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Abstract. This paper addresses the problem of generating conflict-free
periodic train timetables for large railway networks. We follow a two
level approach, where a simplified track topology is used to obtain a
macro-level schedule, and the detailed topology is considered locally on
the micro level. To increase the solution space in the interface of the
two levels, we propose an extension of the well-known Periodic Event
Scheduling Problem (PESP) such that it allows to generate flexible time
slots for the departure and arrival times instead of exact times. This
Flexible Periodic Event Scheduling Problem (FPESP) formulation con-
siderably increases the chance to obtain feasible solutions (exact train
routings) subsequently on the micro level, in particular for stations with
dense peak traffic. Total trip time and the time slot sizes are used as
multiple objectives and weighted and/or constrained to allocate the flex-
ibility where it is most useful. Tests on a medium size instance of the
Swiss Federal Railways 2007 service intention demonstrate the advantage
of the FPESP model, while it only moderately increases its solution time
in most cases.

1 Introduction

Railway traffic in Europe has increased considerably for both passenger and
freight transportation, and this trend is expected to continue. As construction
of new tracks is very expensive and hardly possible in many city centers, it
is crucial to utilize the existing infrastructure as good as possible to meet the
customer demand for an enlarged offer. With increasing density of the timetable,
however, scheduling trains becomes more and more difficult not only with respect
to safety restrictions, but also for mitigating propagation of delays. The prospect
of automatic generation of conflict-free timetables in reasonable time is therefore
considered very promising by railway companies in the production as well as
in the planning phase, here in order to evaluate several alternative timetables.
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The Swiss Federal Railways Infrastructure Division (SBB-I), for instance, major
operator of the railway infrastructure in Switzerland, is currently investing efforts
into the development of efficient methods for generating and operating railway
schedules [9, 16, 26].

Our research focuses on the construction of periodic timetables for a given
train service intention, which describes the train services that passenger and
freight companies would like to offer. This train service intention consists of
train lines with frequencies and specifies customer-relevant information such as
stop stations, interconnection possibilities, and train type. The goal is to create
detailed train schedules, which specify an exact itinerary through the railway
topology with passing times for each train. This way the provided timetable is
guaranteed to be conflict-free, i.e., assuming no delays, all trains can run exactly
as planned without creating safety conflicts. This feature is in contrast to today’s
timetables, which are typically not planned to be conflict-free and rather rely on
on-line resolution of resource conflicts as they occur in real time.

As it appears intractable to consider the detailed topology all at once, we
propose a two-level approach for generating conflict-free train schedules [2]. In
the macroscopic (or macro) level, given a train service intention for the whole
railway network, we abstract from the detailed track topology for creating a draft
timetable. In the microscopic (or micro) level, starting with the draft timetable
from the macro level, we construct detailed train schedules by considering locally
precise topologies, the corresponding safety system as well as accurate train
dynamics. For micro scheduling, several models and algorithms are available for
solving large problems with many trains and routing possibilities [27, 5, 6, 1].

This paper focuses on the periodic timetabling on the macroscopic level. This
can be modeled as a Periodic Event Scheduling Problem (PESP, see [11]) whose
output (departure and arrival times) serves as the input for the micro level to
check feasibility by finding a feasible routing. Our goal is to increase the chance
for finding a feasible routing on the microscopic level. We reach this goal by
generalizing the PESP model to search for arrival and departure time intervals
in lieu of exact event times, which are quite restrictive for the micro level and
often lead to infeasibility. This additional flexibility for those events leads to the
extended model developed in this paper, the Flexible Periodic Event Scheduling
Problem (FPESP).

Other methods for generating non-periodic train schedules consider a sim-
plified topology for a line [3] or a larger network, applying a heuristic that
sequentially fixes the train sequence [4] or use a multicommodity flow approach
[23]. However, the importance of the periodicity for timetables in Switzerland
as well as results in the Netherlands [24] and in Germany [10] suggest that the
PESP is a powerful model for coping with macroscopic train timetabling.

This paper is organized as follows: In Section 2 we discuss the PESP and
give a literature review on the relevant work on this model. Section 3 contains
the main contribution of the paper, the introduction of flexibility for the events
in the PESP model. Section 4 presents computational results on a test case in
central Switzerland, and in Section 5 we give an outlook for future research.
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2 The classical PESP model and literature review

This section introduces the Periodic Event Scheduling Problem, a powerful model
for periodic schedules introduced by Serafini and Ukovich [25] which was first
applied to train scheduling by Schrijver and Steenbeck [24].

2.1 Classical PESP model

A periodic railway schedule on the macro level consists of a list of departure
and arrival times at the nodes (stations) in the aggregated network for all trains
running within an hour. Each departure or arrival of a train at a node is called
an event ¢ which takes place at a certain time m;. As the schedule is periodic
with a time period T' (often T' = 60 min), the event ¢ also takes place at times
{...,m—=T,m;,m+T,m+2T,...}. Therefore, m; can be restricted to 0 < m; < T.

The choices of the event times 7; depend on each other. For instance, two
trains running on the same track cannot have the same departure times. These
dependencies are modeled as constraints in the PESP. The constraints always
concern two events ¢ and j and define the minimum and maximum periodic time
difference l;; and u;; between the two. The constraint bounds l;; and wu;; are
given as data of the model, and scheduling is then about finding event times m;
for each event ¢ that fulfill all constraints of the form

lij S T — T + Tp” S uij' (1)

The integer variables p;; allow the constraints to be fulfilled in the periodic
sense. As an example, Eq. (1) with [;; = 10, u;; = 15, and T' = 60 can be fulfilled
by m; = 46, m; = 58, and p;; = 0 but also by m; = 1 where p;; = 1 enables the
jump to the next time period.

The events and constraints constitute the elements of the Periodic Event
Scheduling Problem (PESP). This problem can be solved by the correspond-
ing integer linear program (ILP) formulation [11,22,18]. Algorithms especially
designed for the PESP problem have also been developed, e. g., constraints prop-
agation [24], genetic algorithms [19], branch-and-cut [15], constraint generation
[20] or adapted backtracking algorithm [25]. These are specialized algorithms for
finding feasible solutions quickly. However, for optimized solutions mostly ILP
solvers are used.

2.2 Constraints

Various rules and restrictions that exist in the railway business can be modeled
via PESP constraints of the form (1).

Trip time The trip time is the time needed for the train to run between two
stations. Trip times do not necessarily need to be fixed, but can also be vari-
able, as reported in [7]. The lower bound for the trip time is the minimum
time needed for the train to run the distance plus a reserve of a few percent
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that helps making the schedule more robust. The upper bound is the maxi-
mum acceptable time with respect to passenger patience and track capacity
usage. The trip time (I, ) is a constraint between the departure and arrival
events of the same train.

Dwell time The dwell time is the duration that a train stops in a station.
This constraint connects arrival and departure event of a train. Dwell times
should be long enough for boarding of new passengers and possibly for some
loading/unloading or maintenance work on the train. It should not be much
longer than necessary, however, as travelers would like to move on and plat-
form capacity within a station might be small.

Connections These constraints relate the arrival event of some train to the
departure event of another one in order to enable passengers to change trains.
The minimum connection time depends on the infrastructure of the railway
station, on the distances passengers have to walk. Upper bounds are again
the acceptable waiting times for the travelers.

Headway The headway constraints are used to avoid collisions. They separate
two trains running on the same track by at least the headway time h. This
is done by introducing constraints (h,T — h) between the arrival and the
departure events of the two trains. It guarantees that the departures and
arrivals of the two trains on the same track have a safe temporal distance.
The headway time is only a simplification of the real safety system used
in the railway world. More precise safety restrictions should be taken into
account during the micro scheduling.

The headway constraints do not prevent overtaking of trains during the run
on the same track, which is, of course, impossible without a collision. The prob-
lem can be solved by using more restrictive constraints, see [7] for details. The
idea is to increase the headway times such that an overtaking is impossible even
for the largest possible trip time difference. For example, a fast train with trip
time (30, 35) and a slow train (35,42) have a maximum trip time difference p
of 12 minutes. With a headway of h, the fast train would need to make up h
minutes to catch up with the slow train and again h to restore the necessary
headway before arrival at the destination. In the case of u < 2h collisions can be
excluded. In the example, this would require a headway time h > 6. If this con-
dition is not fulfilled automatically, it can be achieved by lowering the trip time
difference p or by increasing the headway time h. Increasing headway should be
avoided as it reduces the track capacity and flexibility. A different approach to
cope with this problem is presented in Section 2.5.

All the above constraint types are of the form (1) and fit into the PESP
model. Another constraint type will be introduced in Section 2.5, leading to an
extended model. There are many others constraints that should be considered
in the timetable generation and can be modeled as PESP constraints [22, 10].

2.3 Objective function

There are two classes of algorithms for solving the PESP: one looking for any
feasible solution and the other looking for a solution that is optimal with re-
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spect to a certain quality criterion. Feasibility algorithms are often much faster,
as they stop as soon as the first feasible solution is found. Optimized solutions
give a measure of the quality of a schedule and guarantee that the output is a
solution of maximum quality. This guaranteed optimality is an advantage of the
computer-generated railway timetables compared to the human-made ones. A
description of possible optimization goals can be found in [22, page 57-64]. Typi-
cal goals are minimization of the total passenger travel time, minimization of the
required number of train units or maximization of some measure of robustness.
The objective functions used in this work are related to the flexible event slot
concept introduced in Section 3.

2.4 Cycle periodicity formulation

The Cycle Periodicity Formulation (CPF) is an adapted formulation of the PESP
that provides an alternative ILP formulation which turned out to be much more
efficient in practice [10, 19, 21, 22]. Instead of solving for the event time variables
s, it solves for periodic tensions x;;. The tensions are the time differences be-
tween the two related events z;; = m; — m; + T'p;; and must obey the bounds
lo < x4 < ug, for each constraint a € A. Additionally, for a periodic tension to
have a periodic potential m; at each node, the sum of all tensions along a cycle
must be equal to an integer multiple of T, hence

Z Taq — Z zq = Tqc, (2)

aeCt aceC—

where ¢¢ is the integer number of period jumps along the cycle C. This becomes
intuitive by looking at the back transformation from the CPF variables x;; to the
PESP variables 7;. Starting by fixing any 7y, one can compute the neighboring
values 7 using the relation 7; = m; + x;; mod T, in short m; = [m; + x;5]r. As
the same values for a m; must result for any path one can take from a g, the
sum of the z;; along a cycle has to be an integer multiple of 7. We obtain the
following Cycle Periodicity Formulation (CPF):

minimize fobj(x) (3)
s. t. lo < 2o < Ug, Va € A (4)
N xg— > xa=Tqc,VC € G (5)
acCt acC—
ac < qc < be, vC e G (6)
zq € R, VYa € A (7)
qc € Z, vC e G (8)

Eq. (5) imposes constraints on each cycle in the graph. The number of cycles
in a graph can be exponential in the number of nodes, but it can be shown
that there exist integral cycle bases B [12,13] with the property that each cycle
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C in G is a linear combination with coefficients from {—1,0,41} of the cycles
in B. Peeters [22] showed that it is sufficient to fulfill (5) for all C € B. An
integral cycle basis B of a graph G can be constructed by building a spanning
tree I of G. When taking one chord a € A/I" together with I', a graph with
exactly one cycle occurs. Adding one cycle per chord to the basis B gives an
integral cycle basis of G. For a PESP graph with n nodes and m arcs, the basis
contains |B| = m — (n — 1) cycles, as the spanning tree of G has n — 1 arcs.
The advantage of the CPF over the original PESP formulation is that the search
space can be reduced considerably by using the cutting planes (6) for the cycles
in B [20]. The cycle basis is chosen such that it contains cycles with maximally
restrictive cutting planes. The number of integer options for a g¢o is denoted by
we = bo — ac + 1. That gives a number of integer value combination to check

of J] we and can be reduced significantly by using a good cycle basis.
ceB
A theoretical discussion of minimal cycle bases can be found in [10] and

many cycle basis construction heuristics are in [22]. Here, we always use the CPF
formulation with an integer cycle basis generated using the minimum spanning
tree approach, which is simple and gives good results in many cases. When using
ILP solvers, it is important to find a good formulation to reach good performance.
For the present case it is reported that the CPF formulation with a good cycle
basis is more powerful than the original PESP [22,10].

2.5 Non-collision constraints

The relation between periodic ordering and the go of the cycle can be used as
non-collision constraint. Non-colliding trains have go = 0 on the cycle consisting
of the two trip time arcs and the two headway arcs (which must have the same
direction, e.g., from train 1 to 2). This fact has been reported earlier [24,22,10]
and can also be adapted for non-collision constraints between trains of reversed
direction on single tracks (go = 0 for the cycle consisting of the two trip time arcs
having opposite direction and the two headway arcs with the same direction).
The condition go = 0 is a type of collision constraint that does not fit into the
original PESP framework, as it is not a proper PESP constraint. However, it can
easily be added to the ILP formulation of both original PESP and CPF form.

The non-collision constraints go = 0 fit directly into the CPF formulation
by choosing ac = be = 0 in (6). Ideally, these non-collision cycles are used for
the cycle basis, as they have the smallest possible we = 1.

3 Flexibility in the PESP

We can couple the macroscopic timetabling problem with the microscopic local
scheduling by solving the PESP and passing the train departure and arrival
times to the station routing algorithms to check feasibility. In order to avoid
tedious iterations between micro and macro level in case of infeasibility of the
micro-level problem, we want to improve the chance of finding a feasible solution
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by increasing the solution space in the micro level. We can reach this goal if the
PESP timetable does not impose exact event times 7; but enables some freedom
for choosing the event times m;. We can add this flexibility for the events m; by
introducing lower and upper bounds m; and 7; for 7; as new decision variables
instead of the event times ;. The choice of the m; € (7, 7;) shall be independent
for each event, i. e., each value 7; € (m;,7;) should be reachable from each value
in m; € (m;,7;) by remaining feasible in the sense of Eq. (1). Note that we are
not forced to add this flexibility to all the events, but we can select the nodes
where we want to add it, for instance only nodes corresponding to events in a
main station area with high traffic density, where it is more difficult to schedule
trains on the microscopic level. The micro scheduling algorithm proposed in [6,
1] is designed to cope with such flexible event time inputs. Here we present a new
approach how the PESP can be generalized to generate event slot timetables on
a macroscopic level.

Flexible schedules with event time slots m; € (m;,7;) can also be used to
overcome delay propagation in the network. A train has to leave a station at
time 7; at the latest without starting a delay cascade on following event times.
If the departure time ; is scheduled earlier than 7;, the difference 7; — 7; can
be used to compensate delays and make the schedule robust. The local train
routing algorithm should therefore preferably choose event times m; € (m;,7)
that are close to m; such that the remaining flexibility 7; — 7; can be maximized.
Related interesting approaches to impose robustness against delays in the PESP
environment can be found in [8,14]. In particular, [14] introduces the notion of
absorbing path, which is a path that absorbes a limited disturbance occured
at the first arc at least by the end of the path. This is achieved by adding
time reserves to the lower bounds of the PESP formulation. Our approach also
restricts the feasible intervals on the arcs, but instead of associating these new
variables directly with the arcs, we decide to associate them with the events
of the network. Doing so, these variables serve as a measure for their events’
flexibility for microscopic scheduling and might lead to additional robustness on
the operational level.

3.1 Basic properties

We set the ranges for the event time bounds as 0 < m; < T for the lower bound
and m; <7 < m; + T for the upper bound. Thus, we define the flexibility d; of
an event 4 as the size of its time slot

(51' 1:7'(_1‘77('1‘. (9)

Each constraint arc (4, j) € A has a correspondent span ;; = u;; — l;;. From
an event m; € (m;,m;) with flexibility d;, another event 7; € (m;,7;) must be
reachable by fulfilling the constraint /;; < m; — m; + p;; T < uij_,as illustrated
in Figure 1. When no other constraints apply to m; then m; = [m; + l;;]7 is the
first possible time for event j that fulfills constraint (7,7) for any m; € (m;, 7).
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time

Fig. 1. Flexibility for the events ¢ and j. By increasing the flexibility J;, the flexibility
for the connected node will be reduced by the same amount such that the sum of both
values is at most the arc span ;.

Similarly, 7; = [m; + u;j]7. The flexibility J; is then given by 6; = 7 — 7; =
[(&—i— uij) — (TF_Z + lij)]T =Yij — 0;. It follows that

8 + 05 < vij (10)

This inequality takes into account that other constraints besides (4, j) could
restrict the flexibility of the nodes further. Thus, each node flexibility of a feasible
timetable is a non-negative value d; > 0. Note that finding a set of non-negative
0; fulfilling (10) does not guarantee a feasible timetable. For instance, if we choose
all 6 = 0 in an infeasible PESP instance we satisfy Eq. (10) but the problem
is infeasible. Eq. (10) shows that the event flexibilities are dependent. Adding
more flexibility at one node restricts it at the neighbors. A weighted objective
function or a feedback strategy from the microscopic algorithm could then help
allocate flexibility where it is most useful.

3.2 Flexible PESP model

We now present the model for introducing event flexibility into the PESP by
changing the constraints of the PESP graph. Event time slots require that the
PESP constraints are fulfilled for any 7; € (m;,7;), independently for each event.
The range of the time span x;; = 7; — m; + T'p;; between two events ¢ and j is
given by

m; =T +Tpij <y —m +Tpyy <7 —m + T'pij (11)

Replacing the upper bounds 7; for the event times with m; + J; we get the
following inequalities:

;= (mi+6:) + Tpij < mj —mi + Tpij < (mj +65) — mi + Tpyj. (12)

The PESP constraints (1) are satisfied for any combination of m; and ; if they
are satisfied for the entire range of (7; — m; + T'p;;) in Eq. (12):
lij Sﬂ'_j— (B—F&) +Tpij < Ty — T —l—Tpij < (&—F(Sj) —ﬂ—FTpij < Ugj -
(13)
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Fig. 2. Introducing an event slot of size J; at event i leads to adapted constraint bounds
in the PESP graph. The upper bound of incoming constraints is reduced by d¢; and the
lower bound of outgoing arcs is increased by 9;.

Considering separately the first and the last inequalities we obtain constraints
in PESP form for the variables ;.

lij+5i§ﬂ_ﬂ+Tpij and Wj—ﬂ-l-Tpij Suij—dj. (14)

Putting these results together leads to
lij+ 6 <mj—mi +Tpij < uij — (15)

which are constraints in PESP form for the variables 7;. The adaptation of the
constraints is illustrated in Figure 2. The constraints are more restrictive than
in the original PESP, ~;; = (u;; — 6;) — (Lij + ;) = vij — 6; — J;. As ;; must
be non-negative for feasibility, it follows again §; — d; < 7;; as stated before in
Eq. (10). The original PESP without event slots is the special case where §; = 0
for all i.

The Flexible PESP can now be solved for the variables m and §. Both the
original PESP and the CPF formulation are applicable. In the original PESP,
Eq. (1) changes to

lij+6 <mj—mi+Tpiy < uij — 65 Y (4,5). (16)
In the CPF version, the change affects the bounds of Eq. (4) as follows:

3.3 Objective functions

A good timetable with time slots should (i) be a good timetable with respect to
the objectives in Section 2.3, (ii) have large event time slots, and (iii) contain
homogeneously distributed event flexibility. These goals are often conflicting,
and the choice of the objective function is not obvious. The following list dis-
cusses some possible choices. Computational results for different objectives are
presented later in Section 4.3.

— MINTRAVEL: This objective function minimizes a weighted sum of the pas-
senger-relevant times

min fi; = z we Ty + Z WaTqg + Z Wele. (18)

teAr deAp cEAC
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where Ar C A is the set of trip arcs, Ap C A the set of dwell arcs and
Ao C A the set of connection arcs. The weights can be chosen such that
they correspond to the number of passengers using this activity or other
priority criteria.

MAXFLEX: This objective function maximizes a weighted sum of flexibilities

maxfﬂex = széz (19)

i€V

where V is the set of all events where flexibility is introduced. The weights
can be chosen such that more flexibility is assigned to some parts of the
graph, e.g., main station areas or network bottlenecks. This objective (19)
may lead to a few events having a lot of flexibility while all others have none.
It is more desirable to have a bit of flexibility everywhere. By additionally
constraining the maximum flexibility per node,

6i S 6maw <20)

a better distribution of flexibility can be obtained. Different choices for the
value 0,4, are discussed in Section 4.

MIXFLEX: An aggregated objective function allows to optimize both the
quality of the timetable and the time slots. The timetable quality here is
measured by a weighted sum, whose optimum constitutes a Pareto-optimal
solution to the bi-objective problem of minimizing travel time and maxi-
mizing flexibility simultaneously. The weight A, 0 < A < 1, balances the
priorities of the two goals.

maxfmixﬁex =A- fflez - (1 - >\) : ftt (21)

CONTRAVEL: Instead of optimizing a weighted sum of the objectives, we can
address the bi-objective problem by constraining one objective and optimiz-
ing the other. By appropriate constraint values, any Pareto-optimal solution
is reachable, and the quality of the final solution can be controlled more
accurately than via a weighted sum. Here, we optimize flexibility under a
travel time constraint, where we use the minimum of fi; as a reference and
allow a parameterized relative deviation of e:

max fﬂex (22)
subject to  fix < (1+¢€) fit (23)

where f;; is the optimal value found for fi; in (18).

PosTopPT: Another two step approach keeps the integer variables go from
step one (18) fixed for step two (22). It results an LP, all integer variables now
being fixed as gc = ¢¢. This is a type of post optimization, which is very fast,
but has a very limited solution space. The second step only shifts the event
times while keeping the event order constant. A similar post-optimization
approach has been applied in [8] for finding an optimal distribution of time
reserves among a train trip using stochastic optimization.
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— MAXMINFLEX: The idea here is to guarantee a minimum flexibility for a set
of selected events i € ¥

max (24)

st.p <6 Vied. (25)

In many cases, however, there are events that cannot have any flexibility. In
such a case, ¢ will be zero and the approach will not give the desired results.

3.4 Interaction with micro-level scheduling

When the optimal macro schedule is found, the event times and event slot sizes
are passed to the micro scheduling algorithm, where routes and platforms are
assigned to the trains. The event slots increase the solution space of the micro
scheduling, which can now choose from various routing possibilities for each
train, as well as from the event times m € (m,m + ) within the slots. The
interface consists of a list of trains and their 7 and ¢ values for the arrival and
departure at each station. If no solution of the micro scheduling problem can be
found, a feedback loop leads to a shift of the weights, w; in (19) and A in (21), in
the objective function of the macro scheduling. More flexibility is then assigned
to the respective station area.

4 Computational results

4.1 Test case

A test case was set up in order to validate the algorithms and concepts of this
work. The scenario includes the cities Lucerne, Zug and Arth-Goldau as the
major nodes in the network. The macroscopic track topology shown in Figure
3 is used for the test case. It is a simplification of the reality, but it is still
interesting, as it includes changes from double to single track and junctions
where trains from different directions come together, as well as a mixture of
freight trains, long distance and local passenger trains.

The service intention of the 2007 SBB timetable is used. It contains Inter-
city trains running from Baar (Zurich) and Sursee (Basel) to Erstfeld and the
Gotthard tunnel through the Alps. Additionally, there are Interregional trains
running from Lucerne to Baar and to Biberbrugg (Pfiffikon). Regional trains
run in the triangle Lucerne — Zug — Arth-Goldau with several stops in between,
as well as on all other lines described in Figure 3 (b). Several slots for cargo
trains are reserved in every hour on the double-track line Lenzburg — Rotkreuz —
Immensee — Arth-Goldau — Gotthard in both directions, which is the main line
between Germany and Italy and where nearly the entire freight traffic passes
through. The reference scenario for the test case consists of 48 trains running
on the described topology with a periodicity of 1 hour (7' = 60 min) and the
headway time h = 2 min. Table 1 compares sizes of the PESP graph and the
MIP formulation for the reference scenario with and without flexibility.
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Rotkreuz

Walchwil
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Arth-Goldau

Biberbru
Erstfeld %

(a) (b)

Fig. 3. (a) The test case region connecting the towns Zug — Lucerne — Arth Goldau
in central Switzerland. (b) The track topology is partly double track and partly single
track and is used by regional and intercity trains as well as freight trains. All the events
in the PESP model correspond to departure or arrival times at stations in this picture.

# # integer # # MIP # average (stdev)| average
variables| variables |0 variables|constraints|non-collision|arc span (min) |wc (stdev)
1083 | 436 212 1730 223 5.4 (4.8) | 26 (1.1)

Table 1. Data of the PESP graph and the MIP for the reference scenario, with the
variables § for adding flexibility. The PESP graph of the reference scenario with 48
trains has 212 events and 647 arcs after resolving arcs with zero span. The average arc
span and his standard deviation are computed without the headway constraints, wich
are 446 arcs with span 56 minutes (h = 2).

4.2 Implementation

The model was implemented using Matlab® and the MOSEK® [17] solver for
mixed integer linear programs. The tests are run on a 2GHz 64bit processor with
4GB RAM. All computations throughout this chapter are done with all weights
w; equal to one and are terminated when an optimality gap of 0.1% is reached.
The output of the timetable generator is a list of all departure and arrival times
of the trains. The data can then be visualized in the form of time-space diagrams
(see Figure 4).

The timetable can be computed with both the original PESP formulation
(Section 2.1) or the CPF formulation (Section 2.4). First we compare the two
formulations as well as the model with and without flexibility on the events.
We consider the objective function MINTRAVEL. The reference scenario takes
more than 4000 seconds when we apply the original PESP formulation but only
18 s when we apply the CPF formulation. As often observed in the literature, it
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Fig. 4. (a) The generated timetable without event slots from the 2007 SBB service
intention visualized in a time-space diagram. The horizontal axis represents the route
from Arth-Goldau (GD) towards the alps (Erstfeld, ER), whereas the vertical axis
represents the time. (b) When using event slots, each event gets an event time m; and
a flexibility §;. In this diagram, the earliest possible line and the latest possible line are
filled in grey. Any choice for train trajectories in the grey zones are feasible from the
macro scheduling point of view.

seems that the CPF formulation is more efficient and better suited for timetable
generation. It is therefore used for the further tests throughout this section.

If we introduce the values § for the event flexibility, consider the CPF formu-
lation and solve the reference scenario with the objective MINTRAVEL, we get
a CPU time of 275 seconds, as reported in Table 2. Other tested scenarios give
similar increasing factors of the CPU time by introducing event flexibility. Notice
that an optimal solution of MINTRAVEL with all §; = 0 corresponds to optimal
solution of the original PESP without flexibility. It is interesting to notice that
the MIP solver of MOSEK does not find this solution, but takes more time and
provides a solution with > §; = 60. If we solve CONTRAVEL with € = 0 we get
an optimal solution with >~ §; = 152.

If we want to maximize the flexibility in the objective (MAXFLEX), we get a
CPU time of 420 seconds. One can observe that the introduction of the additional
values §, which more or less doubles the number of continuous variables in the
ILP, increases the CPU time, but not too much as we did not add any additional
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name objective CPU time|Y 6| Tt,a,c
NOFLEX min )" Tt d,c 18 sec - 2017
MINTRAVEL  |min ) ¢ 4,c 210 sec | 67 | 2017
MAXFLEX max y_ d; 420 sec | 380 | 2396
MIXFLEX 1/2 |max . d; — > Tt,d,c 217 sec | 249 | 2114
MIXFLEX 2/3 |max2-> 0; — Y Tid,.c 338 sec | 372| 2251
MIXFLEX 9/10{max9->6; — Y Tr.a,c 317 sec | 380 | 2272
PostorT max Y d; for fixed gc 0.2sec |251| 2121
CONTRAVEL |maxy_d; s. t. > @rae < 1.02- f5| 93 sec |194| 2058

Table 2. Results for the reference scenario with bounds for the flexibilities §; < 4.
> xt,4,c stands for the sum of all trip, dwell and connection times. NOFLEX means
the original PESP solved with CPF formulation, without introducing the variables §.
Notice that for POSTOPT and CONTRAVEL a solution to NOFLEX is needed; the reported
CPU time is without the time needed for NOFLEX.

integer variables. Furthermore, an appropriate choice of the objective could help
to improve the CPU time (see Table 2). Results on the test case with event slots
are displayed in Figure 4. Here, the reference scenario with 48 trains is used,
with a limitation of the event slot sizes to §; < 4.

4.3 Event slot objectives

The limitation of the event flexibilities §; < 0,4, has several reasons. Large
flexibilities are not very useful, neither for the micro scheduling nor for the delay
management. On the contrary, events with large d; restrict the ¢; for other events
because §; < ;5 — d;. It is better to have many small time slots instead of a few
large ones. Table 3 shows the effect of the flexibility bounds.

A second drawback of large flexibilities is that the travel times are necessarily
increased, as the minimal bound for the trip times is increased in Eq. (15). This
is only acceptable if the increase is small and if it is compensated by additional
timetable robustness.

Generating a timetable with maximized flexibility needs more computation
time. The increase can be explained by comparing the effects of the objective
functions on the solver. An objective function that minimizes the trip and con-
nection times (MINTRAVEL, see Table 2) automatically saves the capacity of
the tracks by trying to assign to each train the shortest track occupancy time
possible. The objective function basically helps the solver to find a solution, as
it is more probable to find one when the trains use only little track capacity.
MINTRAVEL has the additional advantage of offering passenger-friendly train
schedules with low travel times.

An objective function maximizing the event slots (MAXFLEX) has the inverse
effect. An event with high flexibility also uses a lot of track capacity. This can be
seen in Figure 4, where the flexible events occupy a band (filled in grey) instead
of just a single line. With such an objective function the solver starts looking for
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Omaz || 0 number of events with
§; =0|d; = 1]6; = 2|6; = 3|d; > 4
0 0 212 - - - -
1 161 | 51 161 - - -
2 ||258| 61 44 107 - -
3 [|323] 67 48 16 81 -
4 11366 | 76 42 16 20 58
5 ||386| 79 44 17 14 58
6 [396| 80 49 15 14 54
7 ]|401| 84 44 21 13 50
8 || 405 | 82 52 16 13 49
9 ||409| 94 43 12 10 53
10 || 411] 95 42 12 10 53
11 || 413 ] 94 40 16 10 52
12 || 415 | 92 44 14 14 48
59 (419 | 97 42 13 10 50

Table 3. This table shows the effect of the limitation §; < d,nae When MAXFLEX is
optimized in the reference scenario. The choice of the 4. has the conflicting goal of
maximizing Y §; while minimizing the number of events with zero flexibility. For the
following tests, the flexibility bound 6,4 = 4 is used.

solutions with high flexibility, which are not likely to be feasible as they block
a lot of track capacity. Hence the approaches which combine the advantages of
both are desirable. MIXFLEX % (see Table 2) is an aggregated objective function
giving good values for trip times and flexibility within a reasonable time.

The post optimization approach (POSTOPT) takes the quickly generated
MINTRAVEL solution and adds flexibility in a second step while keeping the
integer variables qo constant. The ILP is reduced to an LP for the second step
and is therefore solved almost instantaneously. It is interesting to see that the
resulting flexibility is quite high, even compared to the maximally possible objec-
tive in MAXFLEX. It can be expected that the computation times of MAXFLEX
grow faster than MINTRAVEL with the problem size due to the capacity problem.
This makes the POSTOPT concept attractive for larger instances.

The CONTRAVEL works on a reduced search space that contains only the
solutions with the given maximum deviation to the optimum of MINTRAVEL. It
is interesting to see that the computation time of this approach depends much
on the instances. For the reference scenario it provided good results but for some
other instances it did not come to an optimality proof after more than ten hours.
The reason might be that the travel time restriction does not give a reduction
of the search space of the integer variables.

5 Conclusions and outlook

The classical PESP model with fixed event times is quite restrictive and could
lead to a draft timetable which is infeasible at the microscopic level. It is therefore
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desirable to increase the solution space for the microscopic level by enabling
the event times to be in a time slot instead of being fixed to an exact value.
This paper shows how this idea can be modeled by generalizing the PESP for
generating flexible train schedules on a macroscopic level. The resulting FPESP
is closely related to the original PESP such that future improvements in the area
can probably be included.

Computations show that we can generate draft timetables on the macroscopic
level with event slots flexibility for a scenario of medium size (48 trains in one
hour) in a reasonable amount of time (2-7 minutes). The introduction of the
event slots does not seem to affect the computation time too much and should
be compensated by the reduction of the number of iterations between the macro
and micro level.

An important result of the event slot tests was that the computation time
strongly depends on the objective function. The event slot maximization is com-
putationally not very efficient and conflicts with the goal of travel time mini-
mization. We have tested some alternative objective functions and observed that
the problem can partly be overcome with aggregated objective functions.

The integration of the macro and micro level is currently under investigation.
Draft timetables generated with the approach presented in this paper have to be
checked for feasibility at the micro level with algorithms designed to cope with
this type of event slot timetables. Of particular interest is the measure of the
increased chance of avoiding an infeasible instance and therefore the restart of
the timetable generation on the macro level.

Moreover, larger scenarios should be tested with the model, such for instance
a larger area or the complete Swiss Intercity network. Larger scenarios will help
understand the limits of this model from a computational time point of view,
in particular to see whether it allows to generate schedules for the whole Swiss
railway network.
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