
COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS∗

FRANZISKA BERGER† , PETER GRITZMANN‡ , AND SVEN DE VRIES§

Abstract. Ring structures in molecules belong to the most important substructures for many applications
in Computational Chemistry. One typical task is to find an implicit description of the ring structure of a
molecule. We present efficient algorithms for cyclic graph invariants that may serve as molecular descriptors
to accelerate database searches. Another task is to construct a well-defined set of rings of a molecular graph
explicitly. We give a new algorithm for computing the set of relevant cycles of a graph.

Key words. chemical graphs, invariants, minimum cycle basis, algorithm for optimal set

AMS subject classifications. 68R10, 92C40, 92C42

1. Introduction. Structural information about chemical compounds such as molecules is
available in molecular databases whose number and size is growing rapidly. Consequently, the
necessity for efficient computational methods to search these databases becomes increasingly
important. Most available databases offer search and retrieval functionality for molecules by
structure, i.e., the user draws or uploads a molecular graph S, and then the database is searched
for molecules whose structure is identical to S or which contain substructures identical to S.

This identification involves the notorious (sub-)graph isomorphism problem for S for each
molecule in the database: see e.g. [Coo71, GJ79a, KST93] and [Bab16] for recent developments.
A common strategy to avoid solving many graph isomorphism problems exactly is to eliminate,
in a preprocessing step, as many candidate structures as possible by comparing graph invariants
known in this context as molecular descriptors. The most popular descriptors opinvolve the
number of atoms and bonds and the different atom types. Graphs from the database whose
invariants do not coincide with those of S (or do not allow a substructure isomorphic to S) are
immediately rejected.

Other techniques to exclude candidate structures are similarity methods such as fragment-
based search and finger-printing methods [WBD98]. In fragment-based search, the adjacency
matrices of the two graphs are examined to compare the number of certain small but significant
substructures (e.g. paths). Finger-printing means to derive a short vector from the graph which
encodes structural information, for instance, the number of paths up to a given length [JWD00].

∗Submitted to the Networks on Oct. 2016, accepted July 2017; final published version available at
doi:10.1002/net.21757

Funding: The authors were supported by the DFG Schwerpunktprogramm Nr. 1126, grants no. GR 933/8-
1, GR 933/8-2.

Prior publication: An early version of this work was part of the PhD-thesis by one of the authors [Ber04];
but already there this collaborative work is referred to. Furthermore, in the paper [BGdV09] the authors report
of several applications of cycle bases and therefore the chemistry application is touched upon briefly; while some
results from the present paper are quoted there, the reader is referred to the present paper for the full account
and all proofs.
†VIA Software GmbH & Co KG, Robert-Bosch-Str. 30, 63303 Dreieich (berger@via-software.de)
‡Zentrum Mathematik, Technische Universität München, 80290 München, Germany (gritzmann@tum.de)
§Fb IV – Mathematik, Universität Trier, D-54286 Trier, Germany (devries@uni-trier.de).

1

http://dx.doi.org/10.1002/net.21757
mailto:berger@via-software.de
mailto:gritzmann@tum.de
mailto:devries@uni-trier.de

2 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

For several other similarity indices, see [WBD98]. Recent applications in chemistry can be found
in [Tol14], [MS14] and [May14].

If the structure of a given molecule is very simple, one might successively replace each cycle
by a vertex and compare the resulting tree structure. However, this only works when the graph
resulting from the sequence of contractions is independent of their order, which is rarely the
case.

In the present paper we give efficient algorithms for computing graph invariants associated
to ring substructures in the molecule. They are derived from a new algorithm for generating
the set of relevant cycles of a graph. This term was introduced in [Plo71].

In the past, considerable research effort has been invested into methods for computing
all “chemically meaningful” rings of a molecule. Since it is not exactly specified what this
should mean, several different ring sets have been proposed [BFG+04]. The most well-known
is perhaps the Smallest Set of Smallest Rings (SSSR), see [GJ79b, DGHL89b, BP94]. This set
is a minimum cycle basis of the model graph of the molecule. A specific set of rings which
contains an SSSR and is, in addition, uniquely defined, is the set of relevant cycles, the union
of all SSSRs, see [Plo71, Vis97, GLS03]. The set has exponential size in general, but for
most molecular graphs (having small maximum degree) it can be determined with reasonable
computational effort.

Our algorithm generates and classifies the relevant cycles with respect to an equivalence
relation which also allows a detailed investigation of specific ring structures leading to two new
invariants. These invariants, introduced in Section 2.2, can be computed in polynomial time;
thus they can be used efficiently in practice even for larger instances.

The paper is organized as follows. The preliminary Section 2 introduces the relevant graph
theoretic notation and reviews some general background material (2.1), discusses ring sets and
corresponding cyclic invariants (2.2), and states the main results (2.3). Section 3 starts out
with some mathematical tools (3.1), presents algorithms for computing the set of relevant cycles
(3.2) and the set of essential cycles, the intersection of all SSSR’s. Also it provides a polynomial-
time algorithm for the first graph invariant ~ε(G) (3.3). Section 4 studies a partitioning of the
set of relevant cycles which allows us to devise in Section 5 a polynomial-time algorithm for
the second graph invariant ~β(G). Section 6 shows how the new invariants operate on different
molecular examples.

2. Structural and Algorithmic Preliminaries.

2.1. Definitions and Notation. Molecular graphs can be modeled as undirected multi-
graphs G = (V,E). In the context of the present paper the term graph is always used as an
abbreviation for multigraph.

We denote the number of edges of G by m, the number of vertices by n and set V =
{v1, . . . , vn}, E = {e1, . . . , em}.

Let w : E → (0,∞) be a function which assigns strictly positive weights to the edges in
E. The function w can, for instance, be used to distinguish different kinds of bonds [Fuj88,
Fuj87, DGHL89a] such as single, double or triple bonds or carbon-carbon bonds versus carbon-
noncarbon bonds. In the case that no such information is provided, we assume that w(e) = 1
for all e ∈ E. This will also be assumed in most examples throughout the paper.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 3

A cycle C = (VC , EC) is a graph in which every vertex has even degree. Cycles that differ
only in vertices of degree 0 are indistinguishable with respect to E. As we are only interested
in the cardinality and weight of the edges of cycles, we will assume henceforth that all vertices
in VC have even and nonzero degree. Then every cycle is uniquely determined by its edge set.
(Note that this assumption does not exclude the empty graph.) We call a cycle simple if it is
connected and if each vertex has degree two. A cycle in a given graph G is a subgraph of G
which is a cycle. The most intuitive notion of a ring substructure corresponds to an induced
subgraph that is a simple cycle.

Simple cycles can be regarded as important building blocks in the following sense.

Remark 1. A sequence W of edges (ei1 , . . . , eik) with the property that every one of its
vertices is incident to an even number of edges (for example a closed walk) can be decomposed
into a set of edge-disjoint simple cycles D1, . . . , Dl and a collection of some pairs (f, f) with
f ∈ {ei1 , . . . , eik} of those edges which appear multiple times in the sequence.

A cycle C = (VC , EC) in a graph G = (V,E) is defined as a subgraph (rather than as a
sequence of edges). Hence it can be identified with its edge-incidence vector (bi(C))i=1,...,m,
whose components are defined by:

bi(C) =

{
0, if ei 6∈ C
1, if ei ∈ C.

The incidence vectors of cycles span a binary vector space CGF (2)(G), the cycle space of the
graph, subsequently abbreviated by C(G). The binary addition of two cycles C1 and C2 in C(G)
corresponds to the symmetric difference of their edge sets E(C1) and E(C2):

C1 ⊕ C2 = (E(C1) ∪ E(C2)) \ E(C1 ∩ C2)

and yields again a cycle. The following theorem is well known (see e.g. [Die97]).

Theorem 2. The dimension of C(G) is µ(G) = m − n + c(G), where c(G) is the number
of connected components of G.

The invariant µ := µ(G) is called the cyclomatic number of G. In the case of molecules,
c(G) is usually one. On the other hand, databases of molecular graphs often contain entries
consisting of more than one molecule, for instance proteins or salts in solution. But as the single
molecules in each entry may be treated separately, in the following we assume connectivity of
all graphs. Furthermore, as this is trivial to verify, we will assume n = n′ and m = m′ for
graphs G,G′ that we investigate for isomorphism.

The weight of a cycle C with respect to w is defined as w(C) :=
∑
e∈C w(e), whereas

its length is the number |E(C)| of its edges. Note, that omitting zero-degree vertices (as we
do) does neither change the weight nor the length of a cycle. More generally, the weight of a

sequence of edges W = (ei1 , . . . , eik) is defined as w(W) :=
∑k
l=1 w(eil) and its length is k.

A set of cycles is called linearly independent if their incidence vectors are linearly indepen-
dent over GF (2). A cycle basis B is a basis of C(G). It is called minimum cycle basis if its
weight w(B) :=

∑
C∈B w(C) is minimal. The following lemma is well-known and easy to show,

see e.g. [LS98].

4 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

Proposition 3. Each cycle in a minimum cycle basis is simple.

A cycle C is relevant if it belongs to some minimum cycle basis of G. In the following,
R(G) denotes the set of relevant cycles in G. When there is no risk of confusion, we will simply
write R. A useful observation of [Vis97] characterizes R(G) as the set of simple cycles that
cannot be represented as a sum of cycles of strictly smaller weight. More precisely:

Lemma 4 ([Vis97]). Let G be a graph and let C ∈ C(G) be a simple cycle. C is relevant if
and only if there do not exist simple cycles C1, . . . , Ck with the property that C = C1⊕ . . .⊕Ck
and w(Ci) < w(C) for all i = 1, . . . , k.

The sets of linearly independent cycles in G constitute the independent sets of a matrix
matroid; see e.g. [Oxl92]. This simple but important observation is used for many results in
the following sections.

An immediate consequence is the fact that minimum cycle bases can be computed by
the greedy algorithm, if the (potentially exponentially sized) list of all cycles were available.
Moreover, if G is a graph and B = {C1, . . . , Cµ} is a minimum cycle basis of G ordered so
that w(C1) ≤ . . . ≤ w(Cµ), then the ordered weight vector ~w(G) = (w(C1), . . . , w(Cµ)) of B is
independent of the chosen minimum cycle basis: ~w(G) is a graph invariant.

Therefore, if G1 and G2 are two graphs with ~w(G1) 6= ~w(G2), then they are not isomorphic,
hence, in a database search for G1, the graph G2 should immediately be rejected. As an example
take the non-isomorphic molecules G1 and G2 from Fig. 11 which have the same molecular
formula and hence the same number of edges and vertices and also, since they are connected,
the same cyclomatic number, but differ in their ordered weight vectors.

C

C

C

C

C

C

C

C

C

C

C C

G1

C

C

C

C

C

C

C

C

C

C

C

C

G2

Fig. 1. The molecular graphs of 1,4:5,8-decahydro-dimethanonaphthalene (G1) and 1,2,3,4,5,6,7,8-
octahydro-1,4-ethanonapthalene (G2), both with the molecular formula C12H18. Assuming unit edge-
weights, we have ~w(G1) = (5, 5, 5, 5) and ~w(G2) = (2, 6, 6, 6).

~w(G) can be computed in polynomial time. Currently, the fastest known algorithm for
general graphs takes time O(m2n/ log n + mn2) [MM09]. If G is planar, a minimum cycle
basis can be found in time O(m2 + n log n), [HM93]. Note, however, that there are non-planar
molecules (e.g. Kuratowskiphane, see [Kuc97]).

In the following sections, we denote the complexity of computing a sorted minimum cycle
basis for arbitrary graphs by MCB(m,n) in terms of its asymptotics with respect to m and n,
the number of edges and vertices.

1The molecular graphs in this paper are represented schematically. Carbon, nitrogen or oxygen atoms are
noted explicitly by their symbols C, N and O. Hydrogen atoms are left out almost entirely as is customary in
chemistry and as they are irrelevant for the cyclic structure.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 5

2.2. Cyclic Graph Invariants. The graph invariant ~w(G) from the previous section is
already quite effective. However it does not always distinguish two non-isomorphic molecules;
see Fig. 2 for a first example. In the following, we study two invariants that provide additional
information.

Similarly to ~w(G), the ordered weight vector of the set R(G) of relevant cycles is a graph
invariant, that can be used to further refine ~w(G). However, since the number of relevant cycles
can be exponentially large (see Fig. 3 for a planar construction), the union of all minimum cycle
bases is in general not suitable for database search.

C
C

C

C

C

C

C
C

C
C

C

C

C

G1

C
C

C

C

C

C

C

C

C
C

C

C

C

G2

Fig. 2. The two molecules G1 and G2 (rearrangements of tetracyclotridecane with the molecular
formula C13H20) have ~w = (5, 6, 6, 6). On the other hand, ~ε(G1) = (5, 6), since of the three hexagons
in the subgraph of G1 formed by the bold edges, any two can be chosen and add up to the third, whereas
~ε(G2) = (5, 6, 6, 6); here, all basic cycles are essential. Thus, ~ε distinguishes the different molecules in
this case.

Instead, we consider the intersection of all minimum cycle bases. In the notation of [GLS00],
we say that a cycle is essential if it is contained in this intersection and consequently belongs
to every minimum cycle basis. Let E(G) denote the set of all essential cycles of G.

Note that |E(G)| ≤ µ, and thus the ordered weight vector ~ε(G) of essential cycles is a
polynomially-sized graph invariant. In Section 3.3, we give a polynomial-time algorithm for
computing ~ε(G).

For an example of graphs where ~ε(G) is stronger than ~w(G) see Fig. 2. However, as Fig. 41)
shows, there are also cases where ~w(G) is stronger than ~ε(G). So, in general, neither ~ε(G) nor
~w(G) dominate the other invariant.

To introduce the second graph invariant, let us take a closer look at R. Since ~w is an
invariant, the weight of every relevant cycle of G must be equal to the weight of some cycle
in any fixed minimum cycle basis {C1, . . . , Cµ}. Hence, the weights of relevant cycles can take
values only from the set {w(C1), . . . , w(Cµ)}. Let a positive number κ be called admissible if
κ ∈ {w(C1), . . . , w(Cµ)}.

We consider the partition of R into sets of cycles with different weight κ. Every such set
can be further partitioned into equivalence classes with respect to the interchangeability relation

1These and other examples are are taken from PubChem, a public database provided by the US National
Center for Biotechnology Information. It contains information on the biological activities of currently over 19
million small molecules, see http://pubchem.ncbi.nlm.nih.gov/

6 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

1 2 s

Fig. 3. A minimum cycle basis of this graph consists of all quadrangles numbered from 1 to s and
of any one of the 2s cycles of length 3s which string all quadrangles together (one of them is indicated
with bold edges). Hence the set of relevant cycles of G has exponential size.

C

C

CC

C

C

C

C

CC

C

C C
C

C

C

CC

C

C

G1

C
C

C

C

C

C

C

C
C

C

C

C

CC

C

C C

C

C

C C

G2

Fig. 4. G1 (identifier PubChem10245780) and G2 (Benzo-12,13-fluoranthene) with
molecular formula C20H12. We have ~w(G1) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 6, 6, 7) 6=
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 6, 6, 6, 6) = ~w(G2). On the other hand, ~ε(G1) = ~ε(G2) =
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2). The cycles of length greater than 2 in both graphs are not essential
since we may add any of the 2-cycles to them to obtain different cycles of the same weights.

introduced by [GLS00, Gle01]. In the following, this latter relation is derived differently, using
the concept of matroid connectivity. (Recall that the elements of the underlying matroid in our
context are the cycles in the given graph or, equivalently, their incidence vectors.)

A circuit of a matroid is a minimal dependent set. For each element a of a matroid M let

A(a) = {a} ∪ {b ∈M : M has a circuit containing both a and b}.

The connectivity relation ∼ is then defined by saying that a ∼ b iff a ∈ A(b). This is an equiv-
alence relation, see e.g. [Oxl92], and its equivalence classes are called the connected components
of M . Let us stress that connectivity in matroids is more akin to 2-connectedness in graphs
than to 1-connectedness.

Now we introduce a refinement of a restriction of the connectivity relation ∼ on the cycle
matroid of G. Let Rκ denote the submatroid on the subset of relevant cycles with admissible
weight at most κ. We restrict the connectivity relation to cycles of weight exactly κ as follows.
Two relevant cycles C, C ′ of weight κ are called (κ)-interchangeable, denoted by C1 ∼κ C2, if
there is a circuit in Rκ which contains both, i.e., if there is a minimal representation

C ⊕ C ′ ⊕
⊕
D∈I

D = 0

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 7

G1 G2

Fig. 5. We have ~ε(G1) = ~ε(G2) = (), but µ(G1) = 3 and µ(G2) = 5.

of 0 with I = ∅ or ∅ 6= I ⊆ Rκ and every non-trivial subfamily1 of I ∪ {C,C ′} is linearly
independent. The following lemma shows that the above definition is equivalent to [GLS00,
Def. 6].

Lemma 5. Let C,C ′ be two relevant cycles of weight κ. Then C ∼κ C ′ if and only if there
is a representation C = C ′ ⊕

⊕
D∈I D, where I ⊂ Rκ and the family I ∪ {C ′} is linearly

independent.

Proof. Since for C = C ′ there is nothing to show, suppose that C 6= C ′.
Let C ∼κ C ′. Then there is a circuit in Rκ of the form C⊕C ′⊕

⊕
D∈I D = 0. Minimality

implies that all proper subfamilies of I ∪ {C,C ′} are linearly independent. Thus, by adding C
to both sides we obtain a representation as claimed.

Conversely, suppose that C = C ′ ⊕
⊕

D∈I D is a representation as stated. Therefore in
particular, C,C ′ /∈ I. By adding C to both sides we obtain the identity 0 = C⊕C ′⊕

⊕
D∈I D.

If the family I ∪ {C,C ′} is not minimally dependent, there exists a proper subfamily I ′ of
I ∪ {C,C ′} of cycles with

⊕
D∈I′ D = 0. Of course, C ∈ I ′ \ I ⊂ {C,C ′}.

Substituting for C, we get

0 = C ⊕ C ′ ⊕
⊕
D∈I

D =

 ⊕
D∈I′\{C}

D

⊕(C ′ ⊕⊕
D∈I

D

)
= C ′ ⊕

⊕
D∈I\I′

D,

contradicting the linear independence of I ∪ {C ′}.
Obviously, essential cycles are not interchangeable with any other cycle in R. Hence each

essential cycle C forms its own equivalence class with respect to ∼κ where κ = w(C). On the
other hand, if C ∈ R is not essential, there always exists a relevant cycle C ′ such that C and C ′

are ∼κ-interchangeable for κ = w(C). In particular, if a minimum cycle basis B is fixed and if
C ∈ B is not essential, there is a relevant non-basis cycle C ′ with C ′ ∼κ C. Additionally, from
each equivalence classWκ with respect to ∼κ, at least one cycle C is contained in B. Moreover,
the number of cycles from each equivalence class Wκ ⊆ R is the same for every minimum cycle
basis B. Hence we obtain (the slight generalization of) [GLS00, Thm. 11] to the weighted case:

Lemma 6. Let κ > 0 be admissible, let B,B′ be two different minimum cycle bases and let
Wκ be an equivalence class for ∼κ. Then |B ∩Wκ| = |B′ ∩Wκ|.

1To be more precise, if for I = {D1, . . . , D`}, we speak of the family I ∪ {C,C′}, we do refer to the family
(D1, . . . , D`, C, C′).

8 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

Therefore one may call |B ∩ Wκ| the relative rank of Wκ in R, in symbols rankRκWκ.
The relative ranks of the ∼κ equivalence classes for all admissible values κ ∈ R, ordered by
increasing κ and then by increasing class size form a graph invariant.

We use this relative-rank invariant to refine ~w(G): We take ~w(G) and separate its entries by
vertical lines according to the∼κ equivalence classes. The relative rank of each class corresponds
to the number of entries between two vertical lines. This ‘vector’ will be called ~β(G); see Fig. 6
for an example.

The relative ranks describe how many cycles of equal weight in a minimum cycle basis are
related with respect to interchangeability. In graphs where all cycles are disjoint, every cycle
is essential and thus all relative ranks are 1. Thus, intuitively, ~β(G) measures the degree of
interconnectivity or local density of G’s cyclic structure.

C

CC

C

C C

C

CC

C

C CC

CC

C

C C

C

CC

C

C C

C

C

C

G1

C
C

C
C

C

C

C

C

C
C

C

C
C

C

CC

C

C

C

C

G2

Fig. 6. Molecules G1 (7,8-Dihydrobenzo(a)pyrene) and G2 (Identifier PubChem10225564), both

C20H14, with ~β(G1) = (2|2|2| 2|2|2|2|2|2|6|6|6|6|6|) and ~β(G2) = (2|2|2|2|2|2|2|2|2|6|6|6|6, 6|). In the
center part of G2, any two of the three bold hexagons add up to the third, hence they are interchangeable.
The relative rank of their equivalence class is two. In G1, the relative rank of each hexagon is one.

In general, ~β(G) refines the information of ~w(G) and ~ε(G). Even though the graphs in
Figure 6 have ~w(G1) = ~w(G2) and ~ε(G1) = ~ε(G2) = (2, 2, 2, 2, 2, 2, 2, 2, 2) they cannot be

isomorphic because of ~β(G1) 6= ~β(G2).
Now we state two important properties of relevant cycles which will be used in the next

section. Here and in the following, we use the convention that in the basis representation of
a cycle C by cycles of a fixed cycle basis B, only cycles with non-zero coefficients are noted
explicitly.

Lemma 7. Let B be a minimum cycle basis of a graph G and let C ∈ R be a relevant cycle.
Then the basis representation of C with respect to B contains at least one basis cycle of weight
w(C) and no cycles of weight strictly larger than w(C).

Proof. By Lemma 4 (and Proposition 3), C is relevant if and only if in every representation
of C as a binary sum of cycles in G, at least one cycle has weight at least w(C). Consequently,
also the (unique) representation of a relevant cycle C as a sum of basis cycles cannot consist
only of strictly shorter cycles. Further, if a basis cycle D of weight strictly greater than w(C)
were contained in this representation, it is possible to replace D by C in B to obtain a smaller
cycle basis, contradicting the minimality of B.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 9

The second property we will use is the subject of the following corollary.

Corollary 8. Let B be a minimum cycle basis, and let C and C ′ be different relevant
cycles of weight κ with C ∼κ C ′. Then there exists a representation C = C ′ ⊕

⊕
D∈I D where

I ⊂ Rκ and the family I ∪ {C ′} is linearly independent and in which all cycles with strictly
smaller weight than κ belong to B.

Proof. Lemma 5 provides a representation C = C ′ ⊕
⊕

D∈I′ D, where I ′ ⊂ Rκ and the
family I ∪ {C ′} is linearly independent. We replace all cycles D ∈ I ′ with weight w(D) < κ
of this sum with their basis representations with respect to B and remove linearly dependent
subsets. By Lemma 7, no cycle in these representations has weight greater than or equal to κ.
Hence we obtain a representation of C with the asserted properties.

2.3. Main Results. This paper presents the first polynomial time algorithms for com-
puting the graph invariants ~ε(G) and ~β(G) introduced in the previous section.

Clearly, ~ε(G) and ~β(G) can be computed from the equivalence classes of ∼. A straightfor-
ward way to compute the two invariants would therefore be to generate the entire set of relevant
cycles R (Algorithm 1) and then to partition it into ∼κ equivalence classes (Algorithm 3) for all
relevant values of κ. The running time of Algorithm 1 is O(|R|mn2) while Algorithm 3 requires
time O(mn(|R|n+m3)). But as mentioned previously, R can be exponentially large. In fact,
in the graph of Fig. 3 with n = 4s, all 2s cycles of length 3s are relevant. Therefore we give
direct algorithms, Algorithm 1 combined with Procedure 2, and Algorithm 5, which do not re-
quire the explicit construction of R. They take time O(max{MCB(m,n),mω,m2n,mn2 log n})
and O(m4n), respectively. Here, ω denotes the matrix multiplication constant (currently,
ω ≤ 2.3729: see [Gal14]). Which of the four terms in the expression above dominates the
others depends on the graph class.

In some applications,R will, however, be needed explicitly. The only other known algorithm
for computing R needs time O(m4)+O(n|R|), [Vis97]. While this algorithm is in general faster
than Algorithm 1, the latter has two advantages.

First, Algorithm 1 permits a faster subsequent partition of R into ∼κ equivalence classes.
To compute this partition, it is also possible to apply Vismara’s algorithm and then use a
coloring technique proposed in [GLS00]. The coloring part takes time O(|R|2m2) after R is
constructed. Our algorithm, however, needs only polynomial time O(m4n). Hence the overall
running time of O(m4n+ |R|mn2) for obtaining all equivalence classes is faster than previous
methods; in particular, it is linear in |R|, which is the right order of magnitude in |R| given
that R has to be listed.

The most important advantage of our algorithm is that it can be used to compute specific
subsets ofR directly: all relevant cycles of fixed weight, single ∼κ-equivalence classes, or just the
relative ranks of the equivalence classes; it is not clear how to achieve this with the previously
known approaches.

3. Computing the Sets of Relevant and Essential Cycles. Before we study the sets
of relevant and essential cycles in detail we provide some useful tools.

3.1. Some Tools. As it turns out, when looking at the linear (in)dependence of cycles,
it suffices to restrict attention to the entries corresponding to the non-tree-edges of a fixed

10 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

spanning tree of the graph. Henceforth we will assume that we have fixed a spanning tree
T = (VT , ET) for this purpose.

Let B be a cycle basis. The cycle-edge incidence matrix A ∈ GF (2)µ×m of B has as rows
the (incidence vectors of the) cycles in B. We denote the rows of A by Ci, i = 1, . . . , µ, and use
the same notation for the corresponding cycles in B. Further, let L be the square submatrix
of A on the columns corresponding to the non-tree edges. Note that L is nonsingular. In fact,
suppose L were singular and, hence, there were a subset of rows of L that sum up to 0. Since
the sum of cycles is a cycle and T is cycle-free, the sum of the corresponding rows of A must
be 0, too, contradicting the fact that B is a cycle basis.

Now, let U be the inverse of L, let A(−i) be the matrix that results from A after removing
the i’th row Ci, and let ui be the i-th column of U padded with m − µ zeros (in place of the
tree-edges). Clearly each ui is in the kernel of A(−i). Even more: it is the unique nonzero vector
in the kernel of the matrix A(−i) with support restricted to the non-tree edges. As noted by
[KMMP04], the vectors ui, i = 1, . . . , µ, can be computed in time O(mω).

The following trivial remark gives an easy-to-check criterion for whether a cycle C can
replace a basis cycle Ci ∈ B, using ui.

Remark 9. Let B be a cycle basis. For a cycle Ci ∈ B, let A(−i) be the incidence matrix
of B \ {Ci}, and let ui ∈ kerA(−i) be the vector defined above. A cycle C 6∈ B is linearly
independent of the row-space of A(−i) if and only if 〈C, ui〉 = 1.

Here, 〈·, ·〉 denotes the standard inner product of GF (2)m; we may extend it to sequences

of edges W = (ei1 , . . . , eik) by defining 〈W,a〉 :=
⊕k

j=1 aij , where aij denotes the component of

a that corresponds to the edge eij . (This definition ensures that we have 〈W,a〉 =
⊕l

j=1 〈Dj , a〉
for the decompositions of Remark 1.)

If, in addition to 〈C, ui〉 = 1, we have w(C) = w(Ci); then C will be called feasible for Ci,
and RCi will denote the set of all feasible cycles for Ci; this is the set of all cycles that could
replace Ci in a minimum basis while preserving minimality. Note, that feasibility depends on
the chosen minimum basis.

The following corollary characterizes the relevance of cycles through feasibility.

Corollary 10. A cycle C is relevant if and only if it is feasible for some basis cycle Ci
of B.

We will now show that, given the vector u := ui, we can construct the setRCi by computing
specific paths of weight w(Ci) in an auxiliary graph Gu. The graph Gu is constructed from G
as follows (for an example see Figure 7): The vertex set of Gu is V × GF (2). For each edge
e = {x, y} in G let ue denote the component of u that corresponds to e, and add the two edges
{(x, 0), (y, 0⊕ ue)} and {(x, 1), (y, 1⊕ ue)} to Gu. Define a weight function wu : Gu → (0,∞)
by assigning to each edge the weight w(e) of the corresponding edge e in G it comes from. Gu
has 2n vertices and 2m edges; it can be constructed in time O(m). For a vertex v of G and a
simple (v, 0)–(v, 1) path Pv in Gu let W (Pv) denote the closed walk in G obtained by replacing
each vertex (x, δ) ∈ V (Gu) of Pv by x ∈ V (G). For the next observation see [BGdV04].

Lemma 11. Let v be a vertex of G, and let Pv be a simple (v, 0)–(v, 1) path in Gu. Then

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 11

the closed walk W (Pv) contains a simple cycle C in G with 〈C, u〉 = 1.

A B

C D

(A,1) (B,1) (C,1) (D,1)

(A,0) (B,0) (C,0) (D,0)

Fig. 7. On the left, a graph G with unit weights is depicted. Let C1, C2 denote the two cycles
B − D − C − B and A − B − D − C − A, respectively, set B = {C1, C2}, and let T be the tree
A− B −D − C. Then B is the fundamental basis for T . Now, let the vector u = u1 have the entry 1
precisely for the edge B−C. On the right the derived graph Gu is depicted (bold and dashed). The bold
path and the dashed path (A, 0)− (A, 1) in Gu both correspond to the same feasible cycle for C1 in G.

By Remark 9 it is clear that for each cycle that is feasible for Ci and v ∈ Ci the construction
produces a simple (v, 0)–(v, 1) path in Gu. As a consequence of the following lemma, the
converse is also true, i.e., any (v, 0)–(v, 1) path of weight w(Ci) in Gu corresponds to a feasible
cycle for Ci.

Lemma 12. Let B be a minimum cycle basis, let Ci be a cycle of B, v ∈ V , and let Pv be
a simple (v, 0)–(v, 1)-path in Gu of weight w(Ci). Then W (Pv) is a simple cycle in G that is
feasible for Ci.

Proof. Suppose that W (Pv) were not simple. By Lemma 11, there must then be a strictly
shorter cycle corresponding to a subpath of Pv (as edge weights are assumed to be strictly
positive) which is feasible for Ci. This contradicts the minimality of the cycle basis B.

All feasible cycles for Ci can therefore be generated by computing for each v ∈ V all possible
(v, 0)–(v, 1) paths of weight κ = w(Ci) in Gu. This can, for instance, be achieved by applying
a k-shortest path algorithm for sufficiently large k to all pairs of vertices {(v, 0), (v, 1)} in Gu.
In fact, we stop it as soon as the next computed path is longer than κ.

Even though the number k of shortest paths necessary is not known a priorily, the use of
Eppstein’s k-shortest path algorithm permits to adjust k on the fly in time O(kn+m+n log n),
see [Epp98]. Note that there are exactly two (v, 0)–(v, 1) paths for every feasible cycle C through
v, corresponding to its two different orientations (see Fig. 7). It thus follows from Lemma 12
that k is bounded by 2|R|.

3.2. The Set of Relevant Cycles. In this section, we give an algorithm for computing
R by applying the results of Subsection 3.1.

Let B = {C1, . . . , Cµ} be a fixed minimum cycle basis. Using Corollary 10 and Lemma 12,
we start with the incidence matrix A of B, and determine, for i = 1, . . . , µ, and with the help
of A(−i), the set RCi of all feasible cycles for Ci. The basic scheme is given in Algorithm 1.

12 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

Input: Connected undirected edge-weighted graph G
Output: The set of relevant cycles R

1: Compute a minimum cycle basis B = {C1, . . . , Cµ} of G.
2: Let A be the cycle-edge incidence matrix of B.
3: Compute kernel vectors ui of the submatrices A(−i), i = 1, . . . , µ.
4: for i = 1 to µ do
5: Set RCi := ∅.
6: For each v ∈ V , find all (v, 0)–(v, 1) paths Pv in Gui with weight w(Ci), and add all

cycles W (Pv) to the set RCi .
7: end for
8: Output R :=

⋃µ
i=1RCi .
Algorithm 1: Computing the set of relevant cycles R.

Note that the sets RCi , i = 1, . . . , µ, themselves are not invariant as they depend on the
particular minimum cycle basis B. However, as the next lemma shows, the sets RCi are
compatible with the relation ∼k .

Lemma 13. For C,D ∈ RCi of weight κ we have C ∼κ D.
Proof. (B \{Ci})∪{C} and (B \{Ci})∪{D} are optimal bases. Hence D can replace C in

(B \ {Ci})∪ {C}. Therefore, there exists a dependency of C,D and other elements of B \ {Ci}.
If any of these other elements would be of larger weight than C and D, this would contradict
optimality of (B \ {Ci}) ∪ {C}. Hence C ∼κ D.

Theorem 14. Algorithm 1 computes the set R =
⋃µ
i=1RCi of relevant cycles in time

O(max{MCB(m,n),mω,m2n,mn2 log n}+ |R|mn2).

Proof. Correctness of the algorithm follows from Remark 9 and Lemma 12. The time
necessary for computing a minimum cycle basis is denoted by MCB(m,n). As mentioned
previously, the vectors ui can be computed in time O(mω). This accounts for the first two
terms.

At most 2|RCi | paths of weight w(Ci) are found for every vertex v ∈ G, corresponding to at
most |RCi | cycles. Each such set of paths can be computed by the use of Eppstein’s algorithm
in time O(n|RCi | + m + n log n). Since |RCi | ≤ |R| for all i = 1, . . . , µ, the remaining terms
are given by

µ∑
i=1

O(n(n|RCi |+m+ n log n)) = O(n2
µ∑
i=1

|RCi |) +O(mn(m+ n log n)),

= O(n2m|R|+m2n+mn2 log n).

Note that the additional factor n in the above sum comes from considering all vertices v
separately. Fig. 8 shows that, indeed, we cannot restrict the vertices to those belonging to Ci.

Clearly, it is possible to apply Algorithm 1 only to basis cycles of fixed weight κ, so that
only certain subsets of R are generated. This may be of advantage if one is interested in

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 13

2

1

2

1

1

3

1

1

3

G

C

cycle basis B of G

Fig. 8. Graph G and cycle basis B. The triangle C in B can be replaced by the other triangle in G.
But the other triangle is disjoint from C.

specific substructures of a molecule, for instance all relevant carbon rings of a given length, say
6. Further, depending on the algorithm used for computing a minimum cycle basis, Step 1 may
already provide the vectors ui. Then Step 3 can be omitted

3.3. Computing the Set of Essential Cycles and the invariant ~ε(G). The set of
essential cycles is a subset of R. The following characterization generalizes [GLS00, Lemma 5]
to the weighted case.

Lemma 15. Let Ci ∈ B. Then |RCi | = 1 if and only if Ci is essential.

Proof. Clearly, if Ci is essential, then |RCi | = 1.
Now, assume for a contradiction that |RCi | = 1 but that there exists a different relevant

cycle C with Ci ∼κ C, where κ = w(Ci). Of course, C can be expressed as the sum of cycles of
some subset B′ of the fixed minimum cycle basis B i.e., C =

⊕
D∈B′ D. If one of the elements

of B′ had weight greater than κ, then we would obtain a better basis by replacing it with C,
contrary to the optimality of B. If Ci ∈ B′ then C would be feasible for Ci contrary to the
assumption that |RCi | = 1.

Because of Ci ∼κ C, there exists a set I of relevant cycles of weight at most κ with
C = Ci ⊕

⊕
D∈I D and Ci 6∈ I. If each D ∈ I is expressed in terms of cycles from the

basis, after cancellations, the representation C =
⊕

D∈B′ D has to result. But then, the basis
representation of at least one of the cycles D ∈ I involves Ci, as Ci is absent in the final sum.
Hence there exists a set B′′ ⊂ B with D = Ci⊕

⊕
F∈B′′ F. By choice, w(D) ≤ κ. If w(F) > w(D)

for some F ∈ B′′, a better basis could be obtained by replacing F by D. If w(D) < w(Ci) = κ,
then the optimal basis could be improved by replacing Ci by D. Consequentially, Ci ∼κ D
(and Ci 6= D) which contradicts |RCi | = 1.

Hence, if there is a basis cycle Ci ∈ B, i ∈ {1, . . . , µ}, for which Algorithm 1 does not
produce any cycle of weight w(Ci) except copies of Ci itself, i.e., if RCi = {Ci}, we know that
this cycle is essential. Therefore, the set of essential cycles may be computed by a modification
of the for loop in Algorithm 1 according to Procedure 2.

Corollary 16. With the for loop 4–8 of Algorithm 1 replaced by Procedure 2, the set of
essential cycles and ~ε may be computed in time O(max{MCB(m,n),mω,m2n,mn2 log n}).

Proof. In Procedure 2, instead of computing all feasible cycles for a basis cycle Ci, we
generate only the three shortest (v, 0)–(v, 1) paths for each vertex v ∈ G if they exist. This

14 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

4: for i = 1 to µ do
5: Set RCi := ∅.
6: For each v ∈ V find the three shortest (v, 0)–(v, 1) paths Pv in Gui with weight w(Ci) if

they exist, and add all cycles W (Pv) to the set RCi .
7: If RCi = {Ci}, mark Ci as essential.
8: end for

Procedure 2: Replacing lines 4–8 of Algorithm 1 with this procedure gives an algorithm for com-
puting the set of essential cycles.

takes time O(n(3n + m + n log n)) = O(mn + n2 log n). For any fixed iteration i of the main
loop, if v ∈ Ci, two of the paths correspond to the two different cyclic orders of Ci. We then
have to check whether a third path Pv exists and whether it corresponds to a cycle W (Pv) with
strictly larger or equal weight than w(Ci). In the latter case Ci is nonessential.

As, again, Fig. 8 shows, we also need to consider vertices v 6∈ Ci. For such a vertex it
suffices to check whether a shortest (v, 0)–(v, 1) path corresponds to a cycle of weight equal
to or strictly larger than w(Ci). If only cycles of strictly larger weight are found, we conclude
by Lemma 15 that RCi = {Ci}, and Ci is essential. Otherwise, Ci is not essential. The time
necessary for the comparison is dominated by the terms for computing the cycles. Thus, the
overall running time is O(max{MCB(m,n),mω,m2n,mn2 log n}).

4. Partitioning R into ∼κ Equivalence Classes. Now, we give an algorithm for par-
titioning the set of relevant cycles into ∼κ-equivalence classes (see Algorithm 3).

Let B = {C1, . . . , Cµ} be a minimum cycle basis. By Corollary 10, every relevant cycle C is
assigned to at least one of the sets of feasible cycles RCi , i = 1, . . . , µ, of equal weight, to RCk ,
say. Hence, with κ = w(Ck), cycle C belongs to the ∼κ equivalence class of the basis cycle Ck.
It remains to determine which non-essential cycles from the minimum cycle basis B belong to
a common ∼κ equivalence class, i.e., which sets RCi of cycles with equal weight can be merged
if any.

This will be done in two steps. In Subsection 4.1, we treat the “easy” case that there are two
sets of feasible cycles RCj and RCk with RCj ∩ RCk 6= ∅ (and consequently, w(Cj) = w(Ck)).
Lemma 13 and the transitivity of ∼κ imply that they belong to the same equivalence class.
Merging these sets may still not yield the ∼κ-equivalence classes, but only “pre-classes” as it
may occur that sets of feasible cycles with the same weight and empty intersection nevertheless
belong to the same equivalence class. This case is treated in Subsection 4.2.

4.1. Non-empty Intersection. Let us fix an admissible value κ > 0 and consider all
basis cycles of weight κ. If only one such cycle exists, then RCi is already the entire ∼κ
equivalence class. Therefore we assume that there are at least two different basis cycles of
weight κ. We check for every pair Cj , Ck of them whether RCj ∩RCk is non-empty. Then, by
Lemma 13 and the transitivity of ∼κ, Cj and Ck belong to the same equivalence class. The
intersection check can be done during the construction of the sets RCi in Algorithm 1. Using
suitable data structures (like (a, b)-trees, see e.g. [MN99]) we then form the union of the two
sets RCj and RCk as soon as a copy of a cycle C ∈ RCj is found in RCk .

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 15

Now we describe a more efficient way to check whether the sets RCj and RCk for two
different basis cycles Cj and Ck of equal weight have non-empty intersection. As we will see,
for this purpose, RCj and RCk need not even be explicitly known. This fact will be utilized

later in Subsection 4.3 and also in Section 5 for computing ~β(G). The next remark follows from
the definition of the sets RCi and from Remark 9.

Remark 17. Let Cj , Ck ∈ B be basis cycles of equal weight. Let C ∈ R be a cycle with
w(C) = w(Cj), and let uj and uk be the kernel vectors corresponding to Cj and Ck, respectively.
Then the following two statements are equivalent:

(i) C ∈ RCj ∩RCk .
(ii) 〈C, uj〉 = 1 and 〈C, uk〉 = 1.

A modification (proposed in a more general form by [CdV04]) of the construction leading
to Lemmas 11 and 12 (cf. Fig. 7) allows us to compute a cycle with odd parity with respect to
two kernel vectors uj , uk at once (see Fig. 9).

We define Guj ,uk := (Guj)uk by applying the construction of Subsection 3.1 to the graph
Guj and the vector uk. We obtain a graph with the vertex set V ×GF (2)2 i.e., every vertex v
of G is replaced by the four vertices (v, (0, 0)), (v, (0, 1)), (v, (1, 0)), (v, (1, 1)). Similarly, each
edge e = {v, v} ∈ G leads to four edges in Guj ,uk , namely {(v, y), (v′, y ⊕ (uj(e), uk(e))} for
each y ∈ GF (2)2. The edge-weights w(e) for e ∈ G are carried over to all copies of e in Guj ,uk .
For a path P in Guj ,uk let W (P) denote the walk in G obtained by replacing each vertex (x, y)
in P by x. Then the following generalization of Lemma 11 holds.

Lemma 18. Let C be a simple cycle in G. Then the following two statements are equivalent.
(i) 〈C, uj〉 = 1 = 〈C, uk〉.
(ii) For every vertex v ∈ C there exist two simple (v, (0, 0))–(v, (1, 1)) paths Pv and P ′v

in Guj ,uk with W (Pv) = W (P ′v) = C so that for all x ∈ V \ {v}, Pv and P ′v intersect the set
{x}×GF (2)2 in at most one element and the set {v}×GF (2)2 exactly in {(v, (0, 0)), (v, (1, 1))}.

Proof. The backward direction is clear; so let us directly turn to the forward direction. Let
(without loss of generality) C = {e1, . . . , er} be a simple cycle in G satisying both, 〈C, uj〉 = 1
and 〈C, uk〉 = 1. Let e1 = {v, v1}, . . . , ei = {vi−1, vi}, . . . , er = {vr−1, v} and set z(e) =
(uj(e), uk(e)) for all edges e of G. We construct a path Pv in Guj ,uk according to the assertion.
For e1 choose the edge {(v, (0, 0)), (v, (0, 0) ⊕ z(e1))}. For every subsequent edge ei in C take
the edge {(vi−1, y), (vi, y ⊕ z(ei))}, where (vi−1, y) (with y ∈ GF (2)2) is the vertex reached
in the previous step. Since C is simple, only one vertex from the set {(vi, y) : y ∈ GF (2)2},
i = 2, . . . , r − 1 appears in the path. Since 〈C, uj〉 = 1 and 〈C, uk〉 = 1, this procedure must
end with the vertex (v, (1, 1)).

The second path P ′v is derived from Pv by replacing each vertex (x, y) ∈ Pv by the vertex
((x, y ⊕ (1, 1)), and replacing the edges accordingly.

While according to Lemma 18, simple cycles C with 〈C, uj〉 = 1 and 〈C, uk〉 = 1 lead to
simple paths in Guj ,uk , not every simple (v, (0, 0))–(v, (1, 1)) path Pv ∈ Guj ,uk must correspond
to a simple cycle in G with the above property. However, as the next lemma shows, the full
correspondence holds if the weight of Pv equals w(Cj) (compare also Lemma 12).

16 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

A B

C D

(0,0)

(0,0)

(0,0)

(1,0)
(0,1)

(A,1,1) (C,1,1) (B,1,1) (D,1,1)

(A,1,0) (C,1,0) (B,1,0) (D,1,0)

(A,0,1) (C,0,1) (B,0,1) (D,0,1)

(A,0,0)

(C,0,0)

(B,0,0) (D,0,0)

Fig. 9. On the left the graph G of Fig. 7 is depicted again. As before, we use the spanning tree
A− B −D − C and the fundamental basis B = {C1, C2} consisting of the two cycles B − C −D − B
and A−B −D−C −A. If e4 and e5 denote the edges B −C and A−C, we obtain u1 = (0, 0, 0, 0, 1)
and u2 = (0, 0, 0, 1, 0). The corresponding edges e of G are labeled with the pairs (u1(e), u2(e)). On
the right, the expanded Graph Gu1,u2 is depicted. The bold (A, (0, 0))− (A, (1, 1)) path corresponds to
the cycle C = {{A,C}, {C,B}, {B,A}} in G which satisfies 〈C, u1〉 = 〈C, u2〉 = 1. The dashed path
correponds to the same cycle C.

Lemma 19. Let w(Cj) ≥ w(Ck), and let Pv be a simple (v, (0, 0))–(v, (1, 1)) path in Guj ,uk .
Then Pv has weight at least w(Cj). If Pv has weight equal to w(Cj), then W (Pv) is a simple
cycle in G.

Proof. For the first assertion, assume that Pv has weight strictly less than w(Cj). By
Remark 1, the closed walk W (Pv) is the edge-disjoint union of some ` ∈ N simple cycles
D1, . . . , D` with w(Cj) > w(Di) for i = 1, . . . , ` and, possibly, some additional edge-pairs. As
〈W (Pv), uj〉 = 1 there has to be an index i with 〈Di, uj〉 = 1. Since w(Cj) > w(Di), this
contradicts the minimality of B, as Di is feasible for Cj by these properties.

Now, let Pv have weight w(Cj). Using that all weights are positive, it follows analogously
that W (Pv) is a simple cycle.

Lemma 18 enables us to check the existence of a cycle in RCk contained also in RCj by
computing shortest (v, (0, 0))–(v, (1, 1)) paths in Guj ,uk for all v ∈ G. If no such path exists or
if all such paths have weight strictly larger than κ, Lemma 19 implies that RCj ∩RCk = ∅.

Let us stress that Lemma 19 has been formulated in such generality that it is applicable
for two basis cycles Cj , Ck of different weight. This will be used in Subsection 4.3.

4.2. Empty Intersection. Of course, if Cj and Ck do not belong to the same equiva-
lence class with respect to ∼κ then RCj ∩ RCk = ∅. The latter condition is, in general, only
necessary for the former, not sufficient. [GLS00, Fig. 4] construct an example that has one

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 17

interchangeability class Wκ with a partition (D1,D2) into disjoint pre-classes where each Di is
equal to

⋃
k∈Ii RCk for non empty disjoint index sets Ii ⊆ {1, . . . , µ}, i = 1, 2. As a service to

the reader, Fig. 10 provides an (even smaller) example.

Fig. 10. The depicted graph has 4 cycles of length 5 and one cycle of length 4; all of them are
relevant. Every minimum cycle basis has to contain one of the left two 5-cycles, one of the right two
5-cycles and the central 4 cycle. Let B be the minimum cycle basis of this unweighted graph that consists
of the three bounded faces of this drawing. Clearly, the left two 5-cycles lie in one pre-class; also, the
right two 5-cycles lie in one pre-class. However, no 5-cycle on the left can be replaced by a 5-cycle on
the right, so these two preclasses are distinct. Nevertheless, all four 5-cycles are ∼5-equivalent, as they
add up to 0, but every triple of them is linearly independent.

We now explain how to check whether the cycles from two explicitly given pre-classes D1

and D2 of equal weight κ, but with empty intersection, belong to the same ∼κ equivalence
class.

By transitivity, it is sufficient to determine whether an arbitrary pair D1 6= D2 of cycles
with D1 ∈ RC1

⊂ D1 and D2 ∈ RC2
⊂ D2 is interchangeable. By Lemma 15 we may assume

that none of the classes RC1
and RC2

is essential. Hence we can choose non-basic cycles D1

and D2 for our investigation and consider their basis representations with respect to B.
We distinguish the cases whether D1 and D2 have a common basis cycle C∗ in their

basis representations (Case I) or not (Case II). In the situation (I) we consider the cases (a)
that w(C∗) = w(D1) and (b) that w(C∗) < w(D1), and show that D1 and D2 are always
interchangeable.

Case (Ia): Suppose that the basis representations of the cycles D1 and D2, respectively, share
a basis cycle C∗ of weight w(C∗) = κ. Recall that RC∗ consists of all cycles of weight w(C∗)
that are linearly independent of B \ {C∗}. Since basis representations are unique, D1 and D2

both have this property. Therefore D1 ∈ RC1 ∩ RC∗ 6= ∅ and D2 ∈ RC2 ∩ RC∗ 6= ∅, hence all
three sets belong to the same pre-class, which implies D1 = D2.

Case (Ib): Suppose now that D1 and D2 have a common basis cycle C∗ in their basis repre-
sentations of weight smaller than κ. We show that D1 and D2 are interchangeable by deriving
a representation according to Lemma 5.

By adding the two basis representations we obtain D1 ⊕ D2 =
⊕

C∈K C for some K ⊆
B \ {C∗}. Adding D2 to both sides leads to

D1 = D2 ⊕
⊕
C∈K

C.

It remains to be shown that the family K ∪ {D2} is a linearly independent subset of Rκ.

18 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

The basis cycles in K are certainly linearly independent. Further, since C∗ 6∈ K, not all
cycles of the basis representation of D2 are contained in K. Hence no nonempty subset of
{D2} ∪ K can add up to zero. Further, as the cycles in K belong to the basis representation of
either D1 or D2, they have weight at most κ, and are relevant.

Case (II): Now we assume that the basis representations of D1 and D2 do not share a common
basis cycle. Let us remark, first, that this case can actually occur, even if D1 ∼k D2, see Fig. 11.

Fig. 11. The graph generalizes the one from Fig. 10 and has 6 cycles of length 5 and three cycles
of length 4; all of them are relevant. Every minimum cycle basis has to contain one of the left three
5-cycles, one of the right three 5-cycles and two of the three central 4-cycles. Let B be the minimum
cycle basis of this unweighted graph that consists of the four bounded faces of this drawing. Again
the left three 5-cycle lie in one pre-class and the right ones in another one. As before, all 5-cycles
are ∼5-equivalent. However, it is not true that the base-representation of every left and every right
nonbasis cycle share an element. Consider, for instance, the left and right 5-gon that use the central of
the three middle-paths. Their basis representation are the left 5- and 4-gon and the right 5- and 4-gon,
respectively. So they have disjoint basis representations although they are ∼5-equivalent.

We will show in the next lemma, however, that if two cycles are interchangeable, there exists
a sequence of pre-classes connecting the two, so that consecutive pre-classes either intersect, or
have two representatives whose basis representations contain a shared shorter cycle.

Let, for i ∈ {1, . . . , k} in the following, Ii ⊆ {1, . . . , µ} be index sets such that Di =⋃
j∈Ii RCj are disjoint pre-classes of cycles with weight κ. We define an auxiliary graph Hκ

that has a vertex for each pre-class Di. Two vertices Di and Dj of Hκ are joined by an edge if
and only if there exist two cycles Di ∈ Di and Dj ∈ Dj whose basis representations share some
cycle C∗ with w(C∗) < κ.

By Case (Ib) and transitivity, it follows that if two sets, Di and Dj , are connected by a
path in Hκ, they belong to the same ∼κ class. We now show the converse, namely that any
two sets that belong to two different connected components of Hκ are not interchangeable. Let
Kj , j = 1, . . . , c(Hκ) denote the connected components of Hκ. For simplicity (and in a slight
abuse of notation) we write C ∈ Kj to indicate that C is a cycle that belongs to a vertex D of
Hκ.

Lemma 20. Let K1 and K2 be two different connected components of the graph Hκ defined
above. Then for any two cycles C1 ∈ K1 and C2 ∈ K2 we have C1 6∼κ C2.

Proof. Let C1 ∈ K1 and C2 ∈ K2 be non-basis cycles of weight κ, and suppose for a
contradiction that C1 ∼κ C2.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 19

Then, by Lemma 5 and Corollary 8, there is a representation

C1 = C2 ⊕
⊕
Z∈L

Z ⊕
⊕
S∈S

S,

where L consists of relevant cycles of (large) weight equal to κ and S is a subset of basis
cycles with (small) weight strictly smaller than κ, such that the family L∪S ∪ {C2} is linearly
independent. The set L can be partitioned into a set L1 ⊆ K1, a set L2 ⊆ K2 and a set L3 of
other cycles of weight κ who belong to K3, . . . ,Kp. Then we can write the sum in the extended
form

(4.1) C1 = C2 ⊕
⊕
Z∈L1

Z ⊕
⊕
Z∈L2

Z ⊕
⊕
Z∈L3

Z ⊕
⊕
S∈S

S.

Let us now consider the sets A1,A2 and A3 of basis cycles which appear in the basis
representations of all cycles in the sets L1,L2 and L3, respectively. Since there is no edge in
Hκ between different components, the sets A1,A2 and A3 are disjoint.

As C1 ∈ K1, the basis representation of C1 cannot contain cycles from A2 or A3. Hence
C1 can be obtained by adding only the cycles in L1 and possibly cycles from S. Similarly, no
cycle in L1 contributes to the basis representation of C2. Further, by assumption, the basis
representations of C1 and C2 do not share any cycle from S.

But this implies that C2 must be linearly dependent from L ∪ S, a contradiction. Hence
C1 6∼κ C2.

Consequently if C1 ∼κ C2, then some cycle D2 ∈ L2 ∪ L3 is needed in the representation
of C1 that contributes with at least one of its basis cycles C∗. C∗ is a basis cycle of C1, or
belongs to the basis representation of one of the cycles D1 ∈ L1. Thus, K1 and K2, or K1

and a component Ki, i ∈ {3, . . . , p}, respectively, are connected by an edge in Hκ. Hence,
summarizing the arguments, we obtain the following corollary.

Corollary 21. The connected components of Hκ form the different ∼κ equivalence
classes.

Here is another simple consequence.

Corollary 22. If all cycles of B have the same weight κ, then disjoint pre-classes D1 and
D2 cannot belong to the same ∼κ equivalence class.

Proof. Using Lemma 20 and Case (Ib), two disjoint pre-classes D1 and D2 which belong to
the same ∼κ equivalence class must contain two cycles C1 and C2 whose basis representations
have a basis cycle of weight strictly smaller than κ, in common. But this is precluded by the
assumption.

4.3. An Algorithm for Computing the ∼κ Equivalence Classes. Corollary 21 leads
to Algorithm 3 for computing the partition of R into ∼κ equivalence classes. We first generate
the pre-classes by merging all sets RCi of cycles with the same weight with non-empty inter-
section by means of Lemma 19, and then determine the connected components of the graph
Hκ from the previous subsection.

20 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

Input: Undirected edge-weighted graph G
Output: Partition of R into ∼ equivalence classes Wi, i = 1, . . . , r.

1: Apply Algorithm 1 to obtain a minimum cycle basis B, kernel vectors ui, i = 1, . . . , µ and
sets of feasible cycles RCi for all cycles Ci ∈ B.

2: for each admissible weight κ do
3: Compute pre-classes D`, ` = 1, . . . , p by merging all pairs, RCi ,RCj whenever w(Ci) =

w(Cj) = κ and RCi ∩RCj 6= ∅, using Lemma 19.
4: Construct the graph Hκ described in Subsection 4.2 and determine its connected com-

ponents Ki, i = 1, . . . , c(Hκ).
5: For i = 1, . . . , c(Hκ) let Wκ

i denote the set of all cycles belonging to Ki.
6: end for
7: Output Wκ

i for all i and κ.

Algorithm 3: Assigning relevant cycles to ∼κ equivalence classes

The construction of Hκ can actually be carried out without computing the basis represen-
tation of every relevant cycle. Before we describe the correponding procedure in Subroutine 4
in detail, let us show first how Lemma 19 can be evoked again. In fact, with the shortest path
computation of Subsection 4.1, we can check for every basis cycle Ck (of weight that is strictly
smaller than κ) whether it belongs to the basis representation of some relevant cycle in different
pre-classes as follows: Let Di =

⋃
`∈Ii RC` for disjoint index sets Ii (i = 1, 2) be pre-classes,

and set Ui :=
⋃
`∈{Ii} u` for i ∈ {1, 2}. Now we compute the shortest (v, (0, 0))–(v, (1, 1)) paths

for all v ∈ G in the graphs Guk,u and Guk,u′ for all u ∈ U1, u
′ ∈ U2. We obtain the following

analogue to Remark 17.

Remark 23. The following two statements are equivalent.
(i) There exist ui ∈ U1, uj ∈ U2 and v, w ∈ V such that there is a (v, (0, 0))–(v, (1, 1)) path

Pv in Guk,ui and a (w, (0, 0))–(w, (1, 1)) path Pw in Guk,uj , both of weight w(Ci).
(ii) The cycle Ck belongs to the basis representation of both, W (Pv) and W (Pw).

Remark 23 can be used in the following subroutine for constructing Hκ.
In conjunction with Subroutine 4, Algorithm 3 works correctly in time given in the following

theorem.

Theorem 24. Algorithm 3 (expanded by Subroutine 4) determines a partition of R into ∼κ
equivalence classes. It requires time O(m4n) after R is computed. The overall time complexity
is in O(m4n+ |R|mn2).

Proof. The correctness of Algorithm 3 follows from Lemmas 18, 19, Corollary 21, and
Remark 23. The pre-classes can be computed in time

O(m2(n(m+ n log n))) = O(max{m3n,m2n2 log n}),

assuming that every pair of basis cycles {Ci, Cj} has to be checked by computing n shortest
paths in Gui,uj .

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 21

Input: G, B, pre-classes D`, ` = 1, . . . , p of cycles with weight κ, kernel vectors ui, i = 1, . . . , µ.
Output: Graph Hκ

1: Create a vertex for each pre-class D`, ` = 1, . . . , p.
2: for all pairs, (i, j) with 1 ≤ i < j ≤ p do
3: for each basis cycles Ck of weight w(Ck) < κ do
4: Let uk be the kernel vector for Ck and Ui and Uj the corresponding sets for Di and

Dj .
5: For each v ∈ G, compute shortest (v, (0, 0))–(v, (1, 1)) paths in Gui,uk for ui ∈ Ui and

in Guj ,uk for uj ∈ Uj .
6: if there exist two paths of weight κ for some triple (ui, uj , uk) then
7: add an edge in Hκ between Di and Dj .
8: end if
9: end for

10: end for
11: Return Hκ.

Subroutine 4: Computing the graph Hκ

In the second step we examine disjoint pre-classes of cycles with the same weight following
Lemma 23, again by determining for at most m2 pairs of cycles up to O(m) times n shortest
paths, requiring time O(m3(n(m+n log n))). This dominates the time necessary for computing
and merging the connected components of Hκ, as Hκ has at most µ vertices. The overall time
complexity is obtained by adding the running time of Algorithm 1 for computingR =

⋃µ
i=1RCi ;

see Theorem 14.

Note that R need not be explicitly available if we only want to assign the basis cycles to
∼κ equivalence classes. This will be used in the next section.

Input: Undirected edge-weighted graph G
Output: Invariant ~β(G).

1: Compute a minimum cycle basis B and kernel vectors, ui, i = 1, . . . , µ with a preferred
algorithm.

2: for each admissible weight κ do
3: Assign the basis cycles to pre-classes D`, ` = 1, . . . , p by generating for all pairs of cycles

Ci, Cj shortest paths in Gui,uj with Lemma 19.
4: Construct the graph Hκ from Subsection 4.2 with Subroutine 4.
5: Determine, for each connected component of Hκ their number of cycles from B.
6: end for
7: Compute the size of each class and return ~β(G).

Algorithm 5: Computing the graph invariant ~β(G)

22 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

Table 1
Different molecules C24H27NO2 and their invariants

C C

C

CC

C

O

C C

C

C

C

C

CC

C C

C

CC

C

C

C

NC

C

O

C
C

C
C

C

C

C
C

C

C

C
C

C
C

C

C

C

C
C

C
C

C

C
N

C
O O

1. Levophenacylmorphan. 2.1

(|2e|2e|2e|2e|2e|2e|2e|6e|6e|6|6|6|) (2e|2e|2e|2e|2e|2e|2e|6|6|6, 6, 6|)
1 N-(4-(1-adamantylmethyl)phenyl) Anthranilic acid

5. Computing the invariant ~β(G) efficiently. In the previous section, we have com-

puted the ∼κ equivalence classes explicitly. The invariant ~β(G) can be derived from this

partition. However, as mentioned before, the computation of ~β(G) does not rely on the explicit
availability of the set R of all relevant cycles. In fact, with Lemmas 19 and 23, it is possible to
assign only the basis cycles in B to ∼κ equivalence classes and to note their size. For the sake
of completeness, we include the pseudo-code of the method in Algorithm 5.

Corollary 25. ~β(G) can be computed in time O(m4n).

6. Molecular Examples. The assignment of minimum basis cycles to ∼κ equivalence
classes contains more structural information than the cycle length vector of a minimum cycle
basis alone. We illustrate this with a few examples of different molecules with the formula
C24H27NO2; see Tables 1 and 2. All information is concentrated in one vector explained
below the corresponding molecular graph. It is based on ~w, but the ∼κ-equivalence classes are
separated by vertical lines, and a subscript e indicates that the corresponding cycle is essential.

Note that, in Table 1, the Graphs 1 and 2 share the same vector ~w. The different structure
can, however, be detected by means of the information provided by ~ε(G) and ~β(G). The same
is true for the Graphs 3, 4 and 5 in Table 2.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 23

Table 2
Different molecules C24H27NO2 and their invariants

C

C

C

C

C

C

C

O

C

C

C

C

C

C

C C

C

CC

C

C

C

N

C

C

C

O
C C

C

CC

C
C

C

C

C

C

C

C C

C

CC

C

N C

O

O C

C

C
C

C

3.2 4. Carbamic acid3:
(|2e|2e|2e|2e|2e|2e|2e|2e|2e|6|6|6) (2e|2e|2e|2e|2e|2e|2e|2, 2|6e|6|6|)

C

C C

C

C

C

C

N

C

C

C

C

C

C

C C

C

CC

O

O

C

C C

C

CC

C

CC

C

C

CC

C
C

C
N

O

C

O

C

C
C

C

C
C

C

C
C

C

C
C

C

5.4 6.5

(|2e|2e|2e|2e|2e|2e|2e|2e|2e|6e|6|6|) (2e|2e|2e|2e|2e|2e|2e|2e|5e|5e|6|6|)
2 1-,1-diphenyl-3-(ethylamino)-3-(p-methoxyphenyl)-1-Propanol
3 N-cyclohexyl-,1-phenyl-1-(3,4-xylyl)-2-propynyl ester
4 2-[1-[(2-methylphenyl)amino]pentylidene]-5-phenyl-cyclohexane-1,3-dione
5 [(1,7,7-trimethyl-2-bicyclo[2.2.1]heptylidene)amino]
2,2-diphenylacetate

24 FRANZISKA BERGER, PETER GRITZMANN, AND SVEN DE VRIES

REFERENCES

[Bab16] L. Babai. Graph isomorphism in quasipolynomial time. arXiv:1512.03547v2, 2016.
[Ber04] F. Berger. Minimum Cycle Bases in Graphs. PhD thesis, Zentrum Mathematik der Technischen

Universität München, 2004.
[BFG+04] F. Berger, C. Flamm, P.M. Gleiss, J. Leydold, and P.F. Stadler. Counterexamples in chemical

ring perception. J. Chem. Inf. Sci., 44:323–331, 2004.
[BGdV04] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle bases for network graphs. Algorithmica,

40:51–62, 2004.
[BGdV09] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle bases and their applications. In

J. Lerner, D. Wagner, and K.A. Zweig, editors, Algorithmics of Large and Complex Networks,
volume 5515 of LNCS, pages 34–49. Springer, 2009.

[BP94] R. Balducci and R.S. Pearlman. Efficient solution of the ring perception problem. Chem. Inf.
Comput. Sci., 34:822–831, 1994.

[CdV04] E. Cheng and S. de Vries. Separating multi-oddity constrained shortest circuits over the polytope
of stable multisets. OR-Letters, 32(2):181–184, 2004.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. Proc. 3rd ACM Symposium on
Theory of Computing, pages 151–158, 1971.

[DGHL89a] Geoffrey M. Downs, Valerie J. Gillet, John D. Holliday, and Michael F. Lynch. Review of ring
perception algorithms for chemical graphs. J. Chem. Inf. Comput. Sci., 29:172–187, 1989.

[DGHL89b] G.M. Downs, V.J. Gillet, J.D. Holliday, and M.F. Lynch. Review of ring perception algorithms
for chemical graphs. J. Chem. Inf. Comput. Sci., 29:172–187, 1989.

[Die97] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag New
York Berlin Heidelberg, 1997.

[Epp98] D. Eppstein. Finding the k shortest paths. SIAM J. Computing, 28(2):652–673, 1998.
[Fuj87] S. Fujita. A new algorithm for selection of synthetically important rings: the Essential Set of

Essential Rings for organic structures. J. Chem. Inf. Comput. Sci., 28:78–82, 1987.
[Fuj88] S. Fujita. Logical perception of ring opening, ring closure, and rearrangement reactions based on

imaginary transition structures. selection of the Essential Set of Essential Rings. J. Chem.
Inf. Comput. Sci., 28:1–9, 1988.

[Gal14] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th interna-
tional symposium on symbolic and algebraic computation, pages 296–303. ACM, 2014.

[GJ79a] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. Freeman, New York, 1979.

[GJ79b] J. Gasteiger and C. Jochum. An algorithm for the perception of synthetically important rings.
J. Chem. Inf. Comput. Sci., 19:43–48, 1979.

[Gle01] P.M. Gleiss. Short cycles - Minimum cycle bases of graphs from Chemistry and Biochemistry.
PhD thesis, Institut für theoretische Chemie, Universität Wien, 2001.

[GLS00] P.M. Gleiss, J. Leydold, and P.F. Stadler. Interchangeability of relevant cycles in graphs. Elec-
tronic J. Comb., 7:# R16, 2000.

[GLS03] P.M. Gleiss, J. Leydold, and P.F. Stadler. Circuit bases of strongly connected digraphs. Discus-
siones Math. Graph Th., 23:241–260, 2003.

[HM93] D. Hartvigsen and R. Mardon. When do short cycles generate the cycle space? J. Comb. Theory,
Ser. B, 57:88–99, 1993.

[JWD00] C.A James, D. Weininger, and J. Delaney. Daylight Theory Manual – Daylight 4.8.
http://www.daylight.com, 2000.

[KMMP04] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. A faster algorithm for minimum cycle
bases of graphs. In Automata, Languages and Programming, volume 3142 of LNCS, pages
846–857, 2004.

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Structural Com-
plexity. Springer Verlag Boston, New York, 1993.

[Kuc97] D. Kuck. Centrohexacyclic or K5 molecules — development of a growing class of topologically
nonplanar organic compounds. (6):1043–1057, 1997.

COMPUTING CYCLIC INVARIANTS FOR MOLECULAR GRAPHS 25

[LS98] J. Leydold and P. F. Stadler. Minimal cycle basis of outerplanar graphs. Electronic J. Comb.,
5:# R16, 1998.

[May14] John W. May. Cheminformatics for genome-scale metabolic reconstructions. PhD thesis, Uni-
versity of Cambridge, 2014.

[MM09] K. Mehlhorn and D. Michail. Minimum cycle bases: Faster and simpler. ACM Trans. Alg.,
6(1):8:1–8:13, 2009.

[MN99] K. Mehlhorn and S. Näher. LEDA - A platform for combinatorial and geometric computing.
Cambridge University Press, 1999.

[MS14] J.W. May and C. Steinbeck. Efficient ring perception for the chemistry development kit. J.
Cheminformatics, 6(1):3, 2014.

[Oxl92] J.G. Oxley. Matroid Theory. Oxford Graduate Texts in Mathematics. Oxford University Press,
1992.

[Plo71] M. Plotkin. Mathematical basis of ring-finding algorithms in CIDS. J. Chem. Documentation,
11:60–63, 1971.

[Tol14] J.M.C. Toledo. An investigation into the structural basis for nucleic acid small molecule binding.
PhD thesis, Carleton University Ottawa, 2014.

[Vis97] P. Vismara. Union of all the minimum cycle bases of a graph. Electronic J. Comb., 4:# R9,
1997.

[WBD98] P. Willet, J.M. Barnard, and G.M. Downs. Chemical similarity searching. J. Chem. Inf. Comput.
Sci., 38:983–996, 1998.

	Introduction
	Structural and Algorithmic Preliminaries
	Definitions and Notation
	Cyclic Graph Invariants
	Main Results

	Computing the Sets of Relevant and Essential Cycles
	Some Tools
	The Set of Relevant Cycles
	Computing the Set of Essential Cycles and the invariant (G)

	Partitioning R into Equivalence Classes
	Non-empty Intersection
	Empty Intersection
	An Algorithm for Computing the Equivalence Classes

	Computing the invariant (G) efficiently
	Molecular Examples
	References

