
An incremental algorithm for the uncapacitated

facility location problem

Ashwin Arulselvan∗1, Olaf Maurer†2, and Martin Skutella‡2

1Department of Management Science, University of Strathclyde§
2Institut für Mathematik, Technische Universität Berlin

November 13, 2014

Abstract

We study the incremental facility location problem, wherein we are
given an instance of the uncapacitated facility location problem and
seek an incremental sequence of opening facilities and an incremental
sequence of serving customers along with their fixed assignments to
facilities open in the partial sequence. We say that a sequence has a
competitive ratio of k, if the cost of serving the first ` customers in
the sequence is at most k times the optimal solution for serving any
` customers for all possible values of `. We provide an incremental
framework that computes a sequence with a competitive ratio of at
most 8 and a worst-case instance that provides a lower bound of 3 for
any incremental sequence. We also present the results of our computa-
tional experiments carried out on a set of benchmark instances for the
uncapacitated facility location problem. The problem has applications
in multi-stage network planning.

Keywords: incremental algorithm, facility location problem, network design, com-

petitive ratio, robust location

∗ashwin.arulselvan@strath.ac.uk
†maurer@math.tu-berlin.de
‡martin.skutella@tu-berlin.de
§This research was carried out while the author was working at Technische Universität

Berlin

1

1 Introduction

In the uncapacitated facility location problem (UFL), we are given a set of
m facilities and a set of n customers. Each facility has an opening cost and
each customer-facility pair has an assignment cost. In the robust facility
location problem as defined in [2], we are given an additional input ` ≤ n
and we seek a cost-minimal solution that connects any ` of the n customers
to open facilities. The problem was defined by them as robust [2] in the
sense that if the instance is altered by adding new customers that are very
far away from every facility, the optimal solution would remain the same for
the new instance. The presence of a very small fraction of customers who are
far away has a significant influence on the service provided to the majority
of customers. A final solution might open facilities at absurd locations in
order to be favourable to these outlying customers. A robust solution in this
sense is impervious to such an effect. We denote the robust facility location
problem for a given number ` by `-RFLP.

In this work, we study the incremental facility location problem (IncFLP)
that is based on the RFLP. The IncFLP asks for sequences of facilities
and customers and an assignment of customers to facilities. The customer
sequence defines the order in which the customers will be served and the
facility sequence defines the order in which the facilities will be opened. The
sequence could be viewed as an event happening in time (a facility opened
or a customer served). The assignment of a customer to a facility is only
valid if the facility was opened earlier in time. Reassignment of customers
at a later time point is not permitted and so the solution is incremental.

For every point ` in the sequence, we compare the cost of the solution
incurred by the sequence to the optimal cost of `-RFLP. We will make these
definitions more precise in the next section.

Motivation

The incremental facility location problem is motivated by the need to de-
ploy telecommunication networks in phases due to budget, time or resource
restrictions. In practical network planning, problems require incremental
solutions that help build the network in stages in the most efficient way.
In [2], the authors motivated the RFLP by the presence of a minority of
customers that are at a distance from the majority. Connecting the minor-
ity requires building facilities exclusively to serve their demands which is not
cost effective, especially at the beginning of a network rollout. In practice, a
preferential service cannot be offered as a solution since all customers must

2

be served at some point of time. We also do not have the luxury to build
the entire network at a stretch, when a complete solution to the uncapac-
itated facility location problem is given. By using an incremental solution
to this problem, we can identify a subset of the planned network that will
be constructed in the early time stages and we can use the resulting profits
then to connect more distant parts of the network at a later point of time.
This gives us the motivation for our problem. Please observe that this is not
the same as building the network for a known preset sequence of customers.
We are actually seeking a cost effective sequence. A planner or network
builder could choose a specific point in the sequence depending on the re-
source availability and choose to serve that many customers in the sequence
at that point. Subsequent service could be provided for the remaining cus-
tomers in the sequence at later time periods. The cost of serving the first
` customers in the sequence is compared with the cost of optimally serving
any ` customers, in order to make sure the sequence is cost effective.

Previous work

The uncapacitated facility location problem (UFLP) with metric assign-
ment cost has a long line of research [1, 5, 6, 16]. The best approxima-
tion guarantee known for this problem is 1.488 [12] and there can be no
polynomial time algorithm to approximate it within a ratio of 1.463 unless
NP ⊂ DTIME(nO(log logn)) [9]. The problem has also been studied in in-
cremental settings [13, 15] but prior work involves different settings than the
one considered in our work.

The author of [15] is interested in a nested sequence of facilities and a
threshold sequence for the scaling of the assignment costs. A solution in
the sequence is a solution corresponding to a specific scaling factor, which
could be inferred from the threshold sequence. Each solution in the se-
quence serves all customers. The nested sequence of facilities gives a near
optimal solution for every possible scaling factor. Lin et al. [13] provided
a framework for solving several incremental problems and solved the prob-
lem studied in [15] under the same settings. The framework proposed by
them uses a black box algorithm to iteratively augment partial competitive
solutions to reach subsequent competitive solutions that eventually become
complete. Chobrak et al. [3, 4] independently obtained competitive deter-
ministic and randomised algorithms for the incremental k-median problem.
The results are obtained through a reduction to the online bidding problem.
We follow the doubling technique proposed in the above works. This involves
incrementally building a solution by comparing it with the optimal solution

3

to ensure competitiveness and refining it when it is necessary. Since we are
required to produce a sequence of customers and facilities in our solution,
we deviate slightly by saving the partially refined solutions and delay the
construction of incremental solutions. We run a second phase to construct
the incremental solution from the partially saved refined solutions.

In [7], the authors are interested in an incremental solution when the
demand points arrive one at a time assuming we have complete knowledge
of the network. A constant factor competitive algorithm is proposed assum-
ing uniform facility cost. In this algorithm, merging of existing clusters is
allowed. This is in contrast to an online algorithm in [14], where the decision
to be served by a facility is irrevocable. An O(log n)-competitive algorithm
was proposed for this version of the online problem. This was later improved
to O(logn

log logn) in [8]. In both works, the algorithm is compared against an
offline algorithm that is aware of the arrival order of the customers and the
competitive ratio is calculated for all possible arrival orders.

The robust version of the facility location problem (RFLP) was first stud-
ied by Charikar et al. [2]. They gave a 3-approximation algorithm using the
primal-dual technique. This approximation guarantee was later improved
to 2 by Jain et al. [11]. We will be using this as a black box algorithm in
our framework.

Contribution

We provide an algorithm that produces a sequence that is within a factor
of 8 from the optimal `-RFLP for ` = 1, . . . , |R|. We then present the
computational results of our implementation of the framework on a set of
benchmark instances for UFL. For each instance, we give the worst-case
and average-case bounds of our incremental sequence (for ` = 1, . . . , n)
constructed by the algorithm when compared against the optimal cost of
`-RFLP.

Organization

We begin in Section 2 with some basic notation and the formal problem
definition. In Section 3, we provide the algorithmic framework and explain
it. In Section 4, we give the analysis of the algorithm and show it is 8-
competitive. In Section 5, we present an example that provides a lower
bound on the best possible factor that could be achieved by any algorithm.
We present our computational results in Section 6. Finally we conclude with
a summary and notes on future extensions in Section 7.

4

2 Problem definition

We are given a set F of potential facility locations and a set R of customers.
Also, we are given metric service costs cS : F ×R→ Q+ and facility opening
costs cF : F → Q+. Let m = |F | be the number of potential facilities and
n = |R| the number of customers. We seek nested sets of facilities, customers
and assignment edges between them for ` = 1, . . . , n. An approximation
algorithm to this problem is called a k-competitive algorithm if the costs
of the induced solutions of the `-RFLPs are not more than a factor of k
away from the costs of optimal solutions to the `-RFLPs, where k does not
depend on ` and not on the instance.

We need additional notation to make this precise. For a subset of fa-
cilities F ′ ⊆ F , we denote the total facility cost of this set by cF (F ′). We
denote the service cost incurred by serving a set of customers R′ ⊆ R by a
set of facilities F ′ ⊆ F by cS(F ′, R′) =

∑
j∈R′ cS(F ′, j), where cS(F ′, j) is

the cost of the cheapest assignment of customer j to a facility in F ′. For
a number r less than |R′|, let cS(F ′, R′, r) denote the cost of the cheapest
assignment of r customers from R′ to a facility in F ′.

In the IncFLP, we seek a sequence to serve customers

∅ = R0 (R1 (R2 (· · · (Rn = R

where |R`| = ` and a sequence to open facilities

F1 ⊆ F2 ⊆ · · · ⊆ Fn

such that the customers in R`\R`−1 can be assigned to facilities in F`. The
objective is to minimize the competitive ratio of the sequence. The compet-
itive ratio of a sequence is defined as

max
`=1,...,n

cF (F`) +
∑`

k=1 cS(Fk, Rk\Rk−1)

OPT`
,

where OPT` is the optimal cost of the `-RFLP.

3 Algorithm FacInc(F,R)

Let A be any approximation algorithm for the RFLP. We will use A as a
black-box. We write (Z,M) = A(F,R, `) and mean that A takes as input
the set of potential facility locations F , the set of customers R and an integer
` ≤ n, where ` is the number of customers to be served. It produces the

5

output (Z,M), where Z ⊆ F is the set of facilities opened and M ⊆ R,
|M | = `, is the set of customers served by the facilities in Z. Given a set
of customers and the set of open facilities, an optimal assignment could be
easily computed by assigning each customer in the given set to its closest
open facility. We now provide our incremental framework FacInc(F,R).

We start with a solution to the UFLP obtained from A with ` := n.
Let F ′ ⊆ F be the set of facilities opened in this solution. Our algorithm
runs in two phases, the refinement phase and the incremental phase. The
refinement phase constructs and collects solutions to the `-RFLP. These
solutions are not necessarily incremental. In the incremental phase, these
partial solutions are glued together to construct an incremental solution.
The point at which we collect a new partial solution in the refinement phase
is called a refinement point. The initial complete solution for the UFLP
will be the first refinement point solution we collect. We iteratively reduce
the value of ` from |R| to 1 and check if the last collected refinement point
solution cost exceeds twice the cost of the solution A(F,R, `). If it does,
then we collect the A(F,R, `) as a new refinement point solution.

Refinement phase:

1: Initialize: Fc := F ′, Rc := R, P := {n}
2: for ` = (n− 1) to 1 do
3: (FA, RA) := A(F,R, `)
4: if cF (Fc) + cS(Fc, Rc) ≥ 2(cF (FA) + cS(FA, RA)) then
5: F` := Fc := FA

6: R` := Rc := RA

7: P := P ∪ {`}
8: end if
9: end for

The elements in the set P correspond to the points at which refinement
took place. Let their total number |P | = K. We shall now index the
refinement point solutions from 1 to K in the increasing order of the number
of customers they are serving. This helps us in presenting the analysis
with clarity. Let us denote the solutions as (F1, R1), (F2, R2), . . . , (FK , RK);
notice that FK = F ′ and RK = R.

For k = 1, . . . ,K, let rk := |Rk| be the number of customers served
in the kth refinement point solution. We call the time between the service
commencement of customer (rk−1+1) and rk as the kth period (with r0 := 0).
We also say this period belongs to the solution (Fk, Rk). From a solution
(Fk, Rk) at a refinement point, we can construct solutions with a constant
approximation ratio for its period.

6

In the incremental phase, we glue these partial refined solutions together
to construct an incremental solution. We will do this by opening all facilities
belonging to a period at the period’s beginning.

Incremental phase:

1: Initialize: F̃1 := F1, k := 2
2: for ` = 2 to n do
3: if (`− 1) ∈ P then
4: F̃` := F̃`−1 ∪ Fk

5: k := k + 1
6: else
7: F̃` := F̃`−1
8: end if
9: end for

Notice that F̃rk =
⋃k

j=1 Fj and we now have our incremental sequence
of facilities:

F̃1 ⊆ F̃2 ⊆ · · · ⊆ F̃n−1 ⊆ F̃n =
K⋃
k=1

Fk .

As for customers, we can pick an incremental sequence greedily by adding in
every step the current non-served customer with cheapest service cost with
respect to the currently open facilities. This yields a sequence

∅ = R̃0 (R̃1 (· · · (R̃n−1 (R̃n = R .

4 Analysis

We first show that, at refinement points, the cost of our incremental solution
is at most twice the cost of the solution provided by Algorithm A.

Theorem 4.1. For all refinement points k = 1, . . . ,K, the cost of our
incremental solution for rk customers is at most 2cF (Fk) + 2cS(Fk, Rk).

To this end, we first show the following lemma, which bounds the increase
in cost from one refinement point to the next.

Lemma 4.2. For all refinement points k = 2, . . . ,K,

2cF (Fk−1) + 2cS(Fk−1, Rk−1) + cF (Fk) + cS(Fk, Rk \ R̃rk−1
, rk − rk−1)

≤ 2cF (Fk) + 2cS(Fk, Rk) .

7

Proof. Our refinement condition at step 4 of the incremental phase implies

2cF (Fk−1) + 2cS(Fk−1, Rk−1) < cF (Fk) + cS(Fk, Rk) .

This yields

2cF (Fk−1) + 2cS(Fk−1, Rk−1) + cF (Fk) + cS(Fk, Rk \ R̃rk−1
, rk − rk−1)

< 2cF (Fk) + cS(Fk, Rk \ R̃rk−1
, rk − rk−1) + cS(Fk, Rk)

≤ 2cF (Fk) + 2cS(Fk, Rk) .

This completes the proof.

We are now ready to bound the additional cost incurred by the solution
being incremental.

Lemma 4.3. For all refinement points k = 1, . . . ,K,

2cF (F1) + 2cS(F1, R1) +
k∑

j=2

(
cF (Fj) + cS(Fj , Rj \ R̃rj−1 , rj − rj−1)

)
≤ 2cF (Fk) + 2cS(Fk, Rk) .

Proof. For k = 1, the statement is trivial. For k = 2, the statement follows
directly from Lemma 4.2. We proceed by induction on k. Assume the
statement is true for k − 1. Then we get

2cF (F1) + 2cS(F1, R1) +

k∑
j=2

(
cF (Fj) + cS(Fj , Rj \ R̃rj−1 , rj − rj−1)

)

= 2cF (F1) + 2cS(F1, R1) +

k−1∑
j=2

(
cF (Fj) + cS(Fj , Rj \ R̃rj−1 , rj − rj−1)

)
+cF (Fk) + cS(Fk, Rk \ R̃rk−1

, rk − rk−1)

≤ 2cF (Fk−1) + 2cS(Fk−1, Rk−1) + cF (Fk) + cS(Fk, Rk \ R̃rk−1
, rk − rk−1)

≤ 2cF (Fk) + 2cS(Fk, Rk) ,

where the last inequality follows from Lemma 4.2 again.

We are now ready to prove Theorem 4.1.

8

Proof of Theorem 4.1. Since F̃rk =
⋃k

j=1 Fj we can bound the facility open-
ing cost by

cF (F̃rk) ≤
k∑

j=1

cF (Fj) ≤ 2cF (F1) +
k∑

j=2

cF (Fj) .

Moreover, by the greedy construction of the sequence of customers, we can
bound the connection cost by

cS(F1, R1) +

k∑
j=2

cS(Fj , Rj \ R̃rj−1 , rj − rj−1) .

The desired bound thus follows from Lemma 4.3.

It remains to analyze the performance of our incremental solution for
an arbitrary number of customers `, where ` is not necessarily a refinement
point. The next theorem is an easy consequence of Theorem 4.1 and the
refinement condition at step 4 of the incremental phase.

Theorem 4.4. For ` = 1, . . . , n, the cost of the incremental solution for `
customers is at most 4c(A(F,R, `)), where c(A(F,R, `)) denotes the cost of
the solution found by Algorithm A.

Theorem 4.4 implies that our algorithm yields an 8-competitive incre-
mental solution if we plug in the best known 2-approximation algorithm of
Jain et al. [11] for the RFLP. If we are willing to spend more time and solve
the RFLP exactly, we obtain a 4-competitive incremental solution with our
framework.

5 Lower bound

We describe an instance for which no incremental solution can be better
than 3-competitive. More precisely, we give a family of instances with more
than 200 facilities which yield a lower bound of at least 2.99. The ratio for
this construction does not seem to exceed a value of 3.

Let there be m facilities. Each facility i = 1, . . . ,m has zero-cost-
connections to a set Ri of 2i−1 customers. The sets Ri are mutually disjoint.
Additionally, every facility j is connected to every customer in the set Ri, for
all i 6= j, with a very high assignment cost M � 0; note that the connection
costs would still induce a metric. We refer to the facility together with its
customers of zero service cost as a cluster.

9

Let x1, . . . , xm be the facility opening costs. Consider the following sys-
tem of linear inequalities:

xi+1 +
i−1∑
j=1

xj ≥ α · xi for i = 1, . . . ,m− 1.

Here α is the achieved minimal competitive ratio by these inequalities.
As an example, for m = 4 this system is feasible for α = 2.246, but infeasible
for α = 2.247. So by setting the facility costs to a solution of this system,
we get a lower bound of 2.246.

The intuitive explanation behind these inequalities is the following. Sup-
pose one looks at a point in any sequence that gives a solution serving 2i−1

customers. To keep the competitive ratio of the sequence below α for serv-
ing just one customer, one needs to first open facility 1 and serve the single
customer in R1, as cluster 2 is α times as expensive. By proceeding with
such an inductive reasoning, the above inequalities give an incentive to open
the clusters one by one in the order of their size, as the competitive ratio
for the sequence is immediately as bad as α as soon as one skips a clus-
ter. On the other hand, the optimal solution to serve 2i−1 customers is to
open facility i and serve customers in the set Ri. The value α should now
be chosen carefully, so that the ratio between the solution provided by the
sequence in opening all facilities from 1, . . . , i to that of opening facility i

alone is at least α for some i, i.e., α ≤ maxi=1,...,m

∑i
j=1 xj

xi
. An example for

m = 4, α = 2.246 can be seen in Figure 1. As we increase the value of m,
the value of α increases as well and it numerically converges to 3. For a
value of m = 200, we get α ≈ 2.99.

As one could easily note that the RFLP problem can be solved exactly
for the lower bound instances provided in this section in polynomial time,
our incremental algorithm would achieve a competitive factor of 4 for these
instances.

6 Experiments

We tested the quality of the incremental solution produced by our algorithm
against the optimal (non-incremental) solution. This is the best possible
solution for serving ` = 1, . . . , n customers. We present the maximum and
average gap over all ` = 1, . . . , n for every instance. We also report the
running time of the algorithms. The experiments were carried out on a i7-
4771 machine with 16GB of RAM. We used Gurobi Optimizer 5.6 to obtain

10

1.0 2.246 4.044516 5.837982936

0
0 0

Figure 1: Lower bound example for m = 4, α = 2.246. All assignment costs
are zero.

the optimal solution of `-RFLP. The instances were the set of benchmark
instances for the uncapacitated facility location problem from the UflLib
library provided by Hoefer [10]. All instances are complete bipartite graphs
and in all instances, the number of facilities equals the number of customers.

The results from our computational study are presented in Table 1. For
each instance, we provide the size of the instance and the worst-case gap for
some ` = 1, . . . , n and the average gap over all customers. Note that we are
comparing our solution against the optimal solution of serving any ` cus-
tomers and this is not an incremental solution. As pointed out in Section 5,
we need to pay a price for obtaining an incremental solution. In almost all
instances, the worst-case gap is about 50% (corresponding to a factor of 1.5
from the optimal) and the average gap is less than 15% for all instances.
We also report the running time (in seconds) of our implementation. All
instances took less than an hour.

7 Conclusions

In this work, we presented an incremental framework to provide a sequence
of facilities to be opened and customers to be served along with their fixed as-
signments that provides a constant factor competitive guarantee. We prove
a lower bound of 3 through an example. We gave an implementation of
the algorithm and the competitive factor on a set of benchmark instances
was computed and presented. A number of questions are still open. Is the
analysis tight for the provided algorithm or can the worst-case guarantee be

11

Instance # Fac/Cust Max gap (%) Ave Gap (%) Time[sec]

c10-mp1 200 59.50 15.88 286.25
c10-mp2 200 50.65 13.73 315.34
c10-mq1 300 40.06 13.41 2048.95
c10-mq2 300 40.06 11.38 2057.54
c15-mp1 200 59.50 15.88 284.62
c15-mp2 200 50.65 13.73 316.19
c15-mq1 300 40.06 13.41 2076.61
c15-mq2 300 40.06 11.38 2077.86
c20-mp1 200 59.50 15.88 289.52
c20-mp2 200 50.65 13.73 319.90
c20-mq1 300 40.06 13.41 2052.22
c20-mq2 300 40.06 11.38 2061.86
c5-mp1 200 59.50 15.88 287.77
c5-mp2 200 50.65 13.73 316.01
c5-mq1 300 40.06 13.41 2058.01
c5-mq2 300 40.06 11.38 2060.26

d10-mp1 200 59.50 15.88 285.44
d10-mp2 200 50.65 13.73 316.20
d10-mq1 300 40.06 13.41 2059.18
d10-mq2 300 40.06 11.38 2071.02
d15-mp1 200 59.50 15.88 285.26
d15-mp2 200 50.65 13.73 315.42
d15-mq1 300 40.06 13.41 2049.25
d15-mq2 300 40.06 11.38 2058.37
d20-mp1 200 59.50 15.88 287.47
d20-mp2 200 50.65 13.73 317.52
d20-mq1 300 40.06 13.41 2216.26
d20-mq2 300 40.06 11.38 2080.21
d5-mp1 200 59.50 15.88 286.38
d5-mp2 200 50.65 13.73 316.51
d5-mq1 300 40.06 13.41 2054.96
d5-mq2 300 40.06 11.31 2079.71

Table 1: Results of computational experiments

12

improved with this or other algorithms? Can the lower bound be increased?
Another interesting direction of future research is to study our incremen-
tal setting for other variations of the facility location problem that arise in
practice, such as the buy-at-bulk network design problems and connected
facility location problems.

Acknowledgements

We thank the anonymous reviewers in helping us improve our presentation.
This research work was supported by the DFG Research Center Matheon
“Mathematics for key technologies” in Berlin.

References

[1] J. Byrka and K. Aardal, An optimal bifactor approximation algorithm
for the metric uncapacitated facility location problem, SIAM J. Comput
39 (2010), 2212–2231.

[2] M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan, Algorithms
for facility location problems with outliers, Proc 12th Ann ACM-SIAM
Symp Discr Algorithms, Washington, DC, 2001, pp. 642–651.

[3] M. Chrobak, C. Kenyon, J. Noga, and N. Young, Incremental medians
via online bidding, Algorithmica 50 (2008), 455–478.

[4] M. Chrobak and C. Kenyon-Mathieu, SIGACT news online algorithms
column 10: Competitiveness via doubling, SIGACT News 37 (2006),
115–126.

[5] F.A. Chudak and D.B. Shmoys, Improved approximation algorithms
for the uncapacitated facility location problem, SIAM J. Comput 33
(2003), 1–25.

[6] G.P. Cornuéjols, G.L. Nemhauser, and L.A. Wolsey, “The uncapaci-
tated facility location problem,” Discrete location theory, P. Mirchan-
dani and R. Francis (Editors), John Wiley and Sons, Inc., New York,
1990, pp. 119–171.

[7] D. Fotakis, Incremental algorithms for facility location and k-median,
Theor Comput Sci 361 (2006), 275–313.

13

[8] D. Fotakis, On the competitive ratio for online facility location, Algo-
rithmica 50 (2008), 1–57.

[9] S. Guha and S. Khuller, Greedy strikes back: Improved facility location
algorithms, Proc 9th Ann ACM-SIAM Symp Discr Algorithms, San
Francisco, CA, 1998, pp. 649–657.

[10] M. Hoefer, UflLib, webpage. http://resources.mpi-inf.mpg.de/

departments/d1/projects/benchmarks/UflLib/.

[11] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V.V. Vazirani,
Greedy facility location algorithms analyzed using dual fitting with
factor-revealing LP, J. ACM 50 (2003), 795–824.

[12] S. Li, A 1.488-approximation algorithm for the uncapacitated facility
location problem, Proc 38th Ann Int Colloq Automata, Languages Pro-
gram, Lecture Notes in Computer Science, Vol. 6756, Springer, 2011,
pp. 77–88.

[13] G. Lin, C. Nagarajan, R. Rajaraman, and D.P. Williamson, A gen-
eral approach for incremental approximation and hierarchical cluster-
ing, SIAM J. Comput 39 (2010), 3633–3669.

[14] A. Meyerson, Online facility location, Proc 42nd Ann IEEE symposium
Symp Foundations Comput Sci, Las Vegas, NV, 2001, pp. 426–431.

[15] C.G. Plaxton, Approximation algorithms for hierarchical location prob-
lems, Proc 35th Ann ACM Symp Theory Comput, San Diego, CA, 2003,
pp. 40–49.

[16] D. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for
facility location problems, Proc 29th Ann ACM Symp Theory Comput,
El Paso, TX, 1997, pp. 265–274.

14

