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Abstract. For n ∈ N and D ⊆ N, the distance graph PD
n has vertex set {0, 1, . . . , n− 1}

and edge set {ij | 0 ≤ i, j ≤ n − 1, |j − i| ∈ D}. The class of distance graphs generalizes

the important and very well-studied class of circulant graphs which have been proposed

for numerous network applications. In view of fault tolerance and delay issues in these

applications, the connectivity and diameter of circulant graphs have been studied in great

detail.

Our main contributions are hardness results concerning computational problems related

to the connectivity and diameter of distance graphs and a number-theoretic characteriza-

tion of the connected distance graphs PD
n for |D| = 2.

Keywords. Circulant graph; distance graph; multiple loop networks; connectivity; diam-

eter

1



1 Introduction

Circulant graphs form an important and very well-studied class of graph [1, 9, 11, 12, 16,

18, 19]. They are Cayley graphs of cyclic groups and have been proposed for numerous

network applications such as local area computer networks, large area communication

networks, parallel processing architectures, distributed computing, and VLSI design. In

view of fault tolerance and delay issues in these applications, the connectivity and diameter

of circulant graphs have been studied in great detail [1, 2, 11,12,20,24].

For n ∈ N and D ⊆ N, the circulant graph CD
n has vertex set [0, n−1] = {0, 1, . . . , n−1}

and the neighbourhood NCD
n

(i) of a vertex i ∈ [0, n− 1] in CD
n is given by

NCD
n

(i) = {(i+ d) mod n | d ∈ D} ∪ {(i− d) mod n | d ∈ D}.

Clearly, we may assume max(D) ≤ n
2

for every circulant graph CD
n .

Our goal is to investigate how some of the fundamental results concerning circulant

graphs generalize to the similarly defined yet more general class of distance graphs: For

n ∈ N and D ⊆ N, the distance graph PD
n has vertex set [0, n− 1] and

NPD
n

(i) = {i+ d | d ∈ D and (i+ d) ∈ [0, n− 1]}

∪{i− d | d ∈ D and (i− d) ∈ [0, n− 1]}

for all i ∈ [0, n−1]. Clearly, we may assume max(D) ≤ n−1 for every distance graph PD
n .

Every distance graph PD
n is an induced subgraph of the circulant graph CD

n+max(D).

More specifically, distance graphs are the subgraphs of sufficiently large circulant graphs

induced by sets of consecutive vertices, i.e. they represent the structure of small segments of

circulant networks. Conversely, the following simple observation shows that every circulant

graph is in fact a distance graph.
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Proposition 1 A graph is a circulant graph if and only if it is a regular distance graph.

Proof: Clearly, every circulant graph CD
n is regular and isomorphic to the distance graph

PD′
n for D′ = D ∪ {n− d | d ∈ D}.

Now let PD
n be a regular distance graph. Let D = {d1, d2, . . . , dk} with d1 < d2 < . . . <

dk ≤ n− 1. Since the vertex 0 has exactly k neighbours D, PD
n is k-regular.

Let i ∈ [1, k]. The vertex di − 1 has exactly i− 1 neighbours j with j < di − 1. Hence

di−1 has exactly k+1−i neighbours j with j > di−1 which implies (di−1)+dk+1−i ≤ n−1.

The vertex di has exactly i neighbours j with j < di. Hence di has exactly k− i neighbours

j with j > di which implies di + dk+1−i > n− 1.

We obtain di + dk+1−i = n for every i ∈ [1, k] which immediately implies that PD
n is

isomorphic to the circulant graph CD′
n for D′ = {d ∈ D | d ≤ n

2
}. 2

Originally motivated by coloring problems for infinite distance graphs studied by Eggleton,

Erdős, and Skilton [6, 7], most research on distance graphs focused on colorings [3–5, 13,

14,22,23].

Our main contributions in the present paper are hardness results concerning com-

putational problems related to the connectivity and diameter of distance graphs and a

number-theoretic characterization of the connected distance graphs PD
n for |D| = 2.

2 Results

Boesch and Tindell [2] observed that a circulant graph CD
n is connected if and only if the

greatest common divisor gcd({n} ∪D) of the integers in {n} ∪D equals 1. In fact, since

CD
n is vertex-transitive, it is connected if and only if it contains a path from the vertex 0

to the vertex 1 which is equivalent to the existence of integers l and ld for d ∈ D such that

1 = ln +
∑

d∈D ldd. It is a well-known consequence of the Euclidean algorithm that the
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existence of such integers is equivalent to the above gcd-condition. Therefore, deciding the

connectivity of a circulant graph requires a simple polynomial time gcd-computation.

The most fundamental connectivity problem for distance graphs is the following.

Connectivity of PD
n

Instance: n ∈ N and D ⊆ N.

Question: Is PD
n connected?

We have not been able to determine the complexity of Connectivity of PD
n and pose

the following conjecture.

Conjecture 2 Connectivity of PD
n is NP-hard.

Clearly, PD
n is connected if and only if for every i ∈ [0, n− 2], there is a path in PD

n from

i to i+ 1. Equivalently, for every i ∈ [0, n− 2], there are integers x1, x2, . . . , xl such that

|xi| ∈ D for all i ∈ [1, l], (1)

1 =
l∑

j=1

xj, and (2)

i+
k∑
j=1

xj ∈ [0, n− 1] for all k ∈ [0, l]. (3)

As noted before, 1 is an integral linear combination of the elements of D if and only if

gcd(D) = 1. Hence the existence of integers xi which satisfy (1) and (2) can be decided in

polynomial time. Unfortunately, these integers are by far not unique. Furthermore, given

integers xi which satisfy (1) and (2), deciding the existence of an ordering of them which

satisfies (3) is in general a hard problem as we show next.

Bounded Partial Sums
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Instance: x0, x1, x2, . . . , xl ∈ Z and n ∈ N.

Question: Is there a permutation π ∈ Sl such that

x0 +
k∑
j=1

xπ(j) ∈ [0, n− 1]

for all k ∈ [0, l]?

Proposition 3 Bounded Partial Sums is NP-complete.

Proof: Clearly, Bounded Partial Sums is in NP. We will reduce the classical NP-

complete problem Partition [10] to Bounded Partial Sums:

Partition

Instance: x1, x2, . . . , xk ∈ N.

Question: Is there a set I ⊆ [1, k] such that
∑

i∈I xi =
∑

i∈[1,k]\I xi?

In order to relate to the preceding discussion we will reduce to instances of Bounded

Partial Sums which satisfy (2).

Let x1, x2, . . . , xl−2 ∈ N be an instance of Partition. Let X =
l−2∑
i=1

xi.

Let x0 = 0, xl−1 = −X, xl = −X+1, and n = X+1. It is easy to see that the instance

x1, x2, . . . , xl−1 of Partition is “yes”-instance if and only if the instance of Bounded

Partial Sums defined by

x0, 2x1, 2x2, . . . , 2xl−2, xl−1, xl

and n is a “yes”-instance. This completes the proof. 2

Clearly, if |D| = 1, then PD
n is connected if and only if D = {1}. Already for |D| = 2, the

following number-theoretic characterization of the pairs (n,D) for which PD
n is connected

is not simple.
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Theorem 4 Let n, d1, d2 ∈ N be such that d1 < d2. For i ∈ [0, d1−1], let ri = (id2) mod d1

and si = (n− 1− ri) mod d1. Furthermore, for i ∈ [1, d1 − 1], let

d+
i = max {ri | i ∈ [0, i∗ − 1]} and

d−i = max
{
s−i mod d1

| i ∈ [0, d1 − i∗ − 1]
}
.

Finally, let

d∗ = max
i∗∈[1,d1−1]

min{d+
i , d

−
i }.

(See Figure 1 for an example.)

P
{d1,d2}
n is connected if and only if gcd({d1, d2}) = 1 and d∗ + d2 ≤ n− 1.

u
u

u
u

uu

u u

(r0, s0) = (0, 3)

(r2, s2) = (6, 5)

(r1, s1) = (3, 0)

(r3, s3) = (1, 2)

(r4, s4) = (4, 7)

(r5, s5) = (7, 4)

(r6, s6) = (2, 1)

(r7, s7) = (5, 6)

Figure 1. (d1, d2, n) = (8, 11, 20), (d+
1 , . . . , d

+
7 ) = (0, 3, 6, 6, 6, 7, 7),

(d−1 , . . . , d
−
7 ) = (7, 7, 7, 6, 6, 6, 0), and d∗ = 6.

Proof: “⇒”: Let D = {d1, d2} and let PD
n be connected. As we have already noted before,

this implies that gcd(D) = 1.

Claim A For every v ∈ [1, n − 1], there is a path P : u0u1 . . . ul in PD
n such that u0 = 0,

ul = v, and either

{ui − ui−1 | i ∈ [1, l]} ⊆ {d1,−d1, d2}
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or

{ui − ui−1 | i ∈ [1, l]} ⊆ {d1,−d1,−d2}.

Proof of Claim A: Let P : u0u1 . . . ul be a path in PD
n such that u0 = 0 and ul = v. If

Q : uxux+1 . . . ux+y is a subpath of P with {ux+1 − ux, ux+y − ux+y−1} = {−d2, d2} and

ux+i − ux+i−1 ∈ {d1,−d1} for i ∈ [2, y − 1], then (ux+y − ux) mod d1 = 0, i.e. ux and ux+y

differ by a multiple of d1.

Therefore, Q can be replaced within P by a path Q′ : v0v1 . . . vz in PD
n with v0 = ux,

vz = ux+y, and either vi − vi−1 = d1 for i ∈ [1, z] or vi − vi−1 = −d1 for i ∈ [1, z].

Note that replacing Q with Q′ within P results in a walk P ′ which might not be a path.

Since there is a path from u0 to ul whose edge set is a subset of the edge set of P ′, this

easily implies the claim. 2

Note that, by the definition of ri and si, ri is the smallest integer at least 0 which has the

same residue modulo d1 as id2 and (n− 1− si) is the largest integer at most n− 1 which

has the same residue modulo d1 as id2.

Let i∗ ∈ [1, d− 1].

First, let P : u0u1 . . . ul be a path in PD
n such that u0 = 0, ul mod d1 = ri∗ , and

{ui − ui−1 | i ∈ [1, l]} ⊆ {d1,−d1, d2}. By the definition of the ri and the choice of the

path P , we obtain that for every i ∈ [1, i∗], the path P contains an edge uji−1uji with

uji−1 mod d1 = ri−1, uji mod d1 = ri, and uji − uji−1 = d2. This implies

n− 1 ≥ uji−1 + d2 ≥ ri−1 + d2

for all i ∈ [1, i∗] and hence n− 1 ≥ d+
i∗ + d2.

Now, let P : u0u1 . . . ul be a path in PD
n such that u0 = 0, ul mod d1 = ri∗ , and

{ui − ui−1 | i ∈ [1, l]} ⊆ {d1,−d1,−d2}. By the definition of the ri and the choice of the
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path P , we obtain that for every i ∈ [1, d1− i∗], the path P contains an edge uji−1uji with

uji−1 mod d1 = r
(d1−i+1) mod d1

, uji mod d1 = r
(d1−i) mod d1

, and uji − uji−1 = −d2. This

implies

d2 ≤ uji−1 ≤ n− 1− s
(d1−i+1) mod d1

for all i ∈ [1, d1 − i∗] and hence n− 1 ≥ d−i∗ + d2.

Altogether, this easily implies that d∗ + d2 ≤ n − 1 which completes the proof of this

implication.

“⇐”: Let gcd(D) = 1 and d∗ + d2 ≤ n− 1.

Since gcd(D) = 1, we obtain that

{ri | i ∈ [0, d1 − 1]} = {si | i ∈ [0, d1 − 1]} = [0, d1 − 1],

i.e. the ri and si represent all residues modulo d1.

Therefore, it suffices to prove that for every i ∈ [0, d1 − 1], the graph PD
n contains a

path from 0 to some vertex v with v mod d1 = ri.

Let i∗ ∈ [0, d1 − 1].

By the definition of d∗ and by symmetry, we may assume that max{ri | i ∈ [0, i∗−1]} ≤

d∗. This implies that

0d2(d2 − d1)(d2 − 2d1) . . .

r1(r1 + d2)(r1 + d2 − d1)(r1 + d2 − 2d1) . . .

. . .

ri∗−1(ri∗−1 + d2)

is a path in PD
n from 0 to some vertex v with v mod d1 = ri∗ . This completes the proof. 2
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It is unclear whether Theorem 4 yields a polynomial time algorithm to check connectivity

for PD
n with |D| = 2. Furthermore, it would be interesting how the number-theoretic

characterizations of the connectivity of circulant graphs given by Boesch and Tindell [2]

and van Dorne [20] could be generalized to distance graphs.

While deciding connectivity is easy for circulant graphs, the exact calculation and

minimization of the diameter of CD
n are very difficult and well-studied problems even for

the case |D| = 2 [1,11,12,25]. Many of the general upper and lower bounds on the diameter

of circulant graphs easily generalize to distance graphs. The arguments used by Wong and

Coppersmith [24] to obtain their classical estimates (cf. Theorems 4.6 and 4.7 in [11])

imply

diam
(
PD
n

)
≥ 1

2
(|D|!n)

1
|D| − |D| and

diam
(
P
{1,d,...,dk−1}
dk

)
≤ k(d− 1).

For our final hardness result, we consider the following decision problem which closely

relates to the diameter of distance graphs.

Short Path in PD
n

Instance: n ∈ N, D ⊆ N and l ∈ N.

Question: Is there some u ∈ [0, n−2] such that PD
n contains a path

of length at most l between u and u+ 1?

A natural certificate for a “yes”-instance of Short Path in PD
n would be a path P of

length at most l between two vertices u and u + 1 of PD
n . The hardness of Bounded

Partial Sums implies that an encoding of P which can be checked in polynomial time

would most likely have to use at least Ω (l) bits which would not be polynomially bounded

in the encoding length of the triple (n,D, l).

The construction in the following proof is inspired by van Emde Boas’s proof [21] that
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Weak Partition is NP-complete.

Theorem 5 Short Path in PD
n is NP-hard.

Proof: For an instance I of Partition, we will construct an instance I ′ of Short Path

in PD
n such that the encoding length of I ′ is polynomially bounded in the encoding length

of I, and I is a “yes”-instance if and only if I ′ is a “yes”-instance.

Let x1, x2, . . . , xk ∈ Z be an instance of Partition.

Let

l := 2(k + 1),

d := 2(k + 1) max ({|x1|, |x2|, . . . , |xk|}) + 1, and

n := 2d3k+4 + 1.

For i ∈ [1, k] let

xi,1 := xid + d3i−1 + d3i + 0 + 0,

xi,2 := 0 + 0 + d3i + 0 + d3i+2,

xi,3 := 0 + d3i−1 + 0 + d3i+1 + 0,

xi,4 := xid + 0 + 0 + d3i+1 + d3i+2,

and let

xk+1,1 := 1 + d3(k+1)−1 + d3(k+1) ,

xk+1,2 := 0 + 0 + d3(k+1) + d2,
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Writing the xi,j as d-ary numbers, we obtain the following pattern.

d0 d1 d2 d3 d4 d5 d6 d7 d8 . . . d3k+2 d3k+3

x1,1 x1 1 1

x1,2 1 1

x1,3 1 1

x1,4 x1 1 1

x2,1 x2 1 1

x2,2 1 1

x2,3 1 1

x2,4 x2 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk+1,1 1 1 1

xk+1,2 1 1

Let

D := {xi,j | i ∈ [1, k], j ∈ [1, 4]} ∪ {xk+1,1, xk+1,2}.

The encoding length of the Partition instance is

Ω

(
k +

k∑
i=1

log(xi)

)

and the encoding length of (D,n, l) is

O
(
k2 log(k) log (max ({|x1|, |x2|, . . . , |xk|}))

)
,

i.e. the latter is polynomially bounded in terms of the former.
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Claim A (n,D, l) is a“yes”-instance of Short Path in PD
n if and only if there are

integers li,j such that

1 = lk+1,1xk+1,1 + lk+1,2xk+1,2 +
k∑
i=1

4∑
j=1

li,jxi,j and (4)

l ≥ |lk+1,1|+ |lk+1,2|+
k∑
i=1

4∑
j=1

|li,j|. (5)

Proof of Claim A: “⇒” Let P be a path in PD
n of length at most l between vertices u and

u+ 1. If, for xi,j ∈ D, going from u to u+ 1 the path P uses l+i,j edges vw with w− v = xi,j

and l−i,j edges vw with v − w = xi,j, then the integers li,j := l+i,j − l−i,j satisfy (4) and (5).

“⇐” Let the integers li,j be such that (4) and (5) hold. Consider the Algorithm 1 below.

r = 0;
ur := 0;
while ur 6= 1 do

if ur ≤ n−1
2

and li,j > 0 for some pair (i, j) then
Choose a pair (i, j) such that li,j > 0;
ur+1 := ur + xi,j;
li,j := li,j − 1;

else
Choose a pair (i, j) such that li,j < 0;
ur+1 := ur − xi,j;
li,j := li,j + 1;

end

end
Algorithm 1

By the definition of n and D, we have max(D) < n−1
2

. Using this fact, it is straightforward

to check that the sequence u0, u1, u2, . . . produced by Algorithm 1 is a path of length at

most l between the vertices 0 and 1, i.e. (n,D, l) is a“yes”-instance of Short Path in

PD
n . 2

Claim B (n,D, l) is a“yes”-instance of Short Path in PD
n if and only if x1, x2, . . . , xk
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is a “yes”-instance of Partition.

Proof: “⇒” If (n,D, l) is a“yes”-instance of Short Path in PD
n , then Claim A implies

the existence of integers li,j satisfying (4) and (5). For i ∈ [1, k], let

li = |li,1|+ |li,2|+ |li,3|+ |li,4| and

lk+1 = |lk+1,1|+ |lk+1,2|.

By the definition of d, forming the sum in (4) and representing the involved numbers as

d-ary numbers, there is never any carry contribution from one digit to the next. (In view

of [21] we could say that there are no inheritance problems in this case.)

Considering the different digits of the sum in (4), this implies that

lk+1,1 = 1,

lk+1,2 = −1, and

l1,1 + l1,3 = 1.

Furthermore, for i ∈ [1, k],

li,2 = −li,1,

li,4 = −li,3, and

li+1,1 + li+1,3 = −(li,2 + li,4)

= li,1 + li,3.

Therefore, for i ∈ [1, k], if li > 0, then li ≥ 2, and, if li = 2, then (li,1, li,2, li,3, li,4) belongs

13



to

{(1,−1, 0, 0), (−1, 1, 0, 0), (0, 0, 1,−1), (0, 0,−1, 1)}. (6)

Note that for each of these four possibilities, the contribution of
4∑
j=1

li,jxi,j to the second

digit of (4) written as a d-ary number is either xi or −xi.

By a simple inductive argument, we obtain li,1 + li,3 = 1 and li > 0 for all i ∈ [1, k].

Since l1 + l2 + . . .+ lk+1 ≤ l = 2(k+ 1), this implies li = 2 for all i ∈ [1, k]. Therefore, since

the second digit of the sum in (4) written as a d-ary number is 0, the li,j yield a solution

for the Partition instance.

“⇐” If the Partition instance is a “yes”-instance, then setting

(lk+1,1, lk+1,2) = (1,−1)

and suitably selecting (li,1, li,2, li,3, li,4) from the four possibilites given in (6) according to

some solution of the Partition instance, yields integers li,j which satisfy (4) and (5). In

view of Claim A, this completes the proof of the claim. 2

This completes the proof. 2

Note that for the instances of Short Path in PD
n constructed in the proof of Theorem 5,

the length bound l is polynomially bounded in terms of the encoding length of D. Since a

path in PD
n of length at most l can be encoded using O (l log(|D|)) many bits, the restriction

of Short Path in PD
n to such instances actually yields an NP-complete problem.

As a final remark, we note that the existence of a monotonic path between two vertices

of PD
n is equivalent to the feasibility of an integer linear program in |D| dimensions which

can be decided in polynomial time for bounded |D| [15].
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[9] J. Fàbrega and M. Zaragozà, Fault tolerant routings in double fixed-step networks,

Discrete Appl. Math. 78 (1997), 61-74.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness W.H. Freeman & Co. New York, NY, USA, 1990, pp. 338.

15



[11] F.K. Hwang, A complementary survey on double-loop networks, Theoret. Comput.

Sci. 263 (2001), 211-229.

[12] F.K. Hwang, A survey on multi-loop networks, Theoret. Comput. Sci. 299 (2003),

107-121.

[13] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191

(1998), 113-123.

[14] A. Kemnitz and M. Marangio, Colorings and list colorings of integer distance graphs,

Congr. Numerantium 151 (2001), 75-84.

[15] H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of

Operations Research 8 (1983), 538-548.

[16] M.T. Liu, Distributed Loop Computer Networks, Advances in Computers, Vol. 17,

Academic Press, New York, 1981, pp. 163-221.

[17] M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proc.

Lond. Math. Soc., III. Ser. 88 (2004), 1-41.

[18] C.S. Raghavendra and J.A. Sylvester, A survey of multi-connected loop topologies for

local computer networks, Comput. Network ISDN Syst. 11 (1986), 29-42.

[19] A. Schrijver, P.D. Seymour, and P. Winkler, The ring loading problem, SIAM J.

Discrete Math. 11 (1998), 1-14.

[20] E.A. van Dorne, Connectivity of circulant graphs, J. Graph Theory 10 (1986), 9-14.

[21] P. van Emde Boas, Another NP-complete partition problem and the complexity of

computing short vectors in a lattice, Technical Report 81-04, Mathematisch Instituut,

Amsterdam, Netherlands, 1981.

16



[22] M. Voigt, Colouring of distance graphs, Ars Combin. 52 (1999), 3-12.

[23] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl.

Math. 51 (1994), 197-209.

[24] C.K. Wong and D. Coppersmith, A combinatorial problem related to multimode mem-

ory organizations, J. ACM 21 (1974), 392-402.

[25] J. Zerovink and T. Pisanski, Computing the diameter in multiple-loop networks, J.

Algebra 14 (1993), 226-243.

17


