
Date of submission: 01/14/2011
Date of first revision: 07/16/2012
Date of second revision: 06/06/2013

1

Incomplete Service and Split Deliveries
in a Routing Problem with Profits

C. Archetti(1) N. Bianchessi(1) A. Hertz(2)

M.G. Speranza(1)

(1)Department of Quantitative Methods

University of Brescia, Brescia, Italy

{archetti, bianche, speranza}@eco.unibs.it

(2)École Polytechnique and GERAD, Montréal, Canada

alain.hertz@gerad.ca

Abstract

In this paper we study a variant of the Capacitated Team Orienteering
Problem (CTOP), that is the problem where a fleet of vehicles, each with a
constraint on the time available, is given to serve profitable customers with
the objective of maximizing the collected profit. We study the variant where
customers may be only partially served (incomplete service) and, if beneficial,
also by more than one vehicle (split deliveries). We will analyze the maximum
theoretical increase of the profit due to the incomplete service and to the
split deliveries. We also computationally measure such increase on a set of
instances, by means of an exact algorithm on small/medium size instances
and of two heuristics on instances of larger size.

Keywords: Routing problems with profits, worst-case analysis, branch-
and-price algorithm, tabu search, split delivery.

1 Introduction

The Team Orienteering Problem (TOP) is the problem where a fleet of vehicles,
each with a constraint on the time available for a tour, is given to serve profitable

2

customers with the objective of maximizing the collected profit. The TOP belongs
to the class of routing problems with profits (see the recent survey [12] and, for
the case of one vehicle only, [14]) and appeared in the literature in [8] under the
name Multiple Tour Maximum Collection Problem, while the definition of TOP was
introduced in [9].

While in most routing problems (see [13]) all customers have to be served, in
the routing problems with profits a subset of potential customers, each of which
offers profit but also consumes resources or generates costs, has to be visited. The
routing problems with profits have a number of applications. In particular, they
model a phase of the decision process of a carrier who does not completely use the
capacity of the vehicles with regular customers and aims at identifying the most
profitable customers among a set of potential customers. The potential customers
may be made known through the web, in specialized data bases, or by other carriers
with whom a partnership agreement has been stipulated. In such applications, the
capacity of the vehicles is a crucial feature of the problem, to be explicitly modeled.
The Capacitated TOP (CTOP), that is the TOP with capacitated vehicles, has been
introduced in [3] where exact and heuristic solution algorithms have been proposed
and tested.

In the CTOP, as in most routing problems, it is assumed that a customer is
visited by one vehicle only. The value of split deliveries has been investigated in
several papers for several different problems. In particular, for the classical vehicle
routing problem, it has been shown in [5] that allowing split deliveries, that is
allowing a customer to be visited by more than one vehicle, may halve the routing
cost. For a survey on routing problems with split deliveries we refer to [6]. The
CTOP with split deliveries (SDCTOP) has been studied in [2], where it has been
shown that allowing split deliveries may double the profit collected. Moreover, exact
and heuristic algorithms have been proposed for the solution of the SDCTOP.

An underlying assumption of the TOP, of the CTOP and also of the SDCTOP
is related to the service to customers. In all problems it is assumed that a customer
is either served completely or not served at all. Whereas in the TOP this is always
the best option because when a customer is reached all the profit can be collected,
in the CTOP and in the SDCTOP the capacity constraint on the vehicles may make
it beneficial to serve a customer partially, introducing a new service option. From
the application point of view, a partial or incomplete service is motivated by all
situations where the service of a customer may be shared between different carriers
or where a customer is a geographical area for which it may be decided whether to
serve it partially or completely, or not to serve it at all.

In this paper we will assess the value of allowing incomplete service in the SD-

3

CTOP. We will analyze the maximum theoretical increase of the profit due to the
incomplete service and to the split deliveries by means of worst-case analysis. We
will also computationally measure such increase on a set of instances, by means of an
exact algorithm on small/medium size instances and of two heuristics on instances
of larger size.

In Section 2 we will introduce the problems we study and the notation used,
whereas in Section 3 we derive some properties. Section 4 is devoted to the worst-
case results. In Section 5 we present an arc flow formulation and in Section 6 an
exact and two heuristic approaches. Finally, in Section 7 the computational results
are discussed.

2 The CTOP with split deliveries

We consider a complete directed graph G = (V,A), where V = 1, . . . , n is the set
of vertices and A is the set of arcs. Vertex 1 represents the depot and each vertex
i = 2, . . . , n represents a potential customer. We denote by V ′ = V \ {1} the set
of potential customers. An arc (i, j) ∈ A represents the possibility to travel from
vertex i to vertex j. A non-negative integer demand di and a non-negative profit pi
are associated with each potential customer i ∈ V ′. A non-negative travel time tij is
associated with each arc (i, j) ∈ A. Travel times are assumed to satisfy the triangle
inequality. A set of m vehicles is available to serve the potential customers, each
with limited integer capacity Q. Let F denote the index set of the vehicles, with
|F | = m. The route associated with each vehicle f ∈ F starts and ends at the depot
and must not exceed a given time limit Tmax. Each potential customer i ∈ V ′ may
be served by more than one vehicle (split deliveries) and the profit associated with
each served customer can be collected at most once. When a customer is served
by more than one vehicle the profit collected by each vehicle is proportional to
the demand served by the vehicle. The objective of the Split Delivery Capacitated
Team Orienteering Problem (SDCTOP) is to maximize the total collected profit
while satisfying the constraints on the time duration of each route and the vehicle
capacity constraints.

We study the version of the SDCTOP where we allow a customer to be partially
served. When a customer is partially served the profit collected is proportional
to the served demand. We call this problems SDCTOP with Incomplete Service
(SDCTOP-IS).

The advantage of allowing split deliveries and incomplete service are highlighted
by the following example. Consider the instance depicted in Figure 1.a: the round

4

vertices represent customers while the square vertex corresponds to the depot. Cus-
tomers are associated with demand and profit equal to 6 each, m = 2, Q = 10,
tij = 1 for each (i, j) and Tmax = M � 0. The solutions of CTOP, SDCTOP and
SDCTOP-IS are depicted in Figures 1.b, 1.c and 1.d, respectively.

In the following, we denote by z(P) the value of an optimal solution of problem
P .

a. Problem instance b. CTOP solution. Value: 12

c. SDCTOP solution. Value: 18 d. SDCTOP-IS solution. Value: 20

Figure 1: Advantage of split deliveries and incomplete service

3 Properties

In [11] an important property of the Split Delivery Vehicle Routing Problem (SD-
VRP), that is the classical vehicle routing problem where split deliveries are allowed,
was shown based on the following concept.

5

Definition 1 Given k customers i1, i2, ..., ik and k routes. Route 1 visits customers
i1 and i2, route 2 visits customers i2 and i3, ..., route k − 1 visits customers ik−1
and ik, and route k visits customers ik and ik+1 = i1. The subset of customers
i1, i2, ..., ik is called a k-split cycle.

In [11] it was shown that an optimal solution to the SDVRP exists without k-split
cycles and in [2] it was proved to be valid also for the SDCTOP. We now extend
this property to the SDCTOP-IS.

Theorem 1 If the cost matrix satisfies the triangle inequality, then there exists an
optimal solution to the SDCTOP-IS where there is no k-split cycle (for any k).

Proof: Theorem 1 in [2] shows that the result is valid for the SDCTOP. The same
proof applies to the SDCTOP-IS.
The following property is an immediate consequence of Theorem 1.

Corollary 1 If the cost matrix satisfies the triangle inequality, then there exists
an optimal solution to the SDCTOP-IS where no two routes have more than one
customer with a split delivery in common.

Theorem 2 If the cost matrix satisfies the triangle inequality, an optimal solution
to the SDCTOP-IS exists where each route has at most one customer with incomplete
service.

Proof: Take an optimal solution to the SDCTOP-IS. Consider one of the routes of
such solution and suppose that more than one customer receives incomplete service.
Take two such customers, say i and j, and assume, w.l.o.g., that pi/di ≥ pj/dj.
Then, we modify the solution by moving as much as possible of the demand served
of the least profitable customer j to the most profitable one i. We decrease the
demand served of j to increase the demand served of i. If the demand served of j
was greater than or equal to the non served demand of i, the demand of i will be
fully satisfied and we reduced the number of customers with incomplete service by
one. The solution obtained is not worse than the previous solution. Otherwise, if
the demand served of j was smaller than the not served demand of i, the demand
of i remains partially served but again we reduced the number of partially served
customers by one while not worsening the value of the solution. The solution remains
feasible because of the triangle inequality. We repeat this procedure until at most
one customer with incomplete service remains in the route. Then we repeat the
procedure on all the other routes.

6

In [5] a property of the SDVRP that creates a relation between the number of
splits and the number of routes in an optimal solution was shown. Such property
holds for the SDCTOP-IS.

Let ni be the number of routes that visit customer i. We say that customer i is
a customer with a split delivery if ni > 1 and that the number of splits at customer
i is ni − 1. Therefore, the total number of splits is equal to

∑
i∈V ′(ni − 1).

Theorem 3 If the cost matrix satisfies the triangle inequality, then there exists an
optimal solution to the SDCTOP-IS where the total number of splits is less than the
number of routes.

Proof: Theorem 2 in [2] shows that the result is valid for the SDCTOP. The same
proof applies to the SDCTOP-IS.

In the case of the SDCTOP-IS, in addition to customers, without or with a
split delivery, that are completely served there may be customers, with or without
a split delivery, that are only partially served. We say that an optimal solution has
h incomplete services if the number of customers with incomplete service is h.

Theorem 4 If the cost matrix satisfies the triangle inequality, then there exists an
optimal solution to the SDCTOP-IS where the total number of splits and incomplete
services is not greater than the number of routes.

Proof: Let us consider a solution without k-split cycles. As each route has at most
one customer with incomplete service (see Theorem 2), if there are no splits the
theorem is proved. Thus, let us assume that there is at least one split. Let us
consider the routes with the split customer. For each possible other split customer
of any of these routes we consider the other routes which share the split customer
and we continue on any split customer until no new split customer is found in the
involved routes. This set of routes has a number of splits that is at most equal
to the number of routes in the set minus 1 by Theorem 3. We can associate to
this set of routes a graph, where each route is associated with a node of the graph
and two nodes of the graph are connected by an edge iff the two corresponding
routes share a split customer. Note that the graph is connected and, thus, has at
least a number of edges which is equal to the number of routes in the set minus 1.
Consequently, the number of splits is exactly the number of routes in the set minus
1. The resulting graph is thus a tree. If this set of routes does not contain more than
one incomplete service the theorem is proved. In this case we consider another tree

7

of routes, if any. If no tree of routes with more than one incomplete service exists,
the theorem is proved. Thus, we assume that one of the trees of routes contains at
least two customers with incomplete service. We now show that we can reduce by 1
the number of splits or of incomplete services without worsening the quality of the
solution. Let us consider any pair of customers with incomplete service and the two
corresponding routes.

Let us denote by 1 the route with the least (over the two routes) profitable
customer with incomplete service (that is the customer with smallest ratio between
profit and demand). Let us denote the other route as route 2. Let j1 and j2 be the
customers with incomplete service on route 1 and 2, respectively. Now we construct
a not worse solution with one split or one incomplete service less. We consider the
path connecting the nodes associated with routes 1 and 2 in the tree and reduce by
as much as possible the demand of the least profitable customer j1 served by route 1
to increase by the same amount the demand of customer j2 served by route 2. This
can be achieved by increasing and decreasing by the same amount the intermediate
customers in the path, keeping those customers completely served. Let S be the set
of split customers along the path and xri be the quantity delivered to i by route r.
Consider the quantity q = min{x1j1 , dj2−x

2
j2
,mini∈S{xri}} for each i ∈ S. Then, x1j1

is decreased by q, the quantity served to the split customer in S served by route 1
is increased by q while the quantity served to the same customer by the other route
visiting it is decreased by q. The procedure is repeated on all split customers along
the path until, at the end, x2j2 is increased by q. By doing so, either customer j1 is
not served by route 1 or customer j2 is completely served, and thus the number of
incomplete services is reduced by 1, or the quantity served to a split customer along
the path by one route visiting it is set to 0, and thus the number of splits is reduced
by 1.

For each set of routes defining a tree, we can repeat the above procedure. Finally
we obtain that the total number of splits and incomplete services is not greater than
the number of routes.

4 Worst-case analysis

In this section we study how much additional profit can be collected if we relax
the assumption that each customer must be either not served or served completely,
and allow the incomplete service of a customer. As we will compare the CTOP
and SDCTOP-IS, we assume that di ≤ Q, i ∈ V ′. Moreover, we suppose that the

8

triangle inequality is satisfied.

Theorem 5
z(SDCTOP)

z(SDCTOP − IS)
≥ 1

2

and this bound is tight.

Proof: Consider an optimal solution to the SDCTOP-IS that satisfies the claim of
Theorem 2, that is a solution where in each route at most one customer is partially
served. We modify this solution to obtain a feasible solution of the SDCTOP. We
do not modify the possible routes where all customers are completely served. We
take a route of this optimal solution with one incomplete service. We consider two
possible ways to modify this route and obtain a route where all customers are fully
served. The first modified route that we consider is the one where all customers with
complete service only are included. In this case the profit of the partially served
customer is lost. The second route that we consider is the route where only the
previously partially served customer is served. Note that both satisfy the capacity
and time constraints. We take the most profitable of the two. The profit of this
route is greater than or equal to half of the profit of the route of the SDCTOP-IS.
We repeat the procedure on all routes.

To show that the bound is tight, take an instance with two customers each with
demand and profit equal to Q

2
+ 1, one vehicle with capacity Q and large time limit.

The SDCTOP can serve only one customer while the SDCTOP-IS can serve Q
2

of
each of the two. When Q tends to infinity the ratio tends to 1/2.

By combining the results of Theorem 3 in [2] and Theorem 5 we would obtain
z(CTOP)

z(SDCTOP−IS) ≥
1
4
. However, this bound is not tight whereas the following result

holds.

Theorem 6
z(CTOP)

z(SDCTOP − IS)
≥ 1

2

and this bound is tight.

Proof: Consider an optimal solution of the SDCTOP-IS which satisfies the claim
of Theorem 4. For each incomplete service we remove the corresponding customer
from the solution and we create an out-and-back tour to serve it. We repeat the
same operation for every split customer. All routes satisfy the time limit constraint

9

because of the triangle inequality. Due to Theorem 4, the number of out-and-back
tours created is at most equal to the number of routes in the SDCTOP-IS solution.
The constructed solution is possibly infeasible for the CTOP because the number
of routes may be greater than m. Now we order the routes of the new solution by
non-increasing profit and take the first m routes. The profit of these routes is clearly
greater than or equal to half the profit of the optimal solution of the SDCTOP-IS.

The tightness of the bound follows from Theorem 5.

5 Problem formulation

In the proposed arc flow formulation for the SDCTOP-IS we use the following no-
tation. Let V +(i) = {j ∈ V |(i, j) ∈ A} and V −(i) = {j ∈ V |(j, i) ∈ A} be the set
of successors and predecessors of i ∈ V , respectively. Moreover, let di = min{di, Q}
denote the maximum quantity that can be delivered to customer i by a single vehicle.

Using this notation, the formulation for the SDCTOP-IS is the following:

10

max
∑
f∈F

∑
i∈V ′

pi
di
δfi (1)∑

f∈F

δfi ≤ di i ∈ V ′ (2)∑
f∈F

(xfij + xfji) ≤ 1 i, j ∈ V ′, j > i (3)∑
f∈F

∑
j∈V +(1)

xf1j ≤ m (4)

∑
j∈V +(1)

xf1j = 1 f ∈ F (5)

∑
j∈V +(i)

xfij −
∑

j∈V −(i)

xfji = 0 f ∈ F, i ∈ V ′ (6)

∑
j∈V −(1)

xfj1 = 1 f ∈ F (7)

∑
i∈U

∑
j∈U

xfij ≤ |U | − 1 f ∈ F,U ⊆ V ′, |U | ≥ 2 (8)∑
(i,j)∈A

tijx
f
ij ≤ Tmax f ∈ F (9)

∑
i∈V ′

δfi ≤ Q f ∈ F (10)∑
j∈V +(i)

xfij ≤ δfi ≤ di
∑

j∈V +(i)

xfij f ∈ F, i ∈ V ′ (11)

δfi ≥ 0, integer f ∈ F, i ∈ V ′ (12)

xfij ∈ {0, 1} f ∈ F, (i, j) ∈ A (13)

where xfij is a binary variable equal to 1 if vehicle f ∈ F traverses arc (i, j) ∈ A and

δfi is a non-negative variable representing the quantity delivered by vehicle f ∈ F
to customer i ∈ V ′.

The objective function (1) calls for the maximization of the collected profit. Con-
straints (2) impose that the total quantity delivered to each customer cannot exceed
its demand. Constraints (3) follow from Corollary 1. Constraint (4) imposes the
upper bound of m on the number of used vehicles. Flow conservation constraints

11

and subtour elimination constraints are stated in (5)-(7) and (8), respectively. Con-
straints (9) limit the time duration of each route, whereas constraints (10) are the
vehicle capacity constraints. Consistency between variables δfi and xfij is imposed
in constraints (11). Finally, (12) and (13) are the non-negativity and integrality
constraints on the problem variables.

Constraints (3) and the lower bound on the δ variables in (11) are included in the
model to strengthen it but are not necessary for the sake of correctness. Similarly,
only one of the sets (5) and (7) is necessary. Moreover, the integrality condition in
constraints (12) may be relaxed if the customer demands and the vehicle capacity
are integer. Actually, in this case there exists an optimal solution to the problem
where the δ variables assume integer values (see [4] for a similar proof).

6 Solution approaches

We present in this section both exact and heuristic algorithms to solve the problem.

6.1 A branch-and-price algorithm

The exact approach is an adaptation of the branch-and-price algorithm proposed in
[2] for the SDCTOP.

By applying the Dantzig-Wolfe decomposition principle to the arc flow formu-
lation (1)-(13), the SDCTOP-IS is decomposed into a set packing master problem
and a subproblem, also called pricing problem. Then, the master problem is solved
by dynamically generating the variables associated with the extreme points of the
feasible region of the pricing subproblem, that is, feasible routes associated with
extreme delivery patterns. The feasible routes are circuits in graph G starting and
ending at the depot and with total time not exceeding the given limit Tmax. For a
given route, the associated extreme delivery patterns assign delivery quantities to
the customers visited in the route in such a way that at most one customer receives
a split delivery greater than 1 and lower than di and the total quantity delivered is
at most Q. Due to the combinatorial structure of the extreme points, in the master
problem integrality requirements cannot be imposed directly on the dynamically
generated variables. Additional problem variables have to be considered.

Let R = Rs ∪ Rt be the set of all feasible routes, where Rs and Rt are the sets
of routes visiting single and multiple customers, respectively. The empty route is
denoted by 0. Then, let Wr represent the set of all feasible extreme delivery patterns
associated with route r ∈ R.

12

Then, the master problem can be formulated as follows:

max
∑
r∈R

∑
w∈Wr

(
δirw

pi
di

)
θrw (14)

s.t.:
∑
r∈R

∑
w∈W r

δirwθrw ≤ di ∀i ∈ N (15)∑
r∈R

∑
w∈Wr

(bijr + bjir)θrw ≤ 1 ∀i, j ∈ N, j > i (16)∑
r∈R\{0}

∑
w∈W r

θrw ≤ m (17)

θrw ≥ 0 ∀r ∈ R, ∀w ∈ W r (18)

θr =
∑
w∈Wr

θrw ∀r ∈ R (19)

θr integer ∀r ∈ Rs (20)
θr ∈ {0, 1} ∀r ∈ Rt (21)

where θrw variables are the dynamically generated variables representing the
number of vehicles assigned to route r ∈ R and delivery pattern w ∈ Wr, and θr
is a non-negative integer (resp. binary) variable indicating the number of vehicles
assigned to route r ∈ Rs (resp. Rt). For each r ∈ R, θr is defined in constraints (19)
as the convex combination of the extreme delivery patterns (i.e. the θrw variables)
associated with the route r. Given this definition, imposing binary and integrality
requirements (20) and (21) on the θr variables and letting the θrw variables to
be continuous allows us to guarantee that routes can contain more than one split
customer (see [10]). The objective function (14) and constraints (15)-(17) are the
reformulation in terms of the θrw variables of the objective (1) and the linking
constraints (2)-(4). In particular, bijr is a binary parameter equal to 1 if arc (i, j) ∈ A
is traversed by route r ∈ R, 0 otherwise; and parameter δirw indicates the quantity
delivered to customer i ∈ N in delivery pattern w ∈ Wr, r ∈ R.

The subproblem is modeled over an expanded graph (derived from G) as an
Elementary Shortest Path Problem with Resource Constraints (ESPPRC). The ex-
panded graph considers a set of vertices for each customer, each of them representing
the customer served with a feasible integer quantity. With each arc are associated
load and time consumptions. As finding elementary paths is very cumbersome, we
allowed paths that contain cycles. This does not affect the correctness of the over-
all approach and generates a remarkable decrease of the computational time. The
resulting Shortest Path Problem with Resource Constraints (SPPRC) is solved by

13

means of a label setting dynamic programming algorithm. In particular, an addi-
tional resource is taken into account to limit to one the number of customers in the
path which receive a split delivery greater than 1 and less than d̄i. In order to accel-
erate the solution process of the linear master problem, at each column generation
iteration heuristic methods are applied before solving the pricing problem to opti-
mality. Each heuristic consists in applying the implemented dynamic programming
algorithm to a subgraph of the expanded graph. The subgraphs restrict the dynamic
programming algorithm to consider only paths with full delivery to each customer
or paths making a partial delivery only to the customer reached directly from the
depot. In particular, some of the subgraphs are also built taking into account the
geographic closeness of the customers.

When branching is required, the four branching rules proposed in [1] are hi-
erarchically evaluated. Branching is attempted on the number of vehicles, on the
number of visits to each customer, on the flow on an arc and on the possibility to
use to arcs consecutively in a path. In particular, when a single visit is imposed to a
customer i no reduction can be applied to the expanded graph; actually the quantity
delivered can be any quantity lower than di as i can be only partially served. This is
different from what happens in the SDCTOP addressed in [2] where, when a single
visit is imposed, the expanded graph can be reduced by considering only the vertex
associated with the quantity di.

Finally, the branch-and-price algorithm makes use of a restricted master heuris-
tic. It consists in the solution of a MILP problem by means of a commercial solver.
The MILP problem is defined on the basis of the columns evaluated to solve the
linear relaxation of the master problem associated with the current node tree. The
heuristic plays the role of a primal bound heuristic within the branch-and-price algo-
rithm. The solution found by the heuristic has no impact on the other components
of the branch-and-price algorithm. The solution value, however, helps in pruning
the nodes of the tree. At the root node of the tree, the restricted master heuristic
is run before each exact solution of the pricing problem, whereas at non-root nodes
it is run after the solution of the linear master problem.

For more details on the algorithm, we refer the reader to [2].

6.2 Heuristic algorithms

In order to deal with large size instances that cannot be handled by the exact ap-
proach, we propose two solution algorithms for the solution of the SDCTOP-IS: a
Variable Neighborhood Search (VNS) and a Tabu Search (TS) algorithm. Both al-
gorithms are adaptations of the Variable Neighborhood Search and the Tabu Search

14

Feasible algorithms proposed in [3] for the CTOP. In this paper a third algorithm
was proposed called Tabu Search Admissible, where also infeasible solutions are ex-
plored. We have decided to consider feasible solutions only, the reason being that
split deliveries and incomplete service allow a wider range of moves inside the feasi-
ble solution space. Thus, we inherited only the Variable Neighborhood Search and
the Tabu Search Feasible algorithms.

In the following we describe the general scheme of the algorithms. For more
details, we refer the reader to [3]. The main idea of both algorithms is that all
customers are organized into routes which are ordered on the basis of their profit.
At the end, only the m best routes will form the final solution.

Let qir be the quantity delivered to customer i in route r. The profit of a route r is
defined as P (r) =

∑
i∈V ′

pi
di
qir while T (r) is the total duration. For a set R of routes,

P (R) =
∑
r∈R

P (r) is defined as the total profit in R. A solution s is defined as a set

of routes such that each route starts and ends at the depot, and the demand of each
customer is satisfied. We denote by RSDCTOP−IS(s) the set of m most profitable
routes in s, and by RNSDCTOP−IS(s) the set of all remaining routes.

Both the TS and the VNS use two kinds of moves to explore the neighborhood,
namely, the 1-move and the swap-move. These moves have been changed with
respect to their definition in [3] in order to take into account the possibility of
making split deliveries. They are now defined as follows:

• 1-move: Consider a customer c visited in route r. Insert c in route r′ 6= r. Note
that r′ can be an empty route or, also, a route already visiting c. The quantity
delivered to c in r′ becomes qcr′ = qcr′ + min{qcr, δr′}, where qcr is the quantity
delivered to c in r and δr′ is the residual capacity of r′. If min{qcr, δr′} = qcr then
c is removed from r by joining the predecessor with the successor. If qcr′ = 0
(and, thus, r′ does not visit c in the current solution), then c is inserted in r′

with the cheapest insertion method.

• swap-move: Let c and c′ be two customers on two different routes, r and
r′, respectively. A swap-move consists in inserting c in r′ and c′ in r. The
quantity delivered to c in r′ becomes qcr′ = qcr′+min{qcr, δr′} while the quantity
delivered to c′ in r becomes qc

′
r = qc

′
r + min{qc′r′ , δr}. If min{qcr, δr′} = qcr

(min{qc′r′ , δr} = qc
′

r′) then c (c′) is removed from r (r′) by joining the predecessor
with the successor. If qcr′ = 0 (qc

′
r = 0) then c (c′) is inserted in r′ (r) with the

cheapest insertion method.

A temporary tabu status forbids customers to be inserted into routes from which
they have previously been removed.

15

The solution quality is measured by combining the four following functions:

• f1(s) : the total profit P (RSDCTOP−IS(s)) of the routes in RSDCTOP−IS(s);

• f2(s) : the total duration
∑

r∈RSDCTOP−IS(s)

T (r) of the routes in RSDCTOP−IS(s);

• f3(s) : the number of non empty routes in s;

• f4(s) : the total duration
∑

r∈RNSDCTOP−IS(s)

T (r) of the routes inRNSDCTOP−IS(s).

A solution s is considered as better than a solution s′ if f1(s) > f1(s
′), or

f1(s) = f1(s
′) and f2(s) < f2(s

′), or f1(s) = f1(s
′), f2(s) = f2(s

′) and f3(s) < f3(s
′),

or f1(s) = f1(s
′), f2(s) = f2(s

′), f3(s) = f3(s
′) and f4(s) < f4(s

′).
In order to explore various regions of the solution space, we use two kinds of

jumps to escape a local optimum. One consists in performing a series of 1-moves
from RNSDCTOP−IS(s) to RSDCTOP−IS(s), while the other makes a series of swap-
moves between RNSDCTOP−IS(s) and RSDCTOP−IS(s) such that the profit of the
routes in RSDCTOP−IS(s) increases. A solution s′ resulting from a jump possibly
contains infeasible routes. In this case, to remove the infeasibility in a subset R of
routes, we use a repair procedure that performs a series of 1-moves which strictly
reduce the infeasibility in R and do not modify the other existing routes. Notice
that such 1-moves always exist since it is always possible to remove a customer from
an infeasible route and to insert it into a new route.

The algorithms make use of the classical 2-opt procedure to improve the current
solution in case the instance is symmetric.

The TS algorithm typically visits a limited number of different regions of the
solution space, each one being deeply explored before jumping to the next one.
On the contrary, the variable neighborhood search algorithm performs much more
jumps, which results in an exploration of a larger number of different regions of the
solution space, but at the expense of a less intensive search in each region.

7 Computational results

The exact and the heuristic solution algorithms were implemented in C++, using
CPLEX 10.1.1. The experiments were carried out on a 2.4 GHz Intel Dual Core
Pentium IV machine with 3 GB of RAM for the heuristic algorithms, while an Intel
Xeon processor E5520, 2.26 GHz machine with 12 GB of RAM was used to test the

16

exact algorithm. Both algorithms were run on Windows 7 operating system and
compiled under Visual C++ 2010 Express Edition.

The overall execution time limit for the exact algorithm was set to 6 hours,
while the time for each of the heuristic algorithms was set to 10 minutes. All the
parameters were set as in [2].

After some preliminary tests, we have decided to test all the approaches on Set
4 of the instances proposed in [2], as the increase in the profit due to incomplete
service is larger on Set 4 than on the other sets. The number n of vertices ranges
from 51 to 200. The profit pi of customer i was defined as (0.5 + b)di, where b is a
random number uniformly generated in the interval [0, 1]. Customer demands were
generated using a technique proposed in Belenguer, Martinez and Mota [7] and Dror
and Trudeau [11] to derive benchmark instances for the SDVRP. For each original
instance, we generated 11 new instances where the customer demand is generated
according to 11 scenarios ([0.01− 0.1], [0.1− 0.3], [0.1− 0.5], [0.1− 0.7], [0.1− 0.9],
[0.3 − 0.5], [0.3 − 0.7], [0.3 − 0.9], [0.5 − 0.7], [0.5 − 0.9], [0.7 − 0.9]). The demand
of a customer in scenario [η− ν] is randomly generated from a uniform distribution
on the interval [ηQ, νQ].

The results of the experiments are summarized in Tables 1 and 2. Table 1 is
devoted to the instances with a number of vertices n ≤ 101, whereas Table 2 to the
instances with n > 101.

The first section of Table 1 describes the instances, with the name of the instance,
number of vertices n, number of vehicles m, capacity Q and time limit on each tour
Tmax.

The column SDCTOP z∗ gives the lower bound of the solution to the SDCTOP
which is the best heuristic solution found in [2]. An ∗ means that the solution is
optimal.

The further sections provide the results for the SDCTOP-IS. The columns in
the section ’branch-and-price’ provide the best upper bound (z∗), the best heuristic
solution (z∗) and the percentage gap (gap(%)). Moreover, the time in parentheses
gives the number of seconds required to find the optimal solution in all the cases
optimality has been reached, i.e. whenever the gap is 0. A sign ’-’ means that an
upper bound could not be found within the time limit. While only few instances
could be solved to optimality, the optimality gap is very small, being in most cases
negligible and in 3 cases only above 1%.

In the section ’Heuristic’ we report the value of the best heuristic solution ob-
tained by the VNS and the TS (z∗H). We note that both algorithms always find
the same solution (on all instances reported in Tables 1 and 2) except for instance
p16 30 50 where the solution of the TS is 1518.463 while the solution of the VNS

17

is 1518.461. In the following columns, the percentage gap with respect to the up-
per bound obtained by the branch-and-price (

z∗−z∗H
z∗

) and the percentage gap with

respect to the branch-and-price heuristic (
z∗−z∗H
z∗

) are shown. A negative value in
the latter column indicates that the best solution between VNS and TS is a bet-
ter solution than the branch-and-price heuristic solution. Finally, the last column
(Imp(%)) gives the percentage improvements of the best solution obtained for the
SDCTOP-IS by the TS and the VNS with respect to the best known solution of
the SDCTOP. It is interesting to observe that, while the worst-case analysis has
indicated a maximum potential improvement of 50%, from the computational point
of view, allowing incomplete service does not offer a significant improvement with
respect to the complete service. Although the improvement is calculated by using
heuristic values, the quality of the heuristics, shown by means of comparisons with
the optimum, makes such values very reliable.

The first section of Table 2 describes the instances. Then, in the SDCTOP col-
umn we report the best known solution of the SDCTOP (z∗), which is the heuristic
value obtained in [2]. In the section SDCTOP-IS we provide the value of the best
solution obtained by the TS and the VNS (z∗H) and the percentage improvement
(Imp (%)) of the solution with respect to the best solution to the SDCTOP. Also
on these instances of bigger size allowing incomplete service does not offer a signifi-
cant increase of the profit. Only on the instance p09 70 90 we observed a relevant
improvement of the profit (5.17%).

The results in Tables 1 and 2 show only a slight improvement of SDCTOP-IS
with respect to the solution of the SDCTOP. Thus, we decided to run a second set of
tests in order to investigate possible instance configurations giving higher gainings.
To this purpose, we took the Solomon benchmark instances R101, R201, C101, C201,
RC101 and RC201. We kept the data concerning the coordinates of the vertices and
the vehicle capacity, and changed customer demands, as previously done, with the
following values of η and ν: [0.7 − 0.75], [0.7 − 0.8]. The Tmax value has been set
to a large value so that it has no impact on the solution. The number of customers
is equal to 100. The results are summarized in Table 3. Column headings have the
same meaning as before. The solution of the SDCTOP was obtained by applying
the heuristic algorithm proposed in [2]. The results show a much higher gaining with
respect to the previous tests when m = 2, with an average improvement of 29.72%
and a maximum improvement of 34.23%. When m = 3, the average improvement
is 0.22% and the maximum improvement is 0.67%. This is obviously due to the
way the instances are constructed. In particular, when m = 2, given that η = 0.7,
for each vehicle a fraction of capacity equal to at least (1 − ν) remains unused in

18

a SDCTOP solution, while a SDCTOP-IS solution can fully exploit the capacity
of both vehicles. Note that it is possible to achieve larger improvements also for
the case of m = 3 by choosing appropriate values of η and ν. For example, when
η = 0.8 and ν = 0.9, at least 10% of the capacity of each vehicle remains unused in
a SDCTOP solution.

19

T
a
b
le

1
:
n
≤

1
0
1

In
st
a
n
ce

S
D
C
T
O
P
[2
]

S
D
C
T
O
P
-I
S

B
ra
n
ch

-a
n
d
-p
ri
ce

H
eu

ri
st
ic

Im
p
(%

)

n
a
m
e

n
m

Q
T
m

a
x

z
∗

z
∗

z
∗

g
a
p
(%

)
z
∗ H

z
∗
−
z
∗ H

z
∗

z
∗
−
z
∗ H

z
∗

p
0
3
1
1
0

1
0
1

1
5

2
0
0

2
0
0

1
4
0
9
*

1
4
0
9
.0
0
0

1
4
0
9
.0
0
0

0
.0
0

(
2
5
9
”
)

1
4
0
9
.0
0
0

0
0
.0
0

0
.0
0

p
0
3
1
0
3
0

1
3
0
5
*

1
3
0
5
.1
9
3

1
2
8
5
.0
8
8

1
.5
4

1
3
0
5
.1
9
3

0
-1
.5
6

0
.0
1

p
0
3
1
0
5
0

1
1
1
7
*

1
1
1
7
.4
4
9

1
1
1
5
.0
7
2

0
.2
1

1
1
1
7
.4
4
9

0
-0
.2
1

0
.0
4

p
0
3
1
0
7
0

9
6
1
*

9
6
1
.3
1
0

9
6
1
.0
0
0

0
.0
3

9
6
1
.3
1
0

0
-0
.0
3

0
.0
3

p
0
3
1
0
9
0

1
0
0
5
*

1
0
0
6
.2
1
7

1
0
0
6
.1
7
0

0
.0
1

1
0
0
6
.2
1
7

0
0
.0
0

0
.1
2

p
0
3
3
0
5
0

9
2
7

9
2
8
.8
7
6

9
2
8
.6
0
5

0
.0
3

9
2
8
.8
7
6

0
-0
.0
3

0
.2
0

p
0
3
3
0
7
0

8
1
0

8
1
1
.3
5
7

8
1
1
.2
8
2

0
.0
1

8
1
1
.3
5
7

0
-0
.0
1

0
.1
6

p
0
3
3
0
9
0

7
5
5
*

7
5
5
.6
7
3

7
5
5
.6
0
4

0
.0
1

7
5
5
.6
7
3

0
-0
.0
1

0
.0
9

p
0
3
5
0
7
0

7
3
9

7
4
1
.6
3
3

7
4
1
.3
2
1

0
.0
4

7
4
1
.6
3
3

0
-0
.0
4

0
.3
5

p
0
3
5
0
9
0

6
4
3
*

6
4
3
.7
9
4

6
4
3
.7
4
7

0
.0
1

6
4
3
.7
9
4

0
-0
.0
1

0
.1
2

p
0
3
7
0
9
0

5
8
5

5
9
2
.8
0
0

5
9
2
.7
4
8

0
.0
1

5
9
2
.8
0
0

0
-0
.0
1

1
.3
3

p
0
6
1
1
0

5
1

1
0

1
6
0

2
0
0

7
6
1
*

7
6
1
.0
0
0

7
6
1
.0
0
0

0
.0
0

(
2
2
”
)

7
6
1
.0
0
0

0
0
.0
0

0
.0
0

p
0
6
1
0
3
0

7
5
7
*

7
5
8
.3
3
3

7
5
4
.0
0
0

0
.5
7

7
5
8
.3
3
3

0
-0
.5
7

0
.1
8

p
0
6
1
0
5
0

6
8
7
*

6
8
9
.2
9
8

6
8
8
.7
7
2

0
.0
8

6
8
9
.2
9
8

0
-0
.0
8

0
.3
3

p
0
6
1
0
7
0

5
8
1
*

5
8
4
.1
6
2

5
8
4
.0
6
0

0
.0
2

5
8
4
.1
6
2

0
-0
.0
2

0
.5
4

p
0
6
1
0
9
0

4
9
5
*

4
9
7
.6
4
0

4
9
7
.4
8
0

0
.0
3

4
9
7
.6
4
0

0
-0
.0
3

0
.5
3

p
0
6
3
0
5
0

5
3
8
*

5
3
9
.6
0
0

5
3
9
.3
4
4

0
.0
5

5
3
9
.6
0
0

0
-0
.0
5

0
.3
0

p
0
6
3
0
7
0

4
9
0
*

4
9
0
.5
6
3

4
9
0
.5
2
0

0
.0
1

4
9
0
.5
6
3

0
-0
.0
1

0
.1
1

p
0
6
3
0
9
0

4
3
2

4
3
5
.3
4
2

4
3
5
.3
1
7

0
.0
1

4
3
5
.3
4
2

0
-0
.0
1

0
.7
7

p
0
6
5
0
7
0

4
2
8

4
3
4
.5
1
1

4
3
4
.4
2
2

0
.0
2

4
3
4
.5
1
1

0
-0
.0
2

1
.5
2

p
0
6
5
0
9
0

3
9
6

4
0
0
.8
7
5

4
0
0
.8
4
9

0
.0
1

4
0
0
.8
7
5

0
-0
.0
1

1
.2
3

p
0
6
7
0
9
0

3
3
5

3
4
2
.9
9
3

3
4
2
.9
7
2

0
.0
1

3
4
2
.9
9
3

0
-0
.0
1

2
.3
7

p
0
7
1
1
0

7
6

2
0

1
4
0

1
6
0

1
3
2
7
*

1
3
2
7
.0
0
0

1
3
2
7
.0
0
0

0
.0
0

(
1
3
3
”
)

1
3
2
7
.0
0
0

0
0
.0
0

0
.0
0

p
0
7
1
0
3
0

1
3
2
7
*

1
3
2
7
.0
0
0

1
3
2
7
.0
0
0

0
.0
0

(
6
9
”
)

1
3
2
7
.0
0
0

0
0
.0
0

0
.0
0

p
0
7
1
0
5
0

1
2
9
2
*

1
2
9
2
.1
1
5

1
2
8
4
.1
0
0

0
.6
2

1
2
9
2
.1
1
5

0
-0
.6
2

0
.0
1

p
0
7
1
0
7
0

1
1
8
0
*

1
1
8
1
.5
6
5

1
1
8
0
.5
1
4

0
.0
9

1
1
8
1
.5
6
5

0
-0
.0
9

0
.1
3

p
0
7
1
0
9
0

1
0
7
6

1
0
7
7
.7
5
2

1
0
7
7
.4
7
2

0
.0
3

1
0
7
7
.7
5
2

0
-0
.0
3

0
.1
6

p
0
7
3
0
5
0

1
1
4
2
*

1
1
4
2
.2
1
5

1
1
3
9
.7
5
4

0
.2
2

1
1
4
2
.2
1
5

0
-0
.2
2

0
.0
2

p
0
7
3
0
7
0

9
8
0
*

9
8
1
.1
2
5

9
8
0
.7
5
6

0
.0
4

9
8
1
.1
2
5

0
-0
.0
4

0
.1
1

p
0
7
3
0
9
0

8
9
4
*

8
9
5
.0
0
0

8
9
4
.9
4
7

0
.0
1

8
9
5
.0
0
0

0
-0
.0
1

0
.1
1

p
0
7
5
0
7
0

8
8
4
*

8
8
4
.3
5
0

8
8
3
.6
2
3

0
.0
8

8
8
4
.3
5
0

0
-0
.0
8

0
.0
4

p
0
7
5
0
9
0

8
1
1

8
1
3
.6
5
0

8
1
2
.6
4
2

0
.1
2

8
1
3
.6
5
0

0
-0
.1
2

0
.3
3

p
0
7
7
0
9
0

7
2
3

7
2
8
.8
4
0

7
2
8
.7
7
4

0
.0
1

7
2
8
.8
4
0

0
-0
.0
1

0
.7
1

p
0
8
1
1
0

1
0
1

1
5

2
0
0

2
3
0

1
4
0
9
*

1
4
0
9
.0
0
0

1
4
0
9
.0
0
0

0
.0
0

(
1
1
2
8
”
)

1
4
0
9
.0
0
0

0
0
.0
0

0
.0
0

p
0
8
1
0
3
0

1
3
2
6
*

1
3
2
6
.7
9
0

1
2
9
4
.2
8
0

2
.4
5

1
3
2
6
.7
9
0

0
-2
.5
1

0
.0
6

p
0
8
1
0
5
0

1
1
5
8

1
1
5
9
.4
4
0

1
1
4
9
.7
0
5

0
.8
4

1
1
5
9
.4
4
0

0
-0
.8
5

0
.1
2

p
0
8
1
0
7
0

1
0
4
5
*

1
0
4
6
.2
9
4

1
0
4
4
.0
0
0

0
.2
2

1
0
4
6
.2
9
4

0
-0
.2
2

0
.1
2

p
0
8
1
0
9
0

9
1
0
*

9
1
0
.5
0
9

9
0
9
.3
4
5

0
.1
3

9
1
0
.5
0
9

0
-0
.1
3

0
.0
6

p
0
8
3
0
5
0

9
3
6

9
3
7
.7
8
6

9
3
7
.4
1
7

0
.0
4

9
3
7
.7
8
6

0
-0
.0
4

0
.1
9

p
0
8
3
0
7
0

8
3
8

8
3
9
.1
4
8

8
3
8
.8
3
2

0
.0
4

8
3
9
.1
4
8

0
-0
.0
4

0
.1
4

p
0
8
3
0
9
0

7
7
7
*

7
7
7
.8
7
3

7
7
7
.8
6
2

0
.0
0

7
7
7
.8
7
3

0
0
.0
0

0
.1
1

p
0
8
5
0
7
0

7
2
5

7
3
3
.2
8
8

7
3
1
.1
5
1

0
.2
9

7
3
3
.2
8
8

0
-0
.2
9

1
.1
4

p
0
8
5
0
9
0

6
7
8

6
8
0
.6
4
6

6
8
0
.6
2
9

0
.0
0

6
8
0
.6
4
6

0
0
.0
0

0
.3
9

p
0
8
7
0
9
0

5
8
5

5
9
4
.9
6
6

5
9
4
.9
1
7

0
.0
1

5
9
4
.9
6
6

0
-0
.0
1

1
.7
0

p
1
4
1
1
0

1
0
1

1
0

2
0
0

1
0
4
0

1
7
1
0
*

1
7
1
0
.0
0
0

1
7
1
0
.0
0
0

0
.0
0

(
1
8
5
4
”
)

1
7
1
0
.0
0
0

0
0
.0
0

0
.0
0

p
1
4
1
0
3
0

1
3
1
9
*

1
3
1
9
.7
6
9

1
2
9
1
.9
2
3

2
.1
1

1
3
1
9
.7
6
9

0
-2
.1
6

0
.0
6

p
1
4
1
0
5
0

1
0
4
0

1
0
4
1
.3
7
9

1
0
4
0
.2
7
6

0
.1
1

1
0
4
1
.3
7
9

0
-0
.1
1

0
.1
3

p
1
4
1
0
7
0

9
3
0

9
3
1
.8
7
8

9
3
1
.8
7
8

0
.0
0

(
1
2
8
1
6
”
)

9
3
1
.8
7
8

0
0
.0
0

0
.2
0

p
1
4
1
0
9
0

8
2
3

8
2
4
.9
4
3

8
2
4
.8
9
7

0
.0
1

8
2
4
.9
4
3

0
-0
.0
1

0
.2
4

p
1
4
3
0
5
0

8
6
2

8
6
3
.7
9
8

8
6
3
.4
2
1

0
.0
4

8
6
3
.7
9
8

0
-0
.0
4

0
.2
1

p
1
4
3
0
7
0

7
5
4

7
5
5
.7
6
8

7
5
5
.7
1
2

0
.0
1

7
5
5
.7
6
8

0
-0
.0
1

0
.2
3

p
1
4
3
0
9
0

6
4
7

6
5
0
.3
0
3

6
4
9
.7
9
2

0
.0
8

6
5
0
.3
0
3

0
-0
.0
8

0
.5
1

p
1
4
5
0
7
0

6
1
9

-
6
1
7
.5
2
3

-
6
2
5
.2
2
7

-
-1
.2
5

1
.0
1

p
1
4
5
0
9
0

5
6
1

-
5
6
4
.1
5
4

-
5
6
4
.7
9
6

-
-0
.1
1

0
.6
8

p
1
4
7
0
9
0

4
9
8

-
5
0
0
.0
6
5

-
5
0
0
.1
0
3

-
-0
.0
1

0
.4
2

20

Table 2: n > 101

Instance SDCTOP[2] SDCTOP-IS
Heuristic Imp (%)

name n m Q Tmax z∗ z∗H
p09 1 10 151 10 200 200 2194 2194.000 0.00
p09 10 30 1417 1418.491 0.11
p09 10 50 1136 1138.204 0.19
p09 10 70 920 921.526 0.17
p09 10 90 973 974.886 0.19
p09 30 50 814 816.492 0.31
p09 30 70 750 751.920 0.26
p09 30 90 667 669.500 0.37
p09 50 70 582 588.674 1.15
p09 50 90 539 542.940 0.73
p09 70 90 423 444.879 5.17
p10 1 10 200 20 200 200 3048 3048.000 0.00
p10 10 30 2376 2376.842 0.04
p10 10 50 1975 1977.051 0.10
p10 10 70 1616 1617.350 0.08
p10 10 90 1578 1579.023 0.06
p10 30 50 1450 1451.892 0.13
p10 30 70 1278 1278.358 0.03
p10 30 90 1239 1240.288 0.10
p10 50 70 1091 1094.230 0.30
p10 50 90 999 1000.250 0.13
p10 70 90 886 887.929 0.22
p13 1 10 121 15 200 720 1287 1287.000 0.00
p13 10 30 1076 1077.636 0.15
p13 10 50 884 884.807 0.09
p13 10 70 761 761.353 0.05
p13 10 90 722 722.571 0.08
p13 30 50 679 679.923 0.14
p13 30 70 617 617.864 0.14
p13 30 90 572 572.163 0.03
p13 50 70 503 505.321 0.46
p13 50 90 438 439.412 0.32
p13 70 90 421 421.105 0.03
p15 1 10 151 15 200 200 2159 2159.000 0.00
p15 10 30 1695 1696.500 0.09
p15 10 50 1341 1341.794 0.06
p15 10 70 1264 1265.603 0.13
p15 10 90 1065 1065.677 0.06
p15 30 50 1046 1047.112 0.11
p15 30 70 934 934.218 0.02
p15 30 90 837 840.565 0.43
p15 50 70 806 809.081 0.38
p15 50 90 773 777.808 0.62
p15 70 90 659 661.559 0.39
p16 1 10 200 15 200 200 3066 3066.000 0.00
p16 10 30 2386 2386.063 0.00
p16 10 50 1900 1900.871 0.05
p16 10 70 1731 1731.630 0.04
p16 10 90 1606 1607.088 0.07
p16 30 50 1518 1518.463 0.03
p16 30 70 1358 1359.733 0.13
p16 30 90 1177 1179.292 0.19
p16 50 70 1122 1123.944 0.17
p16 50 90 964 965.441 0.15
p16 70 90 911 915.262 0.47

21

Table 3: Test on additional instances

Instance SDCTOP SDCTOP-IS
Heuristic Imp (%)

name m Q η ν z∗ z∗H
C101 2 200 0.7 0.75 298 400 34.23

2 0.7 0.8 318 400 25.79
3 0.7 0.75 596 600 0.67
3 0.7 0.8 600 600 0.00

C201 2 700 0.7 0.75 1048 1400 33.59
2 0.7 0.8 1118 1400 25.22
3 0.7 0.75 2095 2100 0.24
3 0.7 0.8 2100 2100 0.00

R101 2 200 0.7 0.75 298 400 34.23
2 0.7 0.8 318 400 25.79
3 0.7 0.75 596 600 0.67
3 0.7 0.8 600 600 0.00

R201 2 1000 0.7 0.75 1498 2000 33.51
2 0.7 0.8 1594 2000 25.47
3 0.7 0.75 2994 3000 0.20
3 0.7 0.8 3000 3000 0.00

RC101 2 200 0.7 0.75 298 400 34.23
2 0.7 0.8 318 400 25.79
3 0.7 0.75 596 600 0.67
3 0.7 0.8 600 600 0.00

RC201 2 1000 0.7 0.75 1498 2000 33.51
2 0.7 0.8 1597 2000 25.23
3 0.7 0.75 2993 3000 0.23
3 0.7 0.8 3000 3000 0.00

8 Conclusions

In this paper we have studied the Capacitated Team Orienteering Problem with
Split Deliveries and Incomplete Service (SDCTOP-IS). We have shown that allowing
incomplete service may offer an improvement of the collected profit up to 50%.
The computational results, obtained on a large set of instances, show that the
improvement tends to be negligible on randomly generated instances while it can
be substantial when the customer demands are generated in specific ranges.

22

References

[1] Archetti, C., Bianchessi, N., Speranza, M.G. (2011), A column generation ap-
proach for the Split Delivery Vehicle Routing Problem, Networks, 58 (4), 241-
254.

[2] Archetti, C., Bianchessi, N., Hertz, A., Speranza, M.G. (2013), The split deliv-
ery capacitated team orienteering problem, Networks, to appear.

[3] Archetti, C., Feillet, D., Hertz, A., Speranza, M.G. (2009), The capacitated
team orienteering and profitable tour problem, Journal of the Operational Re-
search Society 60, 831-842.

[4] Archetti, C., Hertz, A., Speranza, M.G. (2006), A tabu search algorithm for
the split delivery vehicle routing problem, Transportation Science 40, 64-73.

[5] Archetti, C., Savelsbergh, M., Speranza, M.G. (2006), Worst-case analysis for
split delivery vehicle routing problems, Transportation Science 40, 226-234.

[6] Archetti, C., Speranza, M.G. (2008), The split delivery vehicle routing prob-
lem: A survey, in: The Vehicle Routing Problem Latest Advances and
New Challenges, B. Golden, R. Raghavan, E. Wasil (eds.), Operations Re-
search/Computer Science Interfaces Series 43, 103-122, Springer-Verlag.

[7] Belenguer, J.M., Martinez, M.C., Mota, E. (2000), A lower bound for the split
delivery vehicle routing problem, Operations Research 48, 801-810.

[8] Butt, S.E., Cavalier, T.M. (1994), A heuristic for the multiple tour maximum
collection problem, Computers and Operations Research 21, 101-111.

[9] Chao, I-M., Golden, B., Wasil, E.A. (1996), The team orienteering problem,
European Journal of Operational Research 88, 464-474.

[10] Desaulniers, G. (2010), Branch-and-price-and-cut for the split delivery vehicle
routing problem with time windows, Operations Research 58, 179-192.

[11] Dror, M., Trudeau, P. (1989), Savings by split delivery routing, Transportation
Science 23, 141-145.

[12] Feillet, D., Dejax, P., Gendreau, M. (2005), Traveling salesman problems with
profits, Transportation Science 39, 188-205.

23

[13] Toth, P., Vigo, D. (eds.), The Vehicle Routing Problem, SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia (2002).

[14] Vansteenwegen, P., Souffriau, W., Van Oudheusden, D. (2011), The orienteer-
ing problem: A survey, European Journal of Operational Research 209, 1-10.

24

