G), then we want M to be such so that the following expression is minimized:

E (G,S⋆, M) = (1 − p)m
(

G′, S′
)

+ pw (S⋆) (4)

Let us assume that a graph G (instance of probabilistic steiner tree) as the one described
just above is given together with an optimal anticipatory Steiner tree S∗ of G. Assume also that
there exists a polynomial time algorithm that, if v is present, it returns S∗ itself, while, if v is
not present, it modifies S∗ in order to return a Steiner tree S′ for G′ (that is G minus v and
its incident edges) in such a way that (4) is minimized. Note that in order that this happens,
its first term and in particular m(G′, S′) has to be minimum. Notice also that, in the case of
absence of v from G, the anticipatory solution S⋆ is completely destroyed. Hence, in second-stage
every modification strategy M will have to reconnect the terminals of T from scratch. The cases
that can occur for S′ (that as it has just been mentioned minimizes m(G′, S′)) are the four ones
illustrated in Figure 2, where a triangle denotes a tree spanning some terminals in H.

If S′ is as in Figures 2(a) or 2(b) (let us refer to Figure 2(a), the case of Figure 2(b) being
completely analogous), i.e., if x is linked to y that is linked to some vertex of a Steiner tree S of H
(both of these edges have, by construction, weight 2) then, obviously, S is an minimum-weight
Steiner tree for H, found in polynomial time since S′ did so.

Suppose now that S′ is as in Figure 2(c), i.e., both x and y are linked to two trees S1

and S2 of H, respectively, and these trees are also linked by an edge (i, j) ∈ EH , then, obviously,
S = S1 ∪S2 ∪ {(i, j)} is a Steiner tree of H and on the hypothesis that m(G′, S′) is minimum so
is the cost of S for H.

Finally, suppose that S′ is as in Figure 2(d), i.e., x is linked to some trees Sx1
, Sx2

, . . . , Sxk
,

vertex y is linked to some trees Sy1
, Sy2

, . . . , Syl
of H and x and y are also linked by edge (x, y).
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x y

S
(a)

x y

S
(b)

x y

i j

S1 S2

(c)

x y

2 2

2

2
2 22

Sx1
Sx2

Sxk
Sy1

Sy2
Syl

(d)

Figure 2: The four possible cases for S′.

Then it is easy to see that S′ can be transformed, as in Figure 3, into a Steiner tree S′′ of G′

with at most the same cost by keeping, say, the edge linking y to Syl
, then linking: Syi

to Syi−1

for i = l down to 2, Sy1
to Sxk

and Sxj
to Sxj−1

for j = k down to 2. The cost of the so obtained
Steiner tree S′′ is not greater than the one of S′ since any edge incident to x or to y has weight 2
and edge-weights in EH are in {1, 2}. But then this is exactly the case of Figure 2(a); hence a
minimum-cost Steiner tree of H is polynomially built.

So, on the hypothesis that the problem of modifying the remainders of an arbitrary anticipa-
tory solution towards optimizing the expected second-stage weight is polynomial, the tractability
of Steiner tree on complete graphs with edge weights 1 and 2 can be derived, a contradiction
with the NP-hardness of this latter problem. Henceforth, the former one is also NP-hard.

3.2 On the approximation of probabilistic steiner tree(DFS)

We now turn to study approximation of probabilistic steiner tree(DFS) for several types of
anticipatory solutions. We first show an easy though useful result linking, for any instance G of
probabilistic steiner tree, E∗(G) and opt(G), where opt(G) is the optimal steiner tree-

8



2

2x y

Sx1
Sx2

Sxk
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Syl

Figure 3: A Steiner tree S′′ of total weight at most equal to the cost of S′.

value in G (i.e., the value of an optimal Steiner tree in G by ignoring the vertex-probabilities).

Lemma 1. E∗(G) > opt(G).

Proof. Since T is present in any of the sets V ′ ⊆ V realized in the second stage, an optimal
Steiner tree of G has value smaller than, or equal to, the value of an optimal Steiner tree of any
second-stage induced subgraph G′ of G, i.e., opt(G) 6 opt(G′), for any G′ ⊆ G. Using it in (2),
we get:

E∗(G) =
∑

V ′⊆V

Pr
[

V ′
]

opt
(

G′
)

>
∑

V ′⊆V

Pr
[

V ′
]

opt (G) = opt(G)
∑

V ′⊆V

Pr
[

V ′
]

= opt(G) (5)

which concludes the proof.
Based upon Lemma 1 we show another preliminary result linking approximation of (deter-

ministic) steiner tree to the reoptimization process.

Proposition 4. Any ρ-approximate solution for steiner tree is also ρ-approximate to the
functional of reoptimization.

Proof. Consider a complete edge-weighted graph G(V,E, ~w) together with a terminal set T ⊆ V
and a vertex-probability vector Pr satisfying pi = 1, for any vi ∈ T . Let S ⊆ E be a ρ-approxi-
mate solution for steiner tree in G, i.e.:

m(G,S) 6 ρ opt(G) (6)

Combination of (6) and (5) yields: m(G,S)/E∗(G) 6 ρ, as claimed.
Let us note that the results of Lemma 1 and Proposition 4 remain valid for steiner tree

also when dealing with non-metric or/and non-complete graphs.

3.2.1 Using a minimum spanning tree of G[T ] as anticipatory solution

Assume that the classical minimum-cost spanning tree algorithm in G[T ] is used to compute an
anticipatory solution. Recall that the subgraph induced by the terminals is always present in
the second stage.

Proposition 5. A minimum-cost spanning tree over the subgraph of G induced by T is a 2-
approximation for probabilistic steiner tree regardless of modification strategy chosen.

Proof. Let H be as G with modified edge-weights (i.e., edge (vi, vj) has in H weight w′(vi, vj) =
pipjw(vi, vj)). Thanks to the omnipresence of the vertices of T , S remains feasible in second
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stage, i.e., no completion is needed. Then, for any modification strategy M, since M will be never
applied in second stage:

E(G,S, M) = m(H,S) =
∑

(vi,vj)∈S

w (vi, vj) pipj (7)

On the other hand, since edge-weights in G are at least as large as the corresponding weights
in H, the following holds (also using Lemma 1):

E∗(G) > opt(G) > opt(H) (8)

Putting (7) and (8) together and taking into account that S is a 2-approximation for steiner

tree in H (see Section 2), the result claimed is immediately derived.

3.2.2 More general anticipatory solutions

By the observation made in the beginning of the proof of Proposition 5, a minimum-cost spanning
tree S over G[T ] (or H[T ]) is a very particular solution since it is always feasible for second stage.
We so turn to study anticipatory solutions that have not a priori such property and could contain
also non-terminal vertices of G, i.e., vertices that have a presence-probability less than 1. Let us
note that such solutions can be better than a minimum-cost spanning tree S over G[T ]. This is,
for instance, the case of an anticipatory solution computed by [29].

Consider an anticipatory Steiner tree S (no matter how it is produced). Then, the following
facts, expressed by Lemmata 2 and 3, hold on any metric graph G. In what follows, we denote
by [vi, vj ]S the edge-set of a path over a tree S; the vertex subscripts i and j denote the order of
visitation of the tree’s vertices by DFS.

Lemma 2. For any three edges (vi, vj), (vk, vl), (vq, vr) inserted by DFS to S′′ the paths [vi, vj ]S,
[vk, vl]S and [vq, vr]S do not share an edge in common.

Proof. Without loss of generality, assume that i < j, k < l, q < r and that the corresponding
pairs of vertices were found in order 〈vi, vj〉, 〈vk, vl〉, 〈q, r〉 during the scan of L′. Then, j < l < r
also holds. If the corresponding paths intersect on at least one common edge, say (vs, vt), it
must be that s, t 6 j, because all edges of [vi, vj ]S must have been traversed at least once after
visitation of i and right before visitation of j. Thus, s, t < l and s, t < r also holds. In this case,
edge (vs, vt) was scanned at least three times during the depth-first traversal of the anticipatory
tree S: at least once right before visitation of each of the three vertices vj , vl and vr. But this
contradicts the fact that a depth-first traversal of a graph scans each edge exactly twice.

From Lemma 2, one can immediately conclude that any edge of the anticipatory tree S can
be shared by at most two paths [v, u]S that have entailed insertion of edges for completion of S′′.

Lemma 3. Consider two edges (vi, vj) and (vk, vl) added by DFS to S′′ during construction of S′.
For each edge (vs, vt) ∈ [vi, vj ]S ∩ [vk, vl]S, (vs, vt) /∈ S′′.

Proof. Suppose, a contrario, that there exists (vs, vt) ∈ [vi, vj]S ∩ [vk, vl]S with (vs, vt) ∈ S′′.
Without loss of generality, suppose that i < j, k < l and that the modification strategy found
the pair 〈vi, vj〉 before the pair 〈vk, vl〉 while scanning the list L′. Then, it must be i < j, k < l
and j < l. Since (vs, vt) ∈ [vi, vj ]S ∩ [vk, vl]S , it must be that s, t 6 j and, consequently, s, t < l.
Also, it must hold either that s, t > k or that s, t > i because, otherwise, it must be s, t < i and,
given that s, t 6 j also, we should conclude that edge (vs, vt) has been scanned during depth-first
traversal already twice, once right before visitation of vi and once right before visitation of vj.
In this case, it cannot have been scanned also right before visitation of vl. But, if either s, t > k
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or s, t > i hold, then scan of L′ could not have found the vertices vk, vl, or the vertices vi, vj ,
respectively, in this order, a contradiction.

Denote by e1, e2, . . ., the edges added in S′′ during the second stage. As mentioned several
times above, these edges correspond to paths of S; denote them by P1, P2, . . . The total weight
of S′ is bounded by a sum of the weights of P1, P2, . . ., plus the weight of edges in S′′. It turns
out by the previous Lemmata 2 and 3 that each edge of S contributes to the bounding quantity
of w(S′) at most twice (either by appearing in two paths Pi and Pj and not in S′′, or by appearing
in S′′ and in one path Pi); hence:

m
(

G′, S′
)

= w
(

S′
)

6 2w(S) = 2m(G,S) (9)

Figure 4, where vertices are named by their DFS ordering, gives an example illustrating what
has been just discussed. The anticipatory Steiner tree S is the tree with thin lines. We suppose
that white (black) vertices are absent (present) in second stage. Hence, the edges added in this
stage in order to reconnect S are edges (1, 5), (5, 7), (7, 8), (15, 18) and (18, 19) (thick lines in
Figure 4). Since we assume that the input graph is metric, we have the following for these “new”
edges:

w(1, 5) 6 w(1, 2) + w(2, 3) + w(3, 4) + w(4, 5)

w(5, 7) 6 w(5, 6) + w(6, 7)

w(7, 8) 6 w(6, 7) + w(6, 8)

w(15, 18) 6 w(11, 15) + w(9, 11) + w(5, 9) + w(4, 5)

+ w(3, 4) + w(3, 16) + w(16, 17) + w(17, 18)

So, in the so reconstructed tree S′, edges (1, 2) and (2, 3) are counted once, due to the insertion
of edge (1, 5). Edges (3, 4) and (4, 5) count twice (due to the insertions of (1, 5) and of (15, 18).
Edges (5, 6) and (6, 7) count once (for edge (5, 7)). Edges (3, 16), (16, 17), (5, 9), (9, 11),
and (11, 15) count once, for edge (15, 18). Edge (17, 18) counts twice, once for edge (15, 18)
and once for (18, 19). Finally, edge (17, 19) counts once, for edge (18, 19). Edges (5, 9), (9, 11)
and (11, 15) count once more in S′′. Finally, edges (9, 10), (11, 12), (11, 14) and (12, 13) count
only once, i.e., only in S′′.

Consider using an arbitrary ρ-approximation algorithm for obtaining a feasible Steiner tree S
with cost no more than ρ times the cost of an optimal Steiner tree of G. Then, the following
theorem holds.

Theorem 1. Any ρ-approximation algorithm for steiner tree yields an anticipatory solution
resulting in a 2ρ-approximation for probabilistic steiner tree(DFS).

Proof. Based upon Lemmata 2 and 3, the proof is immediate. Taking into account (4) and that
opt(G′) > opt(G), we get from (1) using (9):

E(G,S, DFS) =
∑

V ′⊆V

Pr
[

V ′
]

m
(

G′, S′
)

6
∑

V ′⊆V

Pr
[

V ′
]

2m(G,S)

6 2
∑

V ′⊆V

Pr
[

V ′
]

m(G,S) 6 2ρ
∑

V ′⊆V

Pr
[

V ′
]

opt(G)

6 2ρ
∑

V ′⊆V

Pr
[

V ′
]

opt
(

G′
)

6 2ρE∗(G)

and the proof of the theorem is complete.
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Figure 4: The total weight of a second-stage tree is no more than twice the cost of an anticipatory
(first-stage) tree.

Theorem 2. Ratio 2ρ for probabilistic steiner tree(DFS) is tight even when edge costs
are 1 and 2 and an optimal steiner tree-solution is used as anticipatory solution.

Proof. Consider a complete graph Kn+1 on n + 1 vertices numbered by 1, 2, . . . , n + 1. Assume
w.l.o.g. that n > 6 is even and that edge (1, 3) and edges (i, i + 1), i = 3, . . . , n − 1 have cost 2,
while the other edges of Kn+1 have cost 1. Assume, finally, that only vertex 2 is non-terminal
and its presence probability is p2. It is easy to see that, in this graph, opt(Kn+1) = n + 1 and
such a tree is realized in several ways and, in particular, by a star S with center 2, or by a path
linking somehow the terminals (for example, using edges (1, 3), (i, i + 2), for i odd from 1 to
n + 1, edge (n − 2, n + 1), edges (j, j − 2), for j even going from n − 2 down to 4 and, finally,
edge (4, n)). Obviously,

E∗ (Kn+1) = p2(n + 1) + (1 − p2) (n + 1) = n + 1 (10)

Assume now that the anticipatory solution computed is just S (of cost n + 1) and that the DFS

ordering of S has produced the original numbering of Kn+1, i.e., 1 is the leftmost leaf, 2 the
stars’center and 3, . . . n + 1 the rest of leaves. If 2 is absent, then the completion of the tree will
produce the path (1, 3, 4, . . . , n + 1) with cost 2n. So, the value of E(Kn+1, S, DFS) will be:

E (Kn+1, S, DFS) = p2(n + 1) + (1 − p2) 2n = 2n − p2n + p2 (11)

In Figure 5 an illustration of the discussion just above is provided for n = 6. The thick edges
of K7 in Figure 5(a) are the ones with cost 2. It is assumed that vertices 1, 3, 4, 5, 6, 7 are
terminals. In Figure 5(b), an optimal Steiner tree of K7 is shown using non-terminal vertex 2.
It is assumed that this tree is also the anticipatory solution. Its vertices’ numbers represent also
their DFS ordering. In Figure 5(c) is shown the DFS completion of S when 2 is absent. Finally,
in Figure 5(d), the optimal Steiner tree of K7 using only terminals built as described above is
shown.
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Figure 5: On the tightness of ratio 2ρ.

Dividing (10) by (11) we get a ratio that for small enough values of p2 tends to 2.
By Theorem 1 if for example the 1.55-approximation algorithm of [29] is used for constructing

an anticipatory solution, a 3.1-approximation for probabilistic steiner tree(DFS) is incurred.
This result is obviously dominated by Proposition 5. However, Theorem 1 provides a more general
structural result linking the approximation of steiner tree to the one of probabilistic

steiner tree(DFS) and carries over more general solution structures. This, to our opinion, has
its own interest. But, if one restricts her/himself to anticipatory solution that are optimal for
steiner tree in the input-graph, then Theorems 1 and 2 imply a tight approximation ratio 2 for
probabilistic steiner tree(DFS). In this case the result incurred is also of practical usefulness
since it encompasses more general structures of anticipatory solutions and the approximation
ratio yielded is comparable to the one claimed by Proposition 5.

4 A second probabilistic model: probabilistic steiner tree under re-ap-

proximation strategy

We consider in this section a different modification strategy for probabilistic steiner tree,
to which we refer to as re-approximation strategy (REAPX) (following our convention we are going
to study probabilistic steiner tree(REAPX)).

Let S be an anticipatory first-stage solution for the Steiner tree problem over the initial
weighted graph G(V,E, ~w), produced by a ρ-approximation algorithm. Let V ′ ⊆ V be the real-
ized vertex subset of G in second-stage, and S′′ ⊆ S be the surviving portion of the anticipatory
Steiner tree S. Obviously, S′′ is a forest; denote by Ci, i = 1, . . . , q its trees (any of its trees can
also be a single vertex) and assume w.l.o.g. that any of the first t Ci’s, say C1, . . . , Ct, t 6 q,
contains at least one terminal vertex of G, while any of the q − t + 1 last Ci’s contains only
non-terminal vertices of G.

The REAPX strategy first constructs S′′ by discarding absent vertices from S. Then, it replaces
any tree Ci, i = 1, . . . , t, by a new terminal vertex ui and discards any Ci, i = t+1, . . . , q from V ′.
Finally, it keeps the rest of vertices in V ′ (i.e., the non-terminal vertices of V ′ that have not been
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used in S) unchanged. Let us denote by N ′′ this last set of vertices. It so produces a new vertex-
set V ′′ including t terminals u1, . . . , ut and the non-terminals of N ′′. Let G′′ be the complete
graph on V ′′ and E′′ be its edge-set. Any edge (vi, vj) ∈ E′′ is weighted as follows:

• if vi, vj ∈ N ′′, then w(vi, vj) remains as it was in G;

• if both vi and vj are some terminals, say uk and ul, then w(vi, vj) = min{w(v, u) : v ∈
Ck, u ∈ Cl};

• analogously, if one of vi, vj , say vi belongs to N ′′ and the other one, vj , is some terminal uk,
then w(vi, vj) = min{w(vi, v) : v ∈ Ck}.

REAPX runs a ρ′-approximation algorithm A for steiner tree in G′′ to take a tree spanning the
terminal set U of G′′. Denote by S̄ this tree and assume that it is represented as a list of edges.
Then, it “unfolds” the vertices of U obtaining so a tree who edge set is S′ = S′′ ∪ S̄ that is a tree
spanning the initial terminals of V that have survived in V ′, i.e., a Steiner tree for G′ = G[V ′].

As an example, consider a K7 and assume, for simplicity, that the weights on its edges are
distances in Euclidean space. Suppose that vertices 1, 2, 3, 5 and 6 are located on a line and that
w(1, 2) = 1, w(2, 3) = 2, w(3, 5) = 3 and w(5, 6) = 4. Suppose also that w(3, 4) = w(3, 7) = 1.
Assume, finally that vertices 1, 2, 4, 5 and 6 are terminals, while 3 and 7 are not and that
the anticipatory tree S of Figure 6(a) has been computed by some ρ-approximation algorithm.
Assume that in the second-stage graph G′, only vertex 3 is absent (and vertex 7 that does not
make part of S survives. Figure 6(b) shows the connected components C1, C2 and C3 of S that
survive in G′ together with vertex 7 that also survives. Any of the components C1, C2 and C3

contains at least one terminal. So, any of them is contracted into a new vertex ui, i = 1, 2, 3
(recall that if one of them contained no terminal, it would be totally removed). These three
vertices, together with vertex 7 are the vertices of the new graph G′′ shown in Figure 6(c). Here,
w(u1, u2) =

√
5 (the weight of edge (2, 4)), w(u1, u3) = 5 (due to edge (2, 5)), w(u1, u4) =

√
5

(edge (2, 7)), w(u2, u3) =
√

10 (edge (4, 5)), w(u2, u4) = 2 (edge (4, 7)) and w(u3, u4) =
√

10
(edge (5, 7)). In this new graph, some ρ′-approximation algorithm A will be called to compute a
new Steiner tree. If, for instance this algorithm is for computing a minimum spanning tree on
the the terminals (discussed in Section 3), then the computed Steiner tree for G′′ should be as
in Figure 6(d) and the “unfolding” should result to a Steiner tree S′ for G′ that should be as in
Figure 6(e) with total cost 10 +

√
5.

Noticeably, the REAPX strategy does not always incur an asymptotic advantage in compar-
ison to re-evaluating a Steiner tree on G′ from scratch, but it exploits remaining parts of an
anticipatory Steiner tree, potentially offering some practical time-savings.

Obviously, probabilistic steiner tree(REAPX) is a collection of probabilistic variants for
probabilistic steiner tree rather than a single one, any variant induced by the particular
approximation algorithm A used. Furthermore, as it hopefully has become clear from what has
been discussed in Section 3, the objective function of a probabilistic problem strongly depends
on the modification strategy used. So, it is very unlikely that one could produce an expression
for the functional of probabilistic steiner tree capturing any instantiation of REAPX.

Dealing with optimal steiner tree solutions on G′′ (the graph constructed by trees-contrac-
tion with terminal vertex-set U) and G′ (the finally realized subgraph of G), the following lemma
links their optimal solution-values.

Lemma 4. opt(G′′) 6 opt(G′).

Proof. Notice that a Steiner tree on G′ spanning the initial terminal set T is also feasible for the
terminal set U over G′′, because for each v ∈ U , either v ∈ T , or v has emerged by contraction of
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Figure 6: An example of application of REAPX, using a minimum spanning tree computation over
the terminals.

a subset of vertices intersecting T . Since opt(G′′) is the value of an optimal Steiner tree in G′′,
the result follows.

Theorem 3. Let A be a ρ′-approximation algorithm for steiner tree called by REAPX in its
second stage. Then an anticipatory Steiner tree S of G that is a ρ-approximation for steiner

tree, is a ρ + ρ′-approximation for probabilistic steiner tree(REAPX).

Proof. Obviously, w(S′′) 6 w(S) = m(G,S) 6 ρ opt(G). Furthermore, opt(G) 6 opt(G′),
since G′ lacks some edges of G (see also Lemma 1). Execution of the ρ′-approximation algorithm A

on G′′ returns an edge set S̄ with total weight w(S̄) 6 ρ′ opt(G′′) 6 ρ opt(G′), by Lemma 4.
Then, the returned Steiner tree S′ = S′′ ∪ S̄ in G′ has total weight:

w
(

S′′ ∪ S̄
)

= m
(

G′, S′
)

= w
(

S′′
)

+ w
(

S̄
)

6 w(S) + ρ′ opt
(

G′′
)

(12)

By the assumption on the approximation achieved by S, Lemma 4 and the fact that opt(G) 6

opt(G′), (12) becomes:
m

(

G′, S′
)

6
(

ρ + ρ′
)

opt
(

G′
)

(13)

As previously, let E(G,S, REAPX) denote the functional value incurred by the modification strat-
egy REAPX for probabilistic steiner tree(REAPX). By (1) and (13) we get:

E(G,S, REAPX) =
∑

V ′⊆V

Pr
[

V ′
]

m
(

G′, S′
)

6
(

ρ + ρ′
)

∑

V ′⊆V

Pr
[

V ′
]

opt
(

G′
)

=
(

ρ + ρ′
)

E∗(G)

that proves the proposition.
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Note that, from Theorem 3, if S is computed optimally, then the ratio derived from Theorem 3
is ρ′ + 1. This is a case where the REAPX strategy implies a practical advantage with respect
to re-evaluation of a Steiner tree on the second-stage graph from scratch. Also, several other
approximation results can be derived depending on the specification of A. For instance:

• if S is the solution computed by the algorithm in [29], then the ratios derived are 2.56
and 3.28, respectively;

• if S is the solution computed by the algorithm in [1], the respective ratios are 3.28 and 4.

To conclude the paper, another way for estimating the approximation quality of an anticipatory
solution S for probabilistic steiner tree(M), for any modification strategy M, is by using
the approximation ratio E(G,S, M)/E(G,S∗, M) where, as defined in Section 1, S∗ is an optimal
anticipatory solution. As a final remark, by (3), E∗(G) is a lower bound for E(G,S∗, DFS).
Henceforth, the results derived in both Sections 3 and 4 remain valid for this approximation
ratio too.

5 Conclusions and further research directions

In this paper we have treated the probabilistic steiner tree problem under the framework
of probabilistic combinatorial optimization. We have proposed a fast modification strategy (DFS)
for reconstructing a second-stage tree and shown that problem of optimizing the expectation of
the second-stage cost by selecting an appropriate first-stage (anticipatory) solution is in NPO
under the proposed modification strategy. We have also given approximation results for the
probabilistic problem associated with the DFS strategy. For instance, for metric edge-costs and
an optimum anticipatory first-stage solution a 2 approximation of the optimum second-stage cost
is obtained by DFS. Furthermore, we have given a family of modification strategies (REAPX), each
member of which can be instantiated by usage of appropriate approximation algorithms. For the
case of general edge costs and an optimum anticipatory first-stage solution, a 2.55 approximation
of the optimum second-stage cost can be incurred by REAPX. We note however, that no member
of REAPX family of modification strategies can obtain a ratio 2 (as it is the case of DFS) in metric
graphs.

Let us note that many of the results of Section 3 (as, for example, Proposition 1, Theorem 1,
if we run the DFS modification strategy for every tree of an anticipatory forest) can also be
applied directly to the probabilistic Steiner forest problem.

Lowering the approximation ratio for the case of general edge-costs given an optimum antici-
patory solution (possibly by devising a novel modification strategy), or refuting such a possibility
is a matter of future work. We are also investigating the properties of a different probabilistic
model for steiner tree, involving probabilistic terminal vertices when all other vertices of the
graph are present with probability 1.

Acknowledgment. Many thanks to Cécile Murat for helpful discussions and comments.
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