
Stackelberg Network Pricing is Hard to Approximate
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Abstract

In the Stackelberg network pricing problem, one has to assign tariffs to a certain subset of
the arcs of a given transportation network. The aim is to maximize the amount paid by the
user of the network, knowing that the user will take a shortest st-path once the tariffs are fixed.
Roch, Savard, and Marcotte (Networks, Vol. 46(1), 57–67, 2005) proved that this problem is
NP-hard, and gave an O(logm)-approximation algorithm, where m denote the number of arcs
to be priced. In this note, we show that the problem is also APX-hard.
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1 Introduction

We consider a network pricing problem involving two non-cooperative players, a leader and a fol-
lower. The leader owns a subset of the arcs of a given transportation network. She has to set
tariffs on these arcs, knowing that the follower will compute a shortest st-path once the tariffs are
fixed. The goal is to maximize the revenue of the leader, which depends on the path chosen by the
follower.

This problem is known as Stackelberg network pricing; it is formally described as follows:

INSTANCE: – a directed graph D = (V,A)

– a cost function c : A→ R+

– a pair (s, t) of distinct nodes s, t ∈ V
– a subset T ⊆ A of tariff arcs

SOLUTION: – an assignment d : T → R+ of tariffs to the arcs in T

– an st-path P of D minimizing its total cost
∑

a∈P c(a) +
∑

a∈P∩T d(a)

OBJECTIVE: – maximize the revenue
∑

a∈P∩T d(a)

Before going further, let us make two remarks on the above formulation: First, it is usually
assumed that there exists an st-path in D that uses only arcs of A−T , since otherwise the optimum
is unbounded. Second, once the tariffs are fixed, we can easily choose among all st-paths of minimum
(total) cost one path P that maximizes the revenue. In other words, we assume that the follower
always makes the best choice for the leader. This is a standard assumption, justified by the fact
that decreasing the prices of every arc in P ∩ T by an arbitrarily small amount ensures that P is
the unique st-path of minimum cost.
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The Stackelberg network pricing problem has recently been studied by Roch, Savard, and Mar-
cotte [11], motivated by applications in transportation and telecommunications. They proved that
the problem is NP-hard and described a polynomial-time algorithm approximating the optimum
within a ratio of 1

2 log2 |T |+ 1.
The purpose of this note is to show that the Stackelberg network pricing problem is also APX-

hard:

Theorem 1. For some ε > 0, it is NP-hard to approximate Stackelberg network pricing within a
ratio of 1− ε.

We conclude this introduction by mentioning other related works. A generalization of Stack-
elberg network pricing, the toll setting problem, has been considered by Labbé, Marcotte, and
Savard [10]. It involves multiple, weighted followers: the ith follower computes a shortest siti-
path in the network once the tariffs are fixed, and has a demand of di. The objective is then to
maximize the sum of the revenues obtained from each individual follower, weighted by their respec-
tive demands. As observed by Roch et al. [11], the approximation algorithm mentioned above for
Stackelberg network pricing directly gives a O(k logm)-approximation algorithm in the case of unit
demands, where k denotes the number of followers.

A special case of the toll setting problem occurs when every siti-path in D uses at most one
arc in T , and is known under the name river tariff pricing. It has been considered by Bouhtou,
Grigoriev, van Hoesel, van der Kraaij, Spieksma, and Uetz [1], and is closely related to the profit-
maximizing envy-free pricing problem studied by Guruswami, Hartline, Karlin, Kempe, Kenyon,
and McSherry [7]. Among others, both sets of authors proved (independently) that the river tariff
pricing problem is APX-hard, even in the case of unit demands. Briest, Hoefer, and Krysta [2] later
derived stronger inapproximability results, relying on a recent inapproximability result of Demaine,
Feige, Hajiaghayi, and Salavatipour [5] for profit-maximizing envy-free pricing. We note that each
of these inapproximability results uses in a crucial way the fact that there are multiple followers.

Finally, we mention that some other combinatorial optimization problems similar to Stackel-
berg network pricing have been considered recently. This includes pricing edges of an undirected
graph knowing that the follower will compute a minimum spanning tree [3], and pricing vertices
of a bipartite undirected graph when the follower buys a minimum cost vertex cover [2]. Other
kinds of Stackelberg games in networks have been studied by Cole, Dodis, and Roughgarden [4],
Roughgarden [12], and Swamy [13].

2 The Proof

In order to prove Theorem 1, we need the following lemma on bounded-degree graphs. Here and
throughout the text, a linear ordering of the vertices of a graph G = (V,E) is a bijective mapping
` : V → {1, . . . , |V |}.

Lemma 1. Let G = (V,E) be an undirected graph with maximum degree ∆ ≥ 1 and n ≥ c∆ vertices,
where c∆ := 4∆(∆ + 1). Then a linear ordering ` of V with

|`(u)− `(v)| ≥ n

c∆

for every edge uv ∈ E can be found in polynomial time.

A (proper, vertex) coloring of a graph G is equitable if every two color classes differ in size by
at most 1. The proof of Lemma 1 relies on the following result on equitable colorings.
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Theorem 2 (Hajnal and Szemerédi [8]). Every graph G with maximum degree ∆ can be equitably
colored with ∆ + 1 colors.

Kierstead and Kostochka [9] recently obtained a short proof of Theorem 2. Their proof yields
also a polynomial-time algorithm finding such a coloring.

Proof of Lemma 1. The lemma is easily seen to hold if ∆ = 1, hence we assume ∆ ≥ 2. Using the
algorithmic version of Theorem 2 given by Kierstead and Kostochka [9], we first find in polynomial
time an equitable coloring S1, . . . , S∆+1 of the vertices of G. Let

s :=
⌊

n

2∆(∆ + 1)

⌋
.

We have
s ≥ n

2∆(∆ + 1)
− 1 ≥ n

2∆(∆ + 1)
− n

4∆(∆ + 1)
=

n

c∆
.

We show that a linear ordering ` of the vertices of G with |`(u) − `(v)| ≥ s for every edge uv ∈ E
can be found in polynomial time, which implies the claim.

Observe that
|Si| > s(∆ + 1) for every i ∈ {1, . . . ,∆ + 1}. (1)

Indeed, using ∆ ≥ 2 and n ≥ 4∆(∆ + 1), Inequality (1) can be derived as follows:

|Si| >
n

∆ + 1
−∆ =

4n− 4∆(∆ + 1)
4(∆ + 1)

≥ 3
4
· n

(∆ + 1)
≥ ∆ + 1

2∆
· n

(∆ + 1)
≥ s(∆ + 1).

We partition each set Si into three subsets S1
i , S

2
i , S

3
i as follows: First, the partition of S1 is

chosen arbitrarily, ensuring only |S1
1 | = |S3

1 | = s. Then, for i = 2, 3, . . . ,∆ + 1, define S1
i as a subset

of s vertices of Si having no neighbor in S3
i−1. Such a subset always exists because, by (1), there are

most |S3
i−1| ·∆ = s∆ < |Si| − s vertices in Si with a neighbor in S3

i−1. Let then S3
i be any subset

of Si − S1
i with cardinality s, and set finally S2

i := Si − (S1
i ∪ S3

i ).
Consider the partial order ≺ on V where, for u, v ∈ V , we have u ≺ v if u ∈ Sp

i , v ∈ Sq
j with

i < j, or with i = j and p < q. Define then ` as any linear ordering of V compatible with ≺.
By construction, the set S3

i−1 ∪ S1
i is a stable set for every i ∈ {2, . . . ,∆ + 1}. It follows

|`(u) − `(v)| ≥ s for every edge uv ∈ E. Since the linear ordering ` can clearly be computed in
polynomial time, this completes the proof of the lemma.

We turn now to the proof of Theorem 1. We note that the gadgets used in the reduction are
essentially the same as the one used by Roch et al. [11] in their NP-hardness proof.

Proof of Theorem 1. A 3SAT-5 formula is a CNF formula in which every clause contains exactly
three literals, every variable appears in exactly five clauses, and a variable does not appear in a
clause more than once. Such a formula is said to be δ-satisfiable if at most a δ-fraction of its
clauses are satisfiable simultaneously. Our reduction is from the problem of distinguishing between
satisfiable 3SAT-5 formulae and those which are δ-satisfiable. It is known that this problem is
NP-hard for some constant δ with 0 < δ < 1; see Feige [6].

Suppose thus that we are given a 3SAT-5 formula ϕ with n clauses which is either satisfiable
or δ-satisfiable. Two literals of ϕ are opposite if one is positive, the other negative, and they both
correspond to the same variable. Let Gϕ be the (simple, undirected) graph having one vertex per
clause of ϕ, and where two distinct vertices are adjacent if there exists two opposite literals in the
union of the corresponding two clauses. Notice that Gϕ has maximum degree ∆ ≤ 12.
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Figure 1: Gadget for clause Ci. Tariff arcs are represented with dashed lines and only non-zero
fixed costs are indicated.

Using Lemma 1, we obtain in polynomial time a linear ordering ` of the vertices of Gϕ such that

|`(u)− `(v)| ≥ n

4∆(∆ + 1)
≥ n

624

for every edge uv ∈ E. Denote by C1, . . . , Cn the clauses of ϕ, in the order given by `. Denote also
by C1

i , C
2
i , C

3
i the three literals of Ci, for every i ∈ {1, . . . , n}.

We define an instance of the Stackelberg network pricing problem as follows. Each clause Ci has
a corresponding clause-gadget, described in Figure 1. Take first the union of all these clause-gadgets
(notice that node si appears in the gadgets of both Ci and Ci+1, for i ∈ {1, . . . , n − 1}). Then,
for every i, j ∈ {2, . . . , n} with i < j and every p, q ∈ {1, 2, 3}, add the arc (wi,p, vj,q) with cost
j − i− 1 if literals Cp

i and Cq
j are opposite. The latter arcs are said to be jump arcs. This defines

the directed graph D = (V,A) and the cost function c(·). The set of tariff arcs is

T := {(vi,j , wi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3},

and the origin-destination pair of the follower is (s, t), with s := s0 and t := sn.
If n < 1248, we simply use brute force to decide whether ϕ is satisfiable or only δ-satisfiable.

Hence, we may assume n ≥ 1248, and thus

j − i ≥ n

624
≥ 1 +

n

1248
(2)

for every jump arc (wi,p, vj,q). Let

λ := max
{
δ, 1− 1

2496

}
,

and denote by OPT the maximum revenue achievable on this instance of Stackelberg network
pricing.

Claim 1. The following holds:

(a) if ϕ is satisfiable then OPT = 2n;

(b) if ϕ is δ-satisfiable then OPT ≤ λ · 2n.
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Proof. Suppose first that ϕ is satisfiable and consider a truth assignment of the variables satisfying
all clauses of ϕ. For every i ∈ {1, . . . , n} and p ∈ {1, 2, 3}, set the tariff of arc (vi,p, wi,p) to 2 if the
literal Cp

i is true in the truth assignment, to 2n+ 1 otherwise. Observe that, with these tariffs, any
st-path that includes a jump arc has (total) cost at least 2n + 1. Also, the cost of every st-path
is at least 2n, and there exists one such path with cost exactly 2n that uses one tariff arc per
clause-gadget. Hence, OPT ≥ 2n in this case. On the other hand, OPT ≤ 2n always holds since
there exists an st-path with cost 2n in (V,A− T ), that is, which avoids all tariff arcs. This proves
part (a) of the claim.

Assume now that ϕ is δ-satisfiable and let d(·) be an optimal assignment of tariffs to arcs in T .
Let P be any st-path of minimum (total) cost giving a revenue of OPT, and denote by z its cost.
(Thus z =

∑
a∈P c(a) +

∑
a∈P∩T d(a) ≤ 2n.) If the path P includes a jump arc (wi,p, vj,q), then

using (2) we obtain

OPT ≤ z − (j − i− 1) ≤ 2n− (j − i− 1) ≤ 2n− n

1248
≤ λ · 2n.

Hence, without loss of generality P includes no jump arc. It follows d(a) ≤ 2 for every tariff arc
a ∈ P ∩ T , because of the arcs (si−1, si) with fixed cost 2.

Suppose P includes two tariff arcs corresponding to opposite literals, say arcs (vi,p, wi,p) and
(vj,q, wj,q) with i < j. Then the revenue ∑

a∈P ′∩T

d(a)

given by the subpath P ′ of P going from wi,p to vj,q is at most j− i−1. This is because there exists
a jump arc (wi,p, vj,q) in D, with fixed cost j − i− 1. Hence, we deduce

OPT =
∑

a∈(P−P ′)∩T

d(a) +
∑

a∈P ′∩T

d(a) ≤ 2
(
n− (j − i− 1)

)
+ (j − i− 1) ≤ λ · 2n,

using again (2). We may thus assume that P does not contain two tariff arcs corresponding to
opposite literals.

Now, the set P ∩ T of tariff arcs included in P directly defines a truth assignment that satisfies
at least |P ∩ T | clauses of ϕ (variables not appearing in P ∩ T are set arbitrarily). Since ϕ is only
δ-satisfiable, we have |P ∩ T | ≤ δ, and thus

OPT ≤ 2|P ∩ T | ≤ δ · 2n ≤ λ · 2n.

Part (b) of the claim follows.

By Claim 1, any polynomial-time algorithm approximating Stackelberg network pricing within
a ratio strictly better than λ could be used to decide, in polynomial time, whether ϕ is satisfiable
or δ-satisfiable. This completes the proof of Theorem 1.
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