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The matching preclusion number of a graph is the mini-
mum number of edges whose deletion results in a graph
that has neither perfect matchings nor almost-perfect
matchings. For many interconnection networks, the opti-
mal sets are precisely those induced by a single vertex.
Recently, the conditional matching preclusion number
of a graph was introduced to look for obstruction sets
beyond those induced by a single vertex. This number is
defined to be the minimum number of edges whose dele-
tion results in a graph with no isolated vertices that has
neither perfect matchings nor almost-perfect matchings.
In this article, we prove general results regarding the
matching preclusion number and the conditional match-
ing preclusion number as well as the classification of
their respective optimal sets for bipartite graphs. © 2011
Wiley Periodicals, Inc. NETWORKS, Vol. 59(4), 349-356 2012
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1. INTRODUCTION

A perfect matching in a graph is a set of edges such that
every vertex is incident with exactly one edge in this set. An
almost-perfect matching in a graph is a set of edges such that
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every vertex except one is incident with exactly one edge in
this set, and the exceptional vertex is incident to none. So if
a graph has a perfect matching, then it has an even number
of vertices; if a graph has an almost-perfect matching, then
it has an odd number of vertices. The matching preclusion
number of a graph G, denoted by mp(G), is the minimum
number of edges whose deletion leaves the resulting graph
without a perfect matching or almost-perfect matching. Any
such optimal set is called an optimal matching preclusion set.
We define mp(G) = 0 if G has neither a perfect matching
nor an almost-perfect matching. This concept of matching
preclusion was introduced by [5] and further studied by [6,
8]. They introduced this concept as a measure of robustness
in the event of edge failure in interconnection networks, as
well as a theoretical connection to conditional connectivity,
“changing and unchanging of invariants” and extremal graph
theory. We refer the readers to [5] for details and additional
references.

Distributed processor architectures offer the advantage of
improved connectivity and reliability. An important compo-
nent of such a distributed system is the system topology,
which defines the inter-processor communication architec-
ture. In certain applications, every vertex requires a special
partner at any given time, and the matching preclusion num-
ber measures the robustness of this requirement in the event
of link failures as indicated in [5]. Hence in these interconnec-
tion networks, it is desirable to have the property that the only
optimal matching preclusion sets are those whose elements
are incident to a single vertex.



Proposition 1.1. Let G be a graph with an even number of
vertices. Then mp(G) < 8(G), where §(G) is the minimum
degree of G.

Proof. Deleting all edges incident to a single vertex will
give a graph with no perfect matchings and the result follows.

If mp(G) = 4§(G), then G is maximally matched. We
call an optimal solution of the form given in the proof of
Proposition 1.1 a trivial optimal matching preclusion set. As
mentioned earlier, it is desirable for an interconnection net-
work to have only trivial optimal matching preclusion sets.
A graph G is super matched if mp(G) = §(G) and every
optimal matching preclusion set is trivial. In a distributed
system it is unlikely that, in the event of random link failures,
all edges at some vertex fail. Hence it is natural to ask what
the obstruction sets are for a graph with link failures to have
a perfect matching subject to the condition that the faulty
graph has no isolated vertices. This motivates the following
definition [7]: The conditional matching preclusion number
of a graph G, denoted by mp, (G), is the minimum number
of edges whose deletion leaves the resulting graph with no
isolated vertices and without a perfect matching or almost-
perfect matching. Any such optimal set is called an optimal
conditional matching preclusion set. We define mp;(G) = 0
if G has neither a perfect matching nor an almost-perfect
matching. In this paper we will leave mp, (G) undefined if
a conditional matching preclusion set does not exist, that
is, we cannot delete edges to satisfy both conditions in the
definition.

If we delete edges so that the resulting graph has no iso-
lated vertices, then a basic obstruction to a perfect matching
will be the existence of a path u—v—w in the resulting graph
where the degree of u and the degree of w are 1. So to produce
such an obstruction set, one can pick any path u—v—w in the
original graph and delete all the edges incident to either u or
w but not v. We define

Ve(G) = min{dg(u) + dg(v) —2 — y(u,v) :

u and v are ends of a 2-path},

where dg(u) is the degree of vertex u and yg(u,v) = 1 if
u and v are adjacent and O otherwise. (We will suppress G
and simply write d and y if it is clear from the context.) So
mirroring Proposition 1.1, we have the following result. (We
note that the condition §(G) > 3 ensures that the resulting
graph has no isolated vertices after these edges have been
deleted.)

Proposition 1.2. Let G be a graph with an even number
of vertices. Suppose every vertex in G has degree at least 3.
Then

mp1(G) < v.(G).

If mp,(G) = v.(G), then G is conditionally maximally
matched. We call an optimal solution of the form induced by
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V. a trivial optimal conditional matching preclusion set. As
mentioned earlier, the matching preclusion number measures
the robustness of this requirement in the event of link failures,
so it is desirable for an interconnection network to be super
matched. Similarly, it is desirable to have the property that
all optimal conditional matching preclusion sets are trivial as
well. Such an interconnection network is conditionally super
matched. Ref. [7] introduced this concept and considered the
conditional matching preclusion problem for a number of
basic networks including hypercubes, and it was proved that
they have this desired property.

In addition to basic classes of graphs such as the complete
graphs [5] and complete bipartite graphs [5], the matching
preclusion problem was studied for many classes of pop-
ular interconnection networks, in particular, hypercubes [5],
Cayley graphs generated by transposition trees (including the
star graphs and bubble-sort graphs) [8], (n, k)-star graphs [8],
arrangement graphs (generalizing both the star graphs and
alternating group graphs) [6], (n, k)-bubble-sort graphs [9],
Cayley graphs generated by 2-trees (a super class of the alter-
nating group graphs) [6] and restricted HL-graphs [17]. These
interconnection networks are super matched apart from small
exceptional cases and boundary (though infinitely many) sub-
classes. Much less is known for the conditional matching
preclusion problem. Apart from the complete graphs [7] and
complete bipartite graphs [7], interesting classes including
hypercubes [7] were studied. They are conditionally super
matched apart from some exceptional cases. In addition,
the conditional matching preclusion number is known for
restricted HL-graphs [18] and bipartite HL-graphs [18].

The crux of most of the existing proofs involves Hamil-
tonicity results. This is a natural form of attack as a Hamil-
tonian cycle (on graphs with an even number of vertices)
induces two edge-disjoint perfect matchings. Of course, the
same can be said for the less stringent condition of a col-
lection of even cycles that spans the graph. Nevertheless,
Hamiltonicity results are used due to the fact that they are
well studied and most of these interconnection networks have
optimal Hamiltonian results. In particular, a typical result is
if “many” vertices and/or edges are deleted, then the result-
ing graph has the property that there is a Hamiltonian path
between every pair of vertices. (If the graph is bipartite, addi-
tional restrictions are needed.) These results are optimal in
the sense that “many” refers to a number that is the best
possible. See [12-15] for these types of Hamiltonian results
for popular interconnection networks. Since Hamiltonicity
results are stringent, it is more desirable to replace them with
a less stringent condition in the sense that the verification of
such a condition should not be NP-Complete. In this article,
we provide such sufficient conditions for bipartite graphs to
be super matched and conditionally super matched. These
general results will be used to establish previously known
super matched and conditionally super matched results for
hypercubes as well as new results for hyper-stars and Cay-
ley graphs generated by transposition trees (including the
star graphs) in a companion paper (E. Cheng, P. Hu, R. Jia,
and L. Liptak, Matching preclusion and conditional matching



preclusion for bipartite interconnection networks II: Cay-
ley graphs generated by transposition trees and hyperstars,
Networks, submitted). Indeed, for the hyper-stars it is infea-
sible to use any Hamiltonicity result as it is an open problem
whether they are Hamiltonian. (Regular hyper-stars are iso-
morphic to middle cubes, and it is a famous conjecture that
middle cubes are Hamiltonian. This is often referred to as the
revolving door conjecture.) This is one of our motivations to
find general sufficient conditions.

We use standard graph theory terminology which can be
found in West [20]. If the (vertex) connectivity of G is §(G),
then G is maximally connected; if the edge-connectivity of
G is 6(G), then G is maximally edge-connected. A graph
G is (weakly) super connected if it is maximally connected
and every disconnecting set of cardinality §(G) is a set of
neighbors of a vertex of minimum degree. Some authors
use the term superconnected for this concept; it was intro-
duced [1-4, 10] to understand more about the components
that remain after a graph is disconnected. This concept can
be strengthened. A graph G is tightly super connected if,
after the deletion of at most 6(G) vertices, the graph either
remains connected or has exactly two connected compo-
nents, one of which is a singleton. Some authors use the term
vosperian property [11] or hyper-connectivity [16] for this
concept. Note that a graph can be (weakly) super connected
but not tightly super connected; for example, K}, ,. Naturally,
these concepts can also apply to deletion of edges, but in
this case, there is no difference between being weakly super
edge-connected and being tightly super edge-connected.
Therefore, we define a maximally edge-connected graph G to
be super edge-connected if the deletion of at most § (G) edges
results in either a connected graph or exactly two connected
components, one of which is a singleton. (We note that unlike
the deletion of vertices, here we can replace “deletion of at
most §(G) edges” by “deletion of §(G) edges.”)

This article is organized as follows: In Section 2, we
give general results for the matching preclusion number and
the classification of optimal solutions for bipartite graphs.
In Section 3, we give general results for the conditional
matching preclusion number and the classification of optimal
solutions for bipartite graphs. Finally, we give some conclud-
ing remarks as well as an application of the general results
developed here.

2. MATCHING PRECLUSION FOR
BIPARTITE GRAPHS

In this section, we will establish a relationship between
being super edge-connected and being super matched. In
bipartite graphs, there is one obvious impediment to finding
perfect matchings. Given a bipartite graph G with biparti-
tion (V1, V), consider a subset of vertices W from one part.
Let Ng(W) be the set of vertices that are adjacent to a ver-
tex in W. (We suppress G if it is clear from the context.) If
INg(W)| < |W]|, then there is clearly no possibility of form-
ing a perfect matching. Indeed, every matching would have
to omit at least one vertex in W. Such a set W is called an

obstruction set. A well-known theorem regarding obstruction
sets is Hall’s Theorem:

Theorem 2.1 (Hall’s Theorem). A bipartite graph G has
a perfect matching if and only if there are no obstruction sets
in it.

An easy well-known corollary to Hall’s Theorem is that
the edges of a k-regular bipartite graph can be partitioned
into k perfect matchings. This fact immediately gives us the
following result:

Theorem 2.2. Let G be a k-regular bipartite graph. Then
G is maximally matched, that is, mp(G) = k.

We now give a sufficient condition to guarantee that
all optimal matching preclusion sets are trivial in regular
bipartite graphs.

Theorem 2.3. Let G be a k-regular bipartite graph that is
super edge-connected. Then G is super matched.

Proof. From Theorem 2.2, we know that mp(G) = k.
Now suppose that G is not super matched. Then, by Hall’s
Theorem, after deleting some set of k edges F such that G—F
does not contain a singleton, there must exist an obstruction
set WinG —F.

Clearly the number of edges incident to vertices in W
must be less than or equal to the number of edges incident
to vertices in Ng_r(W). Since G is k-regular, the number of
edges incident to vertices in W in the graph G — F is at least
|W|k — k. Similarly, the number of edges incident to vertices
in Ng_p(W) is at most |Ng_g(W)|k. Thus we have

ING-F(W)lk = |W|k — k,
SO
ING-r(W)| = [W] — 1.

In fact, since W is an obstruction set, we must have equality.
Therefore the number of edges incident to vertices in W is at
least |W|k — k while the number of edges incident to vertices
in Ng_p(W) is at most (|W| — 1)k = |W|k — k. Then it must
be the case that Ng_r(Ng_r(W)) = W. Hence there is no
edge between Ng_p(W) U W and V(G) — (Ng—r(W) U W).
So G — F has at least two components with no singletons.
This is impossible as G is super edge-connected. .

The natural question is to ask whether the condition in
Theorem 2.3 is necessary. The answer is clearly no, as one
can just take two copies of any super matched graphs. Then
the resulting graph must be super matched but it is not even
connected.

In the study of super connectedness, researchers usually
deal with tightly super connectedness rather than super edge-
connectedness because for all practical purposes, the first one
is a stronger requirement as the next theorem shows.
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Theorem 2.4. Let& > 1. Suppose a connected graph G has
the property that after deleting at most m vertices, where m >
1, G either remains connected or consists of two components,
one of which has at most & vertices. If |[V(G)| > m+2& + 2,
then after deleting at most m edges, it is also the case that G
either remains connected or consists of two components, one
of which has at most & vertices.

Proof. Suppose by contradiction that this is not true for
some graph G with at least m 4 2& + 2 vertices. Then there
exists a set F' of at most m edges such that it is possible to
allocate the vertices of G into two sets, C| and C», each having
at least £ 4 1 elements, such that there are no edges incident
to both a vertex in C| and a vertex in C in G — F. Let F,
be the set of edges in G that are incident to both a vertex in
C) and a vertex in C;. Since G is connected, we know that
F. # (. In addition, F. C F, so |F.| < m.

We will construct a set V. of vertices in G such that the
vertices in G — V. can be allocated into two sets C,; and Cyp,
each having at least £ 4 1 elements, such that there is no edge
between C, and Cp in G — V...

Label the elements of F. as fi,f,...,fr, Where r < m.
Each f;, 1 <i < r, has one endpoint in C| and one endpoint
in Cy. Thus let f; = (u;, v;) such that u; € C; and v; € C,.
We construct V. as follows: Set V. := @. For i = 1 to m, if
|C1 — V| = |Cy — V,|, then add u; to V. (u; may already be
in V,), otherwise add v; to V. (v; may already be in V). We
note that at the beginning of stage i, |C; — V |+ |C2 — V| >
m+2&+4+2—i+1 = m+2&+3—i. Moreover, at the end of stage
i,|C1 = V|, |C2 — V| = & + 5= — 1. Hence at the end of
the construction we have |C; — V.|, |Co — V.| > E—{-%— 1. But
these numbers are integers, so [C; — V|, |Co — V.| > & + 1.
By construction, |V,| < m, and there are no edges between
vertices in C, = C; — V. and C, = C, — V.. If either of the
graphs induced by C, and Cp, is not connected, then G — V,
has at least three components, which is not possible. So they
must be connected. But then G— V. has two components, both
with at least £ + 1 vertices, obtaining a contradiction. n

Corollary 2.5. Let H be a tightly super connected graph.
If H has more than §(H) + 4 vertices, then it is super edge-
connected.

Proof. Set& = 1in Theorem 2.4. .

We note that the condition on the number of vertices is
needed, as the result is not true in general. For example, a 5-
cycleis tightly super connected but not super edge-connected.
Theorem 2.4 will also be applied later for conditional match-
ing preclusions. For now, we combine Theorem 2.4 with
Theorem 2.3 to state the following theorem:

Theorem 2.6. Let G be a k-regular bipartite graph that is
tightly super connected. If G has at least k + 4 vertices, then
G is super matched. In particular, if k > 4, then a tightly
super connected k-regular bipartite graph is super matched.
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Many classes of interconnection networks are known to
be tightly super connected. We will apply this theorem later
to solve the matching preclusion problem for a number of
classes of interconnection networks.

The matching preclusion number is defined only for
graphs with a perfect matching or an almost perfect matching.
Indeed, interconnection networks are almost always regu-
lar, and they usually satisfy this condition. However, it may
be of interest to extend this definition to non-regular graphs
that may not have a perfect matching or an almost perfect
matching. We will now discuss this extension for bipartite
graphs.

Let G be a bipartite graph with bipartition (V1, V3). Let
A(Vy) = max{d(v) : v € Vi} and let §(V|) = min{d(v) :
v € V1}. Similarly, we can define A(V;) and §(V>). Itis clear
that if |V1| # |V2|, no perfect matching is possible. In that
case we are interested in matchings that saturate one side.
Assume |V{| > |V;]. A set of edges M is called a saturat-
ing matching if every vertex in V> is incident to exactly one
element of M and every vertex in V| is incident to at most
one element of M. We may also say that M saturates V,. We
define the matching preclusion number of G, mp,(G), as the
minimum number of edges that must be deleted such that no
saturating matchings remain in the resulting graph. We note
that if G is regular, then this definition reduces to the orig-
inal definition. Similarly to Proposition 1.1, the following
observation is immediate:

Proposition 2.7. Let G be a bipartite graph with bipartition
(V1,V2), and let |V| = |Va|. Then mp(G) < §(V2).

Proof. This is true since deleting all the edges incident
to a vertex of minimum degree in V, guarantees that no
saturating matchings remain. n

We refer to any matching preclusion set given in the proof
of Proposition 2.7 as a trivial matching preclusion set. In
addition, a bipartite graph G with bipartition (Vi, V2) and
[V1l = V2| is called super matched if mp,(G) = §(V>) and
the only minimum matching preclusion sets are the trivial
matching preclusion sets. We are now ready for our result on
matching preclusion sets.

Theorem 2.8. Let G be a bipartite graph with biparti-
tion (Vi,Va). If A(V1) < 8(V2), then mpy(G) = §(V2). If
A(V1) < 8(V), then G is super matched.

Proof. Note that since A(Vy) < §(V;), we have |V;| >
|V>2|. Thus we are interested in matchings that saturate the
vertices in V5.

First we will show that mp,(G) = &(V2). Suppose by
contradiction that M is a minimum matching preclusion set
and M| < §(V2). Let W be an obstruction setin G — M.

Clearly, the number of edges incident in G — M to vertices
in W is less than or equal to the number of edges incident to
vertices in Ng_p(W). We note that W C V), therefore the



first number is at least |[W|§(V2) — §(V3) + 1 and the second
number is at most [Ng_p (W)|A(V1). Thus we have

ING-m(W)|A(V1) = [W[8(V2) —6(V2) + 1.

Hence

(V) 1

ING-u(W)| = (IW] — I)A(VI) A

therefore
INg-m(W)| > |[W| — 1.

In addition, since |Ng_p (W)] is an integer, it must be the case
that [Ng_y (W)| > |W|. But this is a contradiction, since W
is an obstruction set.

Now suppose by contradiction that G is not super matched
and A(V}) < §(V,). Let F be a non-trivial minimum match-
ing preclusion set of cardinality §(V;), and let W be an
obstruction set in G — F such that |W| # 1. We know such
an obstruction set exists, because F is not a trivial matching
preclusion set. Again, we have

ING-F(W)|A(V1) = [W[§(V2) — 8(V2).

Therefore

S(V-
ING_r(W)| = (W] = 1) A((Vzl)).

This simplifies to
ING-F(W)| > W] — 1, (D

because §(V,) < A(V)) and because |[W| — 1 # 0. We again
note the fact that |[Ng_r(W)| is an integer, so [Ng_r(W)| >
|W|. Hence we have a contradiction. .

Note that Theorem 2.8 does not require the condition
of being super edge-connected. Observe that if we replace
A(V1) < 8§(Vp) by A(V]) < §(V3), then the statement
will include regular bipartite graphs, for which our previ-
ous theorem requires an additional condition. The proof of
Theorem 2.8 breaks down if A(Vy) = §(V3) as the inequality
in (1) is not necessarily true.

3. CONDITIONAL MATCHING PRECLUSION FOR
REGULAR BIPARTITE GRAPHS

If G is a k-regular bipartite graph, then v.(G) = 2k — 2
and hence mp;(G) < 2k — 2 by Proposition 1.2. In this
section, we give a sufficient condition for mp,(G) = 2k —
2 and one for G to be conditionally super matched. Recall
that the sufficient condition for a k-regular bipartite graph
G to be super matched is for G to be super edge-connected,
that is, if whenever at most k edges are deleted, then the
resulting graph is either connected or it has two components,
one of which is a singleton. Then it is perhaps reasonable
to look for a condition in which when “many” edges are

deleted, the resulting graph is either connected or it has one
big component and a couple of small components. It turns
out “many” should be 3k — 6 for mp;(G) = 2k — 2 and
3k — 4 for G to be conditionally super matched. A graph is
super m-edge-connected of order ¢ if with at most m edges
deleted, the resulting graph is either connected or it has one
big component and a number of small components with at
most g vertices in total. So a super edge-connected graph G
is super 8 (G)-edge-connected of order 1.

Theorem 3.1. Let G be a k-regular bipartite graph that
is super (3k — 6)-edge-connected of order 2. Then G is
conditionally maximally matched, that is, mp|(G) = 2k — 2.

Proof. Suppose by contradiction that mp;(G) < 2k —
2. Then let F be a conditional matching preclusion set of
cardinality less than or equal to 2k — 3, and let W be an
obstruction set in the graph G—F. Let (V{, V2), where |V | =
|V2], be the bipartition of G, and without loss of generality,
let W C V; so that Ng_g(W) C V,. Note that |[W| > 1 as F
is a conditional matching preclusion set.

Since W is an obstruction set, |[Ng_p(W)| < |W| — 1,
so there are at most |W |k — k edges incident to vertices in
Ng_p(W). In addition, there are at least |W|k — (2k — 3)
edges incident to vertices in W. Hence the number of edges
between Ng_p(W) and Vi — W is at most (|[W|k — k) —
(|Wlk — 2k — 3)) = k — 3. By deleting an additional kK — 3
edges, we can disconnect W U Ng_g (W) from the rest of G.
Therefore, we have found an edge set F’ of cardinality 3k — 6
whose deletion gives a disconnected graph. Since G is super
(3k — 6)-edge-connected of order 2, it must be the case that
G — F’ consists of either two components, one of which has
no more than two vertices, or three components, two of which
are singletons. Consider the following cases.

CASE 1. G — F’ consists of two components, one of which
is a singleton. If WUNg_p (W) is a singleton, then Ng_ (W)
is empty, implying that W has no neighbors in G — F’. This
means that W has no neighbors in G— F as well, as F' — F only
contains edges between Ng_r (W) and V| —W. However, that
means that W is an isolated singleton in G — F', contradicting
the fact that F is a conditional matching preclusion set. So
G—(WUNg_p(W))is asingleton. The singleton must belong
to V3 because |[Ng—r(W)| < |W| and | V| = |V2|. However,
that means that the singleton existed after the deletion of set F’
since F’ — F only contains edges between Ng_g (W) and Vi —
W. Because F is a conditional matching preclusion set, its
deletion should not isolate a vertex, which is a contradiction.

CASE2. G — F’ consists of three components, two of which
are singletons. As in the previous case, W U Ng_r(W) can-
not be a singleton. If W U Ng_r (W) were the combination of
the two singletons, Ng_r (W) would be empty by definition.
Then the obstruction set W consists of two vertices, hence
there are two singletons in G — F. Again, we have a con-
tradiction because F is a conditional matching preclusion
set.
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If WU Ng_r(W) were the nonsingleton component, then
the two singletons must belong to Vo — Ng_p (W) because
ING_p(W)| < |W|and |Vy| = |V3]|. Asin Case 1, F’ — F only
contains edges between Ng_r (W) and V| — W. Since the two
singletons are in Vo — Ng_r (W), it must be the case that they
were isolated in G — F. Again, we have a contradiction.

CASE3. G — F’ consists of two components, one of which
is an edge. If W U Ng_r (W) were the edge component, then
|W| = |Ng—r(W)|, since the two end-vertices of the edge
cannot belong to the same vertex set of the bipartition. This
contradicts the fact that |W| is an obstruction set. Now sup-
pose that W U Ng_r (W) is the other component. Again, the
two end-vertices of the edge-component cannot belong to
the same vertex set of the bipartition. So |V} — W| = 1 and
|Vo — Ng—r(W)| = 1. Hence |W| = |Ng_r(W)|, which is
a contradiction. .

Theorem 3.2. Let G be a k-regular bipartite graph with
mp(G) = 2k — 2. If G is super (3k — 4)-edge-connected of
order 3, then it is conditionally super matched.

Proof. Suppose G is a k-regular bipartite graph that is
super (3k — 4)-edge-connected of order 3. Now assume by
contradiction that after deleting an edge set F' of cardinality
2k — 2 we have an obstruction set W, and F is not a trivial
conditional matching preclusion set. Again, let (Vi, V2) be
the bipartition of G with |V|| = |V3|, and without loss of
generality, let W C Vi, so Ng_p(W) C V.

As in the proof of Theorem 3.1, we see that there are at
least |W|k — 2k + 2 edges adjacent to vertices in W and at
most |[Ng—r(W)|k = |W|k — k edges adjacent to vertices in
Ng—r(W). Hence the number of edges between Ng_r(W)
and Vi — Wis atmost (|(W|k — k) — (|Wlk — 2k —2)) =
k — 2. Therefore, by deleting an additional k — 2 edges, we
can disconnect the graph. We have found an edge set F’ of
cardinality 3k — 4 whose deletion disconnects the graph.

G is super (3k —4)-edge-connected of order 3, so we must
have one large component of cardinality at least |V (G)| — 3.
From the proof of Theorem 3.1, we cannot have two com-
ponents, one of which is a singleton or an edge, or three
components, two of which are singletons. Hence it must be
the case that we have a large component containing all the
vertices except three. Since the graph is bipartite, there are
no 3-cycles in it. Therefore, we must delete at least 3k — 2
edges to isolate three singletons and at least 3k — 3 edges to
isolate a singleton and an edge. Thus, after deleting F’, the
only possible case is that we have two components, one of
which is a path of length 2. Let the end-vertices in the path be
u and w, and let the middle vertex be v. We have two cases.

CASE1l. WUNG_p(W) = V(G—F") —{u,v,w}. It must be
the case that Vo = Ng_p(W) U {u, w}, since |[Ng_rp(W)| <
|W|. Thus V. — W = {v}, so the k — 2 edges in F’ — F are
all incident to v. Hence the only edges incident to u and w
in G — F are (u,v) and (v,w), respectively. However, this
means that F must have been a trivial conditional matching
preclusion set, which is a contradiction.
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CASE 2. W U Ng_rp(W) = {u,v,w}. Since |[Ng_r(W)| <
|W|, it must be the case that Ng_r (W) = {v}and W = {u, w}.
Thus, the k — 2 edges in F/ — F are all incident to v. Again,
this means that the only edges incident to u and win G— F are
(u,v) and (v, w), respectively. Therefore, F must have been
a trivial matching preclusion set, a contradiction. .

If we wonder whether the condition in Theorem 3.2 is
necessary, the answer is no. There is a slack in the proof that
will enable us to strengthen the result slightly. We defer the
discussion to the Appendix, as Theorem 3.2 should be strong
enough for most applications. As mentioned earlier and illus-
trated by Theorem 2.4, the deletion of vertices is a stronger
condition in general, so most research concentrates on the
study of super m-connected graphs of order g defined as fol-
lows: A graph is super m-connected of order ¢ if when at most
m vertices are deleted, the resulting graph is either connected
or it has one big component and a number of small compo-
nents with at most ¢ vertices in total. Thus it is worthwhile
to state two corollaries of Theorem 3.1 and Theorem 3.2,
respectively, so that the condition is for deletion of vertices.
We need a reformulation of Theorem 2.4 to a slightly more
general form:

Lemma 3.3. Suppose m > 1. Let G be a connected graph
with at least m + 2& + 2 vertices. Suppose there exist at most
m edges whose deletion results in a graph with components
that can be partitioned into two groups, each with at least
& + 1 vertices. Then there exist at most m vertices whose
deletion also results in a graph with components that can be
partitioned into two groups, each with at least &€ 4 1 vertices.

Proof. Suppose there exists a set F' of at most m edges
such that the components of G — F can be partitioned into two
groups where each group has at least £ 4 1 elements. Let C;
and C, be the vertices in the two groups, respectively. Let F,.
be the set of edges in G that are incident to both a vertex in C
and a vertex in C,. Since G is connected, we know F. #~ (.
In addition, F. C F, so |F.| < m.

We will construct a set V. of vertices in G such that the
vertices in G — V. can be allocated into two sets C, and Cp,
each of which has at least £ + 1 elements, and there is no
edge between C, and Cp, in G — V.. Now proceed as in the
proof of Theorem 2.4 to obtain V. .

Theorem 3.4. Letk > 2 and g > 1. Let G be a k-regular
graph with at least max{m + 2q + 2,3q + 1} vertices. If G
is super m-connected of order q, then it is super m-edge-
connected of order q.

Proof. Suppose not. Then we can delete m edges from G
and the resulting graph will have components Y1, Y2,..., Y,
in nonincreasing order with respect to their cardinalities. So
Y»2,7Y3,...,Y, havecollectively at least g+ 1 vertices. Clearly
|Y1] > 2 as G has more than m edges. If |V{| € {2,3,...,q},
then we can group some remaining small ¥;’s with Y; to form
S and the rest to form 7. We can choose the groupings so that



S has at least g + 1 vertices and at most 2¢g vertices. So both
S and T have at least g 4 1 vertices as G has at least 3g + 1
vertices. If |Y1| > g+ 1, then S consists of Y| and T consists
of the other components. So T also has at least ¢ + 1 vertices
by assumption. Now apply Lemma 3.3 with & = ¢ to obtain
a contradiction. .

Corollary 3.5. Letk > 2. Suppose G is a k-regular bipartite
graph with at least max{3k, 7} vertices that is super (3k —
6)-connected of order 2. Then mp(G) = 2k — 2.

Proof. Apply Theorem 3.1 and Theorem 3.4 with m =
3k — 6 and ¢ = 2. Note that max{m + 2g + 2,3¢ + 1} =
max{3k,7}. .

Corollary 3.6. Let k > 2. Suppose G be a k-regular bipar-
tite graph and mp,(G) = 2k — 2. If G has at least 3k + 4
vertices and it is super (3k — 4)-connected of order 3, then
it is conditionally super matched.

Proof. Apply Theorem 3.2 and Theorem 3.4 with m =
3k — 4 and g = 3. Note that max{m + 2g 4+ 2,3¢ + 1} =
max{3k + 4,10} =3k +4ask > 2. n

4. CONCLUSION AND AN APPLICATION

In this article, we gave a comprehensive study of matching
preclusion and conditional matching preclusion for bipartite
interconnection networks. Earlier articles on this topics estab-
lished such results by ad-hoc methods, and such methods
usually involved results regarding fault Hamiltonicity. More-
over, there were no general sufficient conditions for a network
to be maximally matched, super matched, conditionally max-
imally matched or conditionally super matched. Our goal for
this article is three-fold. The first is to find a general sufficient
condition for bipartite graphs. The second is to obtain a result
with a condition that is not as stringent as results regarding
fault Hamiltonicity. Finally, the verification of such a condi-
tion should be computationally efficient. Each of Theorem 2.2
(a well-known classical result), Theorem 2.3, Theorem 3.1,
and Theorem 3.2 contains such a condition. We remark that
the sufficient conditions given in this paper are in the spirit
of a classical result of Plesnik [19], which states that if G
is a k-regular (k — 1)-edge-connected graph with an even
number of vertices, then G — F has a perfect matching for
every F C E with |F| < k — 1. This immediately tells us
that mp(G) = k for k-regular (k — 1)-edge connected graphs
with an even number of vertices.

Although the complete bipartite graphs are not suitable
as interconnection networks, we will use them as an exam-
ple to apply our results. Further applications to popular
and suitable interconnection networks can be found in the
companion paper (E. Cheng, P. Hu, R. Jia, and L. Liptdk,
Matching preclusion and conditional matching preclusion
for bipartite interconnection networks II: Cayley graphs
generated by transposition trees and hyperstars, Networks
to appear).

Theorem 4.1 ([5]).

K. is super matched.

Let n > 2. Then mp(K,,) = n, and

Proof. Consider K, , with bipartition (A, B). Suppose
that after ¢ edges are deleted, the graph is disconnected. We
may assume that G| and G, are subgraphs of K, , such that
there are no edges between vertices of G; and G, in the
resulting graph. Let (A, B1) be the bipartition of G; and
(A2, By) be the bipartition of G, such that A; UA, = A and
By U By = B. Suppose |Aj| = ai, |A2| = a2, |Bi| = by,
|B2| = by. Then we have deleted at least ajby + bray =
ai(n — by) + bi(n — a1) = n(ay + by) — 2a1by edges. To
prove Theorem 4.1, we use Theorem 2.3. So it is enough to
show that n(a; +b1) —2a1b; > n+ 1 subject to the condition
that 2 < a; + b; < 2n — 2. Observe that once a; + b; is
fixed, n(a; + b;) — 2a;b; is minimized when a; = by. So it
suffices to show that 2nx —2x2 > n+1where | <x <n—1.
This is clearly true if n > 3. The case n = 2 can be easily
checked, and we are done. n

Theorem 4.2 ([7]). Letn > 3. Then mp|(K, ) = 2n — 2,
and K, ,, is conditionally super matched.

Proof. We first use Theorem 3.1 for the first part and
follow the same procedure. Hence it is enough to show that
n(a; + by) — 2a1b; > 3n — 5 subject to the condition that
3 < a;+b; < 2n—3. Asbefore, it suffices to show that 2nx —
2x% > 3n—5 where 3/2 < x < n—3/2. This means it suffices
to show that 2nx —2x% > 3n—5 where 2 < x < n—2. This is
clearly true if n > 3. For the second part, we use Theorem 3.2
and follow the same procedure. Hence it is enough to show
that n(a; + b1) — 2a1b; > 3n — 3 subject to the condition
that 4 < a; + b; < 2n — 4. Again, it suffices to show that
2nx — 2x% > 3n — 3 where 2 < x < n — 2. This is clearly
true if n > 5. The cases n = 3,4 can be easily checked, and
we are done. .
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APPENDIX: STRENGTHENING OF THEOREM 3.2

As mentioned after the proof of Theorem 3.2, the proof
has a slack we can take advantage of. A bipartite graph is
equitable if the two bipartition sets have the same cardinality.
A bipartite graph is almost super m-edge-connected of order
g if when at most m edges are deleted, the resulting graph
satisfies one of the following: (1) it is connected, (2) it has
one big component and a number of small components with at
most g vertices in total, and (3) every component is equitable.

If we relax the condition in Theorem 3.2 from super (3k —
4)-edge-connected of order 3 to almost super (3k — 4)-edge-
connected of order 3, the result is still true. In fact, the proof
is virtually the same.
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Theorem A.1. Let G be a k-regular bipartite graph with
mp(G) = 2k — 2. If G is almost super (3k — 4)-edge-
connected of order 3, then it is conditionally super matched.

Proof. We proceed as in the proof of Theorem 3.2. Sup-
pose G is a k-regular bipartite graph that is almost super
(3k — 4)-edge-connected of order 3. Now assume that after
deleting an edge set F' of cardinality 2k — 2 we have an
obstruction set W, and F is not a trivial conditional match-
ing preclusion set. Let (Vy, V») be the bipartition of G with
V1] = | V2|, and without loss of generality, let W C Vi, so
Ng—p(W) C V,. Note that |W| > 1 as F is a conditional
matching preclusion set. Then following the same argument
as in the proof of Theorem 3.2, we can delete up to k — 2
additional edges to disconnect W U Ng_r(W) from the rest
of G. Therefore, we have found an edge set F’ of cardinal-
ity 3k — 4 whose deletion results in a disconnected graph. So
G —F' is disconnected, and its components can be partitioned
into two groups such that the first is the subgraph of G — F’
induced by W U Ng_g(W), and the second is the subgraph
of G — F’ induced by (Vi — W) U (Vo — Ng_r(W)). Let
G be the first graph and G, be the second graph. Since W
is an obstruction set, G is not equitable. Hence at least one
component of G — F’ is not equitable. But G — F’ is almost
super (3k — 4)-edge-connected of order 3. Therefore G — F’
has one big component plus a number of small components
with at most three vertices in total. Now we can finish the
proof as in the proof of Theorem 3.2. "
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