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Abstract

In this paper, we propose a general framework capturing online scheduling prob-
lems in which each machine has multiple states that lead to different processing
times. For these problems, in addition to decide how to assign jobs to machines, we
also need to set the states of the machines each time they are assigned jobs. For a
wide range of machine environments, job processing characteristics and constraints,
and cost functions, we develop a 5.14-competitive deterministic online algorithm
and a 3.65-competitive randomized online algorithm.

The online weighted traveling repairman problem belongs to this general frame-
work, and both our deterministic and randomized online algorithms lead to lower
competitive ratios than the current existing ones in the literature. In addition, we
show that the online algorithm ReOpt (re-optimizing the route of the repairman
whenever a new request is released) is almost surely asymptotically optimal for a
probabilistic version of this problem.

1 Introduction

In an online scheduling problem, jobs are released over time and an online algorithm,
knowing only the jobs released so far, is to assign jobs to machines in an online fashion
so as to minimize a given cost function of the completion time of the jobs. Competitive
analysis is a standard performance metric for evaluating an online algorithm, and is
based on the concept of competitive ratio, which, in our context, is defined as the worst-
case ratio (among all problem instances) between the overall cost of the online algorithm
and that of the optimal offline algorithm which has the full knowledge ahead of time
about all jobs to be released. A lower competitive ratio implies a better online algorithm.

Unlike offline scheduling problems, one limitation in the majority of the online
scheduling literature is the assumption that the processing time of a job depends only
on its assigned machine. This assumption is not realistic in applications where each
machine has multiple states that lead to different processing times. This is the case
for many manufacturing problems such as producing paper bags, semiconductors, and
automobiles [2, 33, 47, 51]. For example, Pinedo [47] describes an application in a paper
bag factory, where a machine has different states, each corresponding to the size of bags
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and the combination of colors the machine can produce. Problems involving multiple
machine states are typically studied in the offline (but not the online) setting and under
the simplification that each job can only be processed in the minimal-processing-time
state. However, this simplification fails to consider the state-transition time, which may
also be important in an overall time-objective. In this paper, we study the more general
set-up where we remove the above-mentioned simplification, and where we consider an
online setting. In particular, as we will see, our algorithms will need to balance the
tradeoff between minimizing the processing time and the state-transition time.

1.1 Our Contributions

Our contributions consist in the following three main aspects.
First, we formulate a new class of online scheduling problems. In this setting, each

machine has a state that can be controlled over time and the processing time of jobs
depends on the machine states. In addition, we introduce a family of generic cost func-
tions for these problems that can describe many practical objectives such as minimizing
the makespan and minimizing the total weighted completion time. The offline version
of this new online scheduling problem is NP-hard, because it includes the Weighted
Traveling Repairman Problem (WTRP) as a special case. Therefore, solving the offline
version efficiently is challenging per se. In this paper, we restrict our attention to quan-
tifying the competitive ratio and do not consider the computational complexity aspect
of an online algorithm.

Second, for this new generic class of scheduling problems, we derive deterministic
and randomized online algorithms using a plan-and-commit approach, where algorithms
plan the schedule of jobs and the control of machine states at predefined geometric time
steps, and commit to the plan (regardless of newly released jobs between these time
steps). The analyses of the specific plan-and-commit-based online algorithms in the
classical online scheduling and online WTRP literature use a summation-transformation
proof technique. However, this proof technique cannot be applied to our versions of
algorithms, which makes it difficult to obtain a provable low competitive ratio. In
this paper, we tackle this challenge by using a factor-revealing-linear-program-based
proof technique, and obtain a low-competitive-ratio online algorithm for all problems
in the general framework. Our competitive ratios are better than the existing ones for
the online WTRP (a special case in the general framework) in both deterministic and
randomized settings.

Third, for a probabilistic version of the online WTRP, we prove that an existing
algorithm ReOpt (re-optimizing the route of the server whenever a new request is re-
vealed in a greedy fashion) is almost surely asymptotically optimal as the number of
requests approaches infinity. This is the first theoretical guarantee of the performance
of ReOpt for the online WTRP in any performance metrics.

1.2 Related Work

There has been extensive research on problems related to ours. Here we give a review
of relevant work, organized around three main categories, as follows.
Scheduling Problems

The area of scheduling has a rich literature. The central question in a scheduling
problem is to determine at what time and to which machine each job is assigned so
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as to minimize a given cost function. Different machine environments (single machine,
parallel (identical) machines, or unrelated machines, etc.), processing characteristics and
constraints (preemption/preemption-repeat/non-preemption, release date constraints,
precedence constraints, etc.), and cost functions (makespan, total completion time, etc.)
result in different versions of scheduling problems. The reader is referred to [22] and
[47] for comprehensive reviews.

The predominant models in the scheduling literature assume the processing time
of a job to be a function of the machine-job pair assignment. There are two models
that do not require this assumption, and they are mostly studied in the offline case.
The first such model corresponds to scheduling problems with controllable processing
time (for surveys, see [45, 48]). In this model, the processing time of a job depends on
the resource allocated to the machine, and costs for allocating resources are imposed.
The second such model corresponds to scheduling problems with sequence-dependent
set-up time (for surveys, see [1, 2]). In this model, the overall processing time of a
job depends on the job processed by the machine right before it. Kim and Bobrowski
[34] and Vinod and Sridharan [50] study this last model in a dynamic setting, when
jobs arrive over time and obtain simulation-based results. However, to the best of our
knowledge, no previous work along these two directions has considered a competitive
analysis for online algorithms when the processing time of a job is not a function of
the machine-job pair, except for the special cases of online Vehicle Routing Problems
VRPs (discussed later). We study general online scheduling problems whose offline
setting goes beyond the sequence-dependent processing time model, and design online
algorithms with provable competitive ratios.

Online scheduling has been studied extensively for the basic model where the pro-
cessing time of a job is a function of the machine-job pair. Among these problems,
most relevant to our work are the ones with the cost function being the total (weighted)
completion time of all jobs [3, 15, 16, 20, 21, 24, 25, 38, 42, 43, 46, 49]. The goal in
this line of research is to derive online algorithms with the smallest competitive ratios.
Recently, Günther et al. [23] develop an algorithmic approach that can approximate the
best-possible competitive ratios for many versions of these problems. We note here that
the solution techniques described in all the papers discussed in this paragraph cannot,
in general, be adapted to fit our problems because the effect of the machine states on
the processing time is not taken into account. The only exceptions are [14, 24, 25]
whose ideas can be used to design algorithms for our problems (elaborated more in the
solution techniques part of this section). As we will see later, our algorithm involves
other design ideas and is not a trivial generalization of those contained in [14, 24, 25].
Online Vehicle Routing Problems

In the online VRPs, a server with a unit speed limit is to visit requests that are
located in a metric space and released over time. The server is originally located at a
prescribed depot. Different characteristics of requests (weights, precedence constraints,
capacity constraints, etc.), cost functions (the makespan, total weighted completion
time, etc.), and underlying metric spaces (the nonnegative real line, the real line, general
continuous metric spaces, discrete metric spaces, etc) result in different problems. The
reader is referred to [29] for a survey.

The online VRPs are special cases of our new class of scheduling problems when
we view the servers as the machines and the location of a server as the state of the
corresponding machine. The online VRPs are more restrictive because when a machine
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(a server) finishes processing a job (a request), the machine state (the server location)
always corresponds to the location of that job and thus cannot be selected by the algo-
rithm. The specific class of cost functions we study here covers classical online VRPs
such as the online WTRP (discussed more later), the online nomadic traveling salesman
problem [4, 8, 11, 37], and the nomadic version of the online quota traveling salesman
problem [6, 7, 26, 27], the nomadic and/or the latency online dial-a-ride problems (with
infinite capacity) [13, 17, 37] (see Remark 1 for detail). Therefore, our general online
algorithms can be applied to the above online VRPs. Our algorithms and competitive
analyses can also be applied to the nomadic and/or the latency online dial-a-ride prob-
lems with capacity constraints. Moreover, both our deterministic and randomized online
algorithms achieve better competitive ratios than the existing ones for the online WTRP
and the latency online dial-a-ride problem (with or without capacity constraints).

The online WTRP is a version of the online VRP in which the objective is to min-
imize the total weighted completion time. We provide here a more detailed literature
review about the online WTRP because the technical aspect of this problem is relevant
to ours. Feuerstein and Stougie [17] propose a deterministic 9-competitive online algo-
rithm and show that no deterministic online algorithm has a competitive ratio lower
than 2.41 when the metric space is the non-negative real line. With some minor modi-
fications, the 9-competitive online algorithm becomes 3.5-competitive when the metric
space is the non-negative real line [37]. Feuerstein and Stougie [17] also prove that 2
and 2.33 are lower bounds on the competitive ratios of any randomized online algo-
rithm for the real line and for general metric spaces respectively. Jaillet and Wagner
[28], Krumke et al. [36] propose two different deterministic online algorithms with a
competitive ratio of 5.83 for general metric spaces. The randomized version of these
two online algorithms both have a competitive ratio of 3.87.

The latency online dial-a-ride problem is a variant of the WTRP. In this problem,
a request contains a source location and a destination location, and the server needs
to transport the request from the source to the destination. The 5.83-competitive de-
terministic and 3.87-competitive randomized online algorithms for the online WTRP
can also be applied to the latency online dial-a-ride problems (with or without capacity
constraints) [28, 36]. For the online latency online dial-a-ride problem with capacity
one, Feuerstein and Stougie [17] prove that any deterministic online algorithm has a
competitive ratio of at least 3 when the metric space contains the real line.

An interesting algorithm for the online WTRP is ReOpt, which re-optimizes and
follows the route that minimizes the total weighted completion time of unserved requests
whenever a new request is released. ReOpt belongs to the class of zealous algorithms,
defined by Blom et al. [11], in which the server always travels with the maximum speed
when there are unserved requests and may change directions only when either it arrives
at a request location or a new request is released. To the best of our knowledge, the only
zealous algorithm for which a competitive analysis has been applied is a 6.04-competitive
deterministic online algorithm proposed by Ausiello et al. [9] for the real line. Therefore,
it is unknown whether the competitive ratio of ReOpt is finite or not, even for the real
line. Jaillet and Wagner [30] attempt to give the only performance guarantee for ReOpt.
In particular, they try to show that, under some stochastic assumptions, ReOpt is almost
surely asymptotically optimal, i.e., it has a competitive ratio of 1 almost surely when the
number of requests goes to infinity. However, one part of their proof (Lemma 5 in [30])
turns out to be flawed, invalidated their overall argument. We provide here a full proof
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that ReOpt is indeed almost surely asymptotically optimal.
Solution Techniques

The core idea in the design of our algorithms is to divide time into geometric steps,
and control the machine states and assign jobs to machines at each time step via solving a
specific auxiliary (offline) problem. Jaillet and Wagner [28], Krumke et al. [36] apply this
idea with an auxiliary problem consisting of maximizing the total weight of the requests
to be completed by the next time step, and derive a 5.83-competitive deterministic
algorithm and a 3.87-competitive randomized algorithm for the online WTRP. When
applied to the classical online scheduling problems 1|rj |

∑

wjcj and P |rj |
∑

wjcj , the
idea of using such an auxiliary problem leads to a 4-competitive deterministic algorithm
and a 2.89-competitive randomized algorithm [14, 24, 25]. The competitive ratios of
these algorithms are obtained based on a summation-transformation proof approach,
which compares the cost of the online algorithm and that of the optimal offline algorithm
using the following transformation of summation:

∑

wjcj =
∫∞
x=0

∑

j:cj≥xwj dx. This
transformation provides an expression suitable for comparing the costs between the
online and the optimal offline algorithms because at each time step, the total weight of
requests not completed by a deadline (proportional to the time step itself) of the solution
to the auxiliary offline problem is at most that of the optimal offline algorithm. This
particular auxiliary problem and the summation-transformation proof technique have
also been applied to derive polynomial-time approximated algorithms for the (offline)
TRP [12, 19].

Instead of minimizing the actual completion time, the above auxiliary problem con-
straints it with a deadline, which is a major drawback due to its “low resolution”.
Ideally, in addition to maximizing the total weight that can be completed by the next
time step, we want the auxiliary offline problem to simultaneously minimize the total
weighted completion time of requests that are completed by the next time step. For
the classical online scheduling problem 1|rj |

∑

wjCj , Hall et al. [25] address this issue
by using a two-stage optimization approach: finding the optimal order for serving those
jobs so as to minimize the total weighted completion time after solving the original
auxiliary problem. The modified schedule is feasible for 1|rj |

∑

wjCj because the total
processing time does not depend on the order in which the jobs are scheduled. With this
two-stage optimization approach, Hall et al. [25] obtain a 3-competitive deterministic
algorithm for 1|rj |

∑

wjCj. However, this approach does not have an analogy for the
online WTRP because the completion time of the last request depends on the order in
which the requests are served and thus the order that minimizes the total weighted com-
pletion time can be infeasible with respect to the deadline constraint. Here we attempt
to solve two optimization problems simultaneously by setting the objective functions
to be the summation of the two original ones. At a conceptual level, Koutsoupias
and Papadimitriou [35] use this idea in the design of the famous (2k − 1)-competitive
Work Function Algorithm for the online k-server problem, but their approach bears no
similarity to ours on a technical level.

The summation-transformation proof technique described earlier does not provide
useful competitive ratios for our algorithms. Therefore, we derive a competitive analy-
sis using factor-revealing Linear Programs (LPs), i.e., LPs whose objective values corre-
spond to the quantity of interest (in our case, an upper bound on the competitive ratio).
Although the factor-revealing-LP approach has been used to calculate the approxima-
tion ratio or competitive ratio of algorithms in many problems [5, 18, 31, 32, 39–41, 44],
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its application to our problems remains non-trivial because of the particular choice
of suitable variables, objectives, and constraints for factor-revealing LPs strategies to
become successful.

1.3 Organization

The rest of the paper is organized as follows.
In Section 2, we formulate a new class of online scheduling problems where each

machine has multiple states, and the processing time of jobs depends on the states of
the machines. In addition, we define a new family of cost functions including many
classical ones such as the makespan and the total weighted completion time. Finally,
we show that the online VRPs are special cases of the newly defined online scheduling
problems.

In Section 3, we consider the online WTRP because the solution to this special case
provides intuition on how to approach the general case. We define a novel family of
parameterized online algorithms, analyze the algorithms, and find the parameters that
give the lowest provable competitive ratios. By doing so, we obtain a 5.14-competitive
deterministic online algorithm and a 3.65-competitive randomized online algorithm. The
analysis is not tight and the lower bounds on the competitive ratios of the above two
algorithms are 4 and 2.82 respectively. Finally, we consider a probabilistic formulation
of the online WTRP and prove that ReOpt is almost surely asymptotically optimal as
the number of requests approaches infinity.

In Section 4, we consider problems in the general framework, i.e., online scheduling
with multi-state machines when the cost belongs to our new family of cost functions
(following some minor technical assumptions, as discussed in Appendix A). The analysis
for the parameterized online algorithms designed for the online WTRP, in general,
cannot be applied to the general setting, because the cost functions are not necessarily
linear in the completion times of jobs. Therefore, we construct online algorithms for the
general problems based on the parameters that lead to the best provable competitive
ratios for the online WTRP, and analyze only the resulting online algorithms. By doing
so, we obtain 5.14-competitive deterministic and 3.65-competitive randomized online
algorithms.

Finally, in Section 5, we summarize our results and conclude with four open prob-
lems.

2 Problem Formulation

In Section 2.1, we formally describe the online scheduling problem with multi-state ma-
chines, a new class of online scheduling problems. The defining feature of this new
problem is that each machine has multiple states and the processing time of jobs de-
pends on the state of the machine processing it. In addition, we introduce a generic
class of cost functions, which we call the total costs of active projects. These generic
cost functions cover many classical ones such as the makespan and the total weighted
completion time. In Section 2.2, we formally describe the online WTRP. Moreover, we
show that the online WTRP is a special case of the new class of scheduling problems.
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2.1 Online Scheduling with Multi-State Machines

In Section 2.1.1, we formulate the basic setting of the online scheduling problem with
multi-state machines. In Section 2.1.2, we describe several settings, i.e., machine envi-
ronments and job processing characteristics and constraints, to which our online algo-
rithms and analysis can be applied.

2.1.1 Basic Setting

Machines

We assume that we have m machines, indexed by i ∈ [m] , {1, 2, . . . ,m}, where
each machine i can process at most one job at a time. Each machine i has an internal
state si that can be controlled over time t ∈ R≥0. The state of machine i is assumed
to take values in a metric space (Mi, di), with the initial state being a prescribed origin
Oi ∈ Mi. The distance di(s

1
i , s

2
i ), s1i , s

2
i ∈ Mi, is defined to be the minimum time

required for the state of machine i to change from s1i to s2i . When being directed to go
from state s1i to s2i , machine i commits itself to a time duration of di(s

1
i , s

2
i ) and cannot

process any job during that period.

Problem Instances and Jobs

A problem instance I is composed of a finite set of n jobs, indexed by j ∈ [n] where
the size n is part of input. Each job j is characterized by a release date rj ∈ R≥0, a
function pij : Mi → R≥0 of processing time for each machine i ∈ [m], and some other
characteristics ρj belonging to a set P (to be defined later):

• The release date rj is the earliest time at which any machine can start processing
job j. Without loss of generality, we assume 0 ≤ r1 ≤ r2 ≤ · · · ≤ rn.

• The function pij, i ∈ [m], is defined such that for any state si ∈ Mi, pij(si) is
the required time for machine i to process job j when in state si. In the basic
setting, we do not allow preemption, meaning that once machine i in state si
starts processing job j at time t, t ∈ R≥0, both the machine i and the job j
commit themselves to an amount of time duration pij(si): the machine i cannot
process any other job and the job j cannot be processed by any other machine
during that period. Also, we assume we cannot control the machine state when
it is processing any jobs, and processing a job does not change the machine state.
As a result, the completion time of job j will be cj , t + pij(si).

• The other characteristics ρj are used to define the cost, which we will discuss next.

Cost Functions

Here we introduce a new generic class of cost functions, which we call the total costs
of active projects. Before describing the mathematical formulation, we first introduce the
intuition behind the new cost functions and then illustrate the idea with two examples.

In our setting, the overall cost is the summation of the costs contributed by projects.
The list of projects is given in advance irrespective of the problem instance. Each project
corresponds to completing a set of jobs whose characteristics collectively satisfy some
conditions and is said to be active when the released jobs so far are included in the set
defining that project. Only active projects are counted in he overall cost. The cost of
an active project is a function of the completion time of that project (the earliest time
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when all jobs in the set defining the project are completed). For simplicity, we call the
above completion-time-to-cost function the cost function of that project. A project’s
cost function is realized when it becomes active, using the characteristics of jobs released
so far. Note that the characteristics of the jobs determine both the “activeness” and
the cost function of each project. Therefore, we need to define P and ρj ∈ P , j ∈ I,
accordingly (recall that ρj ∈ P is the set of characteristics of job j other than rj and
{pij}mi=1).

This new class of cost functions covers many classical ones, including the following
two examples:

1. The total weighted completion time (
∑

wjcj).

2. The quota-collecting makespan, i.e., the earliest time when the total value (vj ∈
R>0) of completed jobs achieves a prescribed quota Q ∈ R>0. This corresponds
to minS|

∑
j∈S vj≥Q maxj∈S cj.

In the first example, a (possibly countably infinite) number of projects N≥1 are
involved, where project j ∈ N≥1 corresponds to completing a particular job j. Project
j is active if and only if job j is in the problem instance. Following the definition, the
completion time of an active project j is the same as the completion time of the job j.
At the time when project j becomes active, wj is revealed to online algorithms, and the
cost function is defined to be hj(x) = wjx, x ∈ R≥0. Because we need wj to calculate
the cost function of project j, wj is included as one of the characteristic of job j, setting
P = R>0 and ρj = wj .

In the second example, there is only one project, which consists of completing a
set of jobs whose total value achieves/exceeds a given quota Q. The project is active
if there exists a subset of jobs in the instance whose total value achieves/exceeds the
quota. We need the value vj of each job j to determine whether the project is active.
Therefore, we include vj in the characteristics of a job by setting P = R>0 and ρj = vj .
If the project is active, then the cost function is simply the identity function.

Now let us formally describe the definition behind the total costs of active projects.
In this setting, a (finite or infinite) collection of projects K is given a priori, independent
of the problem instance. Each project k ∈ K is defined by a satisfying set indicator
1k, which defines whether a particular set of jobs’ characteristics collectively satisfy the
conditions specified by project k; and a cost function hk, which relates the completion
time of project k to the amount it contributes to the overall cost:

• The satisfying set indicator 1k of a project k ∈ K is a binary function that maps
a subset S of jobs with corresponding characteristics (ρj |j ∈ S) to whether the
characteristics of jobs in S collectively satisfy the conditions specified by project
k or not. Note that in a problem instance, there might be zero, one, or multiple
sets S such that 1k(S, (ρj |j ∈ S)) = 1. For each problem instance I, we denote
K(I) as the set of all active projects, or mathematically,

K(I) , {k|k ∈ K,∃S ⊂ I such that 1k(S, (ρj |j ∈ S)) = 1}.

The completion time of an active project k ∈ K(I), denoted xk, is defined to be
the earliest time at which all jobs in one of the satisfying set are completed, or
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mathematically,
xk , min

S⊂I,1k(S,(ρj |j∈S))=1
max
j∈S

cj.

• The cost function hk of a project k ∈ K(I) relates the completion time xk to
the cost contributed by project k. As discussed earlier, the cost function hk can
depend on the following characteristics of jobs:

(ρj |j ∈ I, rj ≤ min
S⊂I,1k(S,(ρj |j∈S))=1

max
j′∈S

rj′)

where the min max notation is the time when project k becomes active (recall that
rj is the release date of job j).

The cost defined by the total costs of active projects is then

cost(I) ,
∑

k∈K(I)

hk (xk) =
∑

k∈K(I)

hk( min
S⊂I,1k(S,(ρj |j∈S))=1

max
j∈S

cj).

In Table 1, we describe how the following four classical cost functions can be de-
scribed using our framework: the total weighted completion time (

∑

j wjcj), the quota-
collecting makespan (minS|

∑
j∈S vj≥Q maxj∈S cj), the discounted total weighted comple-

tion time (
∑

j wj(1− e−rcj )), and the makespan (maxj cj).

Table 1: Four classical cost functions formulated as the total costs of active projects.

Cost K P ρj S|1k(S, (ρj |j ∈ S)) = 1 hk(x)
∑

j wjcj N≥1 R>0 wj S = {k} ρkx

minS|
∑

j∈S vj≥Q maxj∈S cj {1} R>0 vj
∑

j∈S ρj ≥ Q x
∑

j wj(1− e−rcj) N≥1 R>0 wj S = {k} ρk(1− e−rx)

maxj cj N≥1 ∅ S = {1, 2, . . . , k} rkx (r →∞)

The total costs of active projects can also describe other cost functions of practical
interest, such as in the following example. Assume a given company owning the machines
makes an amount vj ∈ R>0, j ∈ [m], of money when completing job j. For each k ∈ N,
when earning a total amount Qk ∈ R>0 of money, the company offers a corresponding
bonus wj ∈ R>0 to its employee. Because the employee operating the machines wishes
to get the bonus as early as possible, his/her goal is to minimize the weighted summation
of the times at which the total money earned achieves each level of Qk, k ∈ N, for those
Qks that are achievable. In this example, the projects can be indexed by K = N≥1 and
project k, k ∈ K, corresponds to making a total amount of Qk of money. Regarding
the characteristics of jobs, we set P = R>0 and ρj = vj . A set of jobs S satisfies the
conditions set by project k, i.e., 1k(S, (ρj |j ∈ S)) = 1, if and only if

∑

j∈S ρj ≥ Qk.
Finally, a project k ∈ K(I) contributes an amount of wkxk to the cost, and hence the
cost function is defined to be hk(x) = wkx.

In this paper, for our results to hold, we need to impose the following assumption
on the cost functions:

Assumption 1. For any k ∈ K(I), hk is non-decreasing and concave, and hk(0) = 0.

9



We assume that hk is non-decreasing because a greater completion time for a project
does not decrease its cost for most practical applications. We assume hk(0) = 0 because
a project completed at the start should not contribute any cost. Concavity captures
many practical cost functions, including the four in Table 1 and the additional one we
described earlier. This assumption is applicable to problems where the unit-time cost
for a project k until completion is decreasing in time, that is, when hk(t + δ)− hk(t) is
decreasing in t for any δ > 0.
Algorithms

In this paper, an algorithm determines the states of the machines and the schedule of
jobs over time t ∈ R≥0 subject to the constraints regarding machines and jobs described
earlier. Based on the available information of the problem instances at time t, we classify
the algorithms into offline algorithms that know the entire problem instance I from the
start, and online algorithms that know only jobs with release dates up to time t, i.e.,
It , {(rj , {pij}mi=1, ρj)|rj ≤ t}. Our goal is to design online algorithms with strong
worst-case (over all problem instances) performance in comparison with the optimal
offline algorithm (formalized in Definition 2.1.1). Thus, we are only concerned with an
online algorithm which is well-defined mathematically, and not about its computational
complexity.

Online algorithms can be further classified as deterministic and randomized online
algorithms. A deterministic online algorithm determines the machines states and the
assignment of jobs at time t as a function of It. A randomized online algorithm is a
distribution over a collection of deterministic online algorithms.

For notational convenience, for a deterministic (online or offline) algorithm with

name alg, we denote calgj the corresponding completion time of job j ∈ I and xalgk the
corresponding completion time of project k ∈ K(I). In addition, we denote the cost of
problem instance I under algorithm alg as

alg(I) ,
∑

k∈K(I)

hk

(

xalgk

)

.

For a randomized online algorithm with name rand who is a distribution over the col-
lection of deterministic algorithms {alg(ω) : ω ∈ Ω}, the cost of problem instance I,
denoted rand(I), is defined to be the expected cost, i.e., rand(I) , Eω∼Ω(alg(ω)(I)).

For each problem instance I, the optimal offline algorithm OPT is the one that
achieves the infimum of the costs among all algorithms, i.e.,

OPT(I) , inf
alg

alg(I).

Here we use the infimum rather than the minimum in the expression of OPT(I) because
we use its value as a baseline for evaluating the online algorithms, but are not concerned
about whether this value can be achieved by any specific offline algorithm and how this
value can be computed. However, we can show that the infimum is achievable under
some technical assumptions (see Appendix A) using an argument similar to that of
Lemma 16.

In this paper, we wish to design online algorithms whose costs are “close” to OPT(I).
This performance metric can be formalized as the competitive ratio, as described below:
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Definition (Competitive Analysis). An online algorithm OnA is c-competitive, c ∈
R≥1, if for any problem instance I,

OnA(I) ≤ cOPT(I).

The competitive ratio of OnA is the infimum of c such that OnA is c-competitive.
Smaller competitive ratios imply better online algorithms.

2.1.2 Problem Examples

In addition to the basic setting described above, our results can be applied to many gen-
eral settings of online scheduling with multi-state machines. In this section, we describe
several such problem examples using the conventional three-fold notation α|β|γ [22, 47].
The α field represents the machine environment, the β field represents the processing
characteristics and constraints, and the γ field represents the cost function. Since we are
interested in only the case where the cost function is the total costs of active projects,
we introduce only the machine environments (α field) and processing characteristics
and constraints (β field) to which our results can be applied. As a side note, the greek
letters α, β, γ refer to problem examples in this section only but they do not carry the
same meaning in the other parts of this paper.
Machine Environments

In the basic setting described in Section 2.1.1, the machine environment corresponds
to unrelated machines in parallel, meaning that each job needs to be processed by only
one machine, and the processing times on different machines do not necessary have any
relations.

The machine environments that our algorithms and analysis can be applied to in-
cludes flow shop, in which each job has to be processed by all machines in a prescribed
and job-independent order; job shop, in which each job has to be processed by all ma-
chines in a job-specific order; and open shop, in which each job has to be processed by
all machines in any order.
Processing Characteristics and Constraints

In the basic setting described in Section 2.1.1, there are two processing constraints.
The first is the release date constraint, meaning that the earliest time a job can start
being processed is its release date. This constraint is necessary for our results to be
applicable. The second is the non-preemption constraint, meaning that we cannot
interrupt the processing of a job. This constraint can be replaced with the preemption-
repeat constraint, under which the processing of a job can be interrupted but has to
start form scratch if resumed later.

In addition to the above constraints, we can add precedence constraints to the β
field, allowing each job to specify a set of jobs that has to be completed before the job
itself can start being processed.

Last but not least, we can add batch processing (batch(b), b ∈ N≥2) as a processing
characteristic to the β field, allowing a machine to process a batch of up to b jobs at
the same time. The processing time of a batch of jobs is the maximum processing time
among the jobs in that batch, and the completion times of all jobs in the same batch
are defined as the completion time of that batch. If preemption-repeat is allowed and
the processing of a batch is interrupted, all jobs in that batch are not completed and
have to be processed from scratch if being processed later.

11



2.2 Online Weighted Traveling Repairman Problem (WTRP).

In this section, we show that the online WTRP is a special case of the general framework
described in Section 2.1.

To begin with, we first describe the online WTRP. In this problem, a single server
(the repairman), initially located at a depot D ∈ M, travels in a metric space (M, d)
with a unit speed limit in order to visit requests located in the metric space. A problem
instance consists of a finite list of n requests, indexed as 1, 2, . . . , n, where n is instance-
specific. Each request j ∈ [n] has a release date r′j ∈ R≥0, a location lj ∈ M, and a
weight w′

j ∈ R>0. The completion time of a request is the earliest time at which the
server arrives at the location of the request after or at its release date. The objective is
to minimize the total weighted completion time.

Here is how we can formulate the online WTRP as a problem in our general frame-
work. In this formulation, there is only one machine, i.e., m = 1. The machine state
represents the server location, i.e., (M1, d1) = (M, d) and O1 = D. Each request corre-
sponds to a job with the same release date. The location of a request is included in the
definition of the processing time of the corresponding job: when the state of the machine
is at the location of the request, the processing time is 0; otherwise, the processing time
is infinity, i.e.,

p1j(x) =

{

0 if x = lj ,

∞ if x 6= lj .

The characteristics of jobs and the projects are defined so that the cost is the total
weighted completion time, as described in Table 1.

Remark 1. The release date and the processing time in the above formulation is appli-
cable to all variants of the VRPs. If we restrict our attention to those with cost functions
being in Table 1, we can obtain the following two variants: First, when the cost functions
is the makespan, the problem becomes the online nomadic traveling salesman problem.
Second, when the cost functions is the quota-collecting makespan, the problem becomes
the nomadic version of the online quota traveling salesman problem.

If we allow precedence constraints in the problem formulation, our general framework
can cover the nomadic and/or the latency online dial-a-ride problems (with infinite
capacity). In any of these two problems, a request j is characterized by (r′j , uj , vj , w

′
j),

where r′j and w′
j are the release date and the weights, and uj and vj are the source and

destination locations of the request, and the request has to be delivered from uj to vj.
Our general framework can describe this request by setting two jobs 2j − 1 and and 2j,
where r2j−1 = r2j = r′j,

p1,2j−1(x) =

{

0 if x = uj,

∞ if x 6= uj,

p1,2j(x) =

{

0 if x = vj,

∞ if x 6= vj,

w2j−1 = 0 and w2j = w′
j , and impose the precedence constraint that we cannot start job

2j until we have completed job 2j − 1. We can describe the nomadic and the latency
online dial-a-ride problems by setting the cost functions to be the makespan and the total
weighted completion time respectively.
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2.2.1 Probabilistic Version

Here we describe a probabilistic version of the online WTRP, where we make the fol-
lowing stochastic assumptions:

Assumption 2 (Locations). The metric space is an M -dimensional Euclidean space,
M ∈ N≥1, and the locations are independently drawn from an identical distribution over
a compact support in the metric space.

Assumption 3 (Release Dates). For all j ∈ [n], rj =
∑j

i=1 Yi where Y1, Y2, . . . , Yn are
independent random variables drawn from an identical distribution of a non-negative
support with a finite mean and variance.

Assumption 4 (Weights). The weight of each request has positive upper and lower
bounds, i.e., there exists 0 < ω < Ω such that for all j ∈ [n], wj ∈ [ω,Ω].

3 The Online Weighted Traveling Repairman Problem

In this section, we study the online WTRP, formulated in Section 2.2. In Section 3.1,
we propose a family of deterministic and randomized online algorithms, parameterized
by a pair of variables (α, β) where α ∈ (0, 1] and β ∈ [α,∞). In Section 3.2, we provide
upper and lower bounds on the competitive ratios of the proposed algorithms, and
determine the parameters (α, β) that lead to the smallest provable competitive ratios.
As a result of our analysis, we derive a 5.14-competitive deterministic algorithm and a
3.65-competitive randomized algorithm, both of their competitive ratios are lower than
the best existing ones in the literature. When the cost functions of projects are linear,
the results above can be modified and applied to the general case described in Section 2.1.
However, for general cost functions of projects that satisfy Assumption 1, the design
and analysis of online algorithms are both more involved so the results presented in this
section cannot be applied directly (see Section 4 for further discussions). Finally, in
Section 3.3, we study a probabilistic version of the online WTRP, and show that ReOpt
is almost surely asymptotically optimal.

3.1 Deterministic and Randomized Online Algorithms

In this section, we propose a family of deterministic online algorithms (α, β)-Plan-and-
Commit (PACα,β) and randomized versions RPACα,β for each pair of real numbers
(α, β) such that α ∈ (0, 1] and β ∈ [α,∞).

Both PACα,β and RPACα,β have two major stages: initialization and iterations.
The randomized algorithm RPACα,β takes a randomized step only at the end of the
initialization stage, but otherwise is the same as PACα,β. Thus, in the following, we focus
on describing PACα,β, but we will point out the randomized step taken by RPACα,β.
Initialization

This stage begins at time 0 end ends at a time t1, which is defined/computed by
PACα,β (or RPACα,β). The server stays at the depot D through the entire period of
this stage. Thus, what the online algorithm does in this stage is to compute t1, which
must be greater than zero but cannot be too large. More precisely, for reasons that will
be clear when we analyze the algorithms, the value t1 must satisfy the following two
conditions:
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1. The time t1 needs to be non-zero to ensure the geometric series {tl , t1(1 +
2α)l−1}∞l=1 to be unbounded (recall that we have assumed α > 0 so 1 + 2α > 1).

2. No request j can be completed before time t1/(1+2α) by any algorithm (including
an optimal offline algorithm) except for the trivial case where rj = 0 and lj = D.

The online algorithms calculate t1 as follows. Let τ be a time variable updated by
PACα,β that will end up being t1 at the end of this stage. At time t = 0, PACα,β sets
τ to be either the distance between the depot and the nearest (but not at the depot)
request with release date 0, or ∞ if there are no requests with release date 0. Note that
because the server has a unit speed limit, we can set the value of the time variable τ to
be a distance.

After time 0, if no request is released before τ , then PACα,β sets t1 = τ . Otherwise,
PACα,β sets t1 to be the earliest release date of such requests. For the randomized
algorithm RPACα,β, after getting the geometric time series {tl}∞l=1 similarly to what
the deterministic algorithm PACα,β does, the algorithm multiplies each term by the
same random variable (1 + 2α)ω for all l, i.e., setting tl ← tl × (1 + 2α)ω , where ω is
drawn from [0, 1) uniformly once for all l. Clearly, Condition 1 is satisfied according to
the way we define t1. We prove that Condition 2 is also satisfied later in Lemma 3.

Before starting the first iteration of the second stage at time t1, we define R1 to be
the set of all requests with release date at most t1, i.e., R1 , It1 .
Iterations

For any positive integer l, the lth iteration begins at time tl and ends at time tl+1.
The algorithm is called Plan-and-Commit because it plans the route at time tl and is
committed to following the route until time tl+1, regardless of the requests released
between time tl and tl+1.

At time tl, the online algorithm calculates what an offline algorithm algl would have
done between time 0 and αtl such that the following cost is minimized:

∑

j∈Rl

wjfα,β(cj , tl)

where

fα,β(x, y) ,

{

x if x ≤ αy

βy if x > αy

and the set Rl represents the remaining requests at time tl and is defined either in the
initialization stage (if l = 1) or in the previous iteration (if l ≥ 2). We call the problem
of finding the algorithm algl the auxiliary offline problem (see Remark 2 for discussions
regarding why we choose this specific auxiliary offline problem). It is clear that such
an algorithm algl exists because the number of permutation of jobs in Rl is finite. If
algl is computed approximately, then the analysis in Section 3.2 cannot be applied due
to Lemma 4 except for cases where β =∞ (see Remark 7 for further discussions). For
what follows, algl is an optimal solution to the auxiliary offline problem.

The auxiliary offline problem can be interpreted as the following. We first view αtl as
the deadline of the algorithm. Then, we view the cost as the summation of contributions
of requests in Rl. More precisely, request j in Rl contributes one of the following two
amounts to the cost:
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• the weighted completion time wjcj , if completed by the deadline αtl; or

• a weighted penalty wjβtl (where βtl is the penalty), if not completed by the
deadline αtl.

Thus, the auxiliary problem has the objective of both

• minimizing the total weighted completion time; and

• maximizing the total weight

of requests that are completed by the next time step.
The server follows a delayed version of the route of algl (delayed by tl) for a duration

of αtl starting at time tl. The server then travels through the reverse of the route of
algl and returns to the depot D at time (1 + 2α)tl = tl+1. We denote Al those requests
in Rl that have a completion time no greater than αtl under the offline algorithm algl
(see Remark 3 for comments regarding the sets {Al}∞l=1). Following the definition, any

j in Al, has a completion time c
PACα,β

j such that

c
PACα,β

j ≤ tl + c
algl
j (1)

At time tl+1, we finish the lth iteration by defining Rl+1 to be Rl minus Al plus the
requests with release dates in the time interval (tl, tl+1], i.e., Rl+1 , (Rl\Al)∪(Itl+1

\Itl).

Remark 2. At each iteration l, we take into account the release dates when finding the
auxiliary offline algorithm algl even though all requests in Al have been released by the
time we compute the route and can be visited at any time after tl. The intuition is the
following. The release date is a lower bound of the completion time of the request in any
offline algorithm, so the optimal offline algorithm would (conceptually) serve requests
with lower release dates earlier. By taking into account the release date, algl and PACα,β

would (conceptually) serve those requests earlier, and thus a lower competitive ratio may
be achieved. In fact, taking the release dates into account is necessary for Lemma 7,
which is essential to our analysis.

Remark 3. The sets {Al}∞l=1 form a partition of all requests I (Lemma 1). The primary
goal of the auxiliary offline is to find the partition {Al}, which is crucial in the analysis
of the competitive ratio. In fact, at each iteration l, if we replace algorithm algl by an
alternative algorithm that minimizes the total completion time of requests in Al subject
to the constraints that all requests in Al are completed and the server returns at the
depot D at time tl+1, then the upper bound on the competitive ratio still holds.

3.2 Competitive Analysis

The primary result we have for PACα,β is the following:

Theorem 1. The competitive ratio of PAC1,1 is between 4 and 5.14.

The primary result we have for RPACα,β is the following (see Remark 4 for dis-
cussions regarding why our randomized online algorithms have lower competitive ratios
than the best existing ones):
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Theorem 2. For β ≥ 5, the competitive ratio of RPAC1,β is between 1 + 2
ln(3) ≈ 2.82

and 4
ln(3) ≈ 3.64.

The above two major results follows from the following more general theorems. We
start by introducing theorems related to the upper bounds on the competitive ratios of
PACα,β.

For fixed α, when β is relatively large, our best provable upper bound on the com-
petitive ratios has the following closed-form expression:

Theorem 3. For β ≥ 2α2 +3α, the competitive ratio of PACα,β is at most (1+2α)(1+α)
α

.

For general β, the lowest provable upper bound is the objective value of a factor-
revealing LP, described in the theorem below:

Theorem 4. For any positive integer N , the objective value of LPdet
α,β(N) is an upper

bound on the competitive ratio of PACα,β where LPdet
α,β(N) is defined as follows:

max CN + T0 (2)

s.t. Ci+1 − Ci ≥
iα

N
(Ti − Ti+1) for i = 0, · · · , N − 1

(3)

Ci+1 − Ci ≤
(i + 1)α

N
(Ti − Ti+1) for i = 0, · · · , N − 1

(4)

1 ≥ 2α2

(1 + 2α)(β − α)
CN +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T0 (if β > α) (5)

1 ≥ α

2β
CN +

α

2 + 4α
T0. (6)

CN +
β − 2 iα

N

1 + 2α
T0 ≤ Ci + βTi + C⌈N−2i

1+2α ⌉ +
β − 2 iα

N

1 + 2α
T⌊N−2i

1+2α ⌋ for i = 0, · · · ,
⌊

N

2

⌋

(7)

Ci ≥ 0 for i = 1, · · · , N
Ti ≥ 0 for i = 0, · · · , N − 1

C0 = TN = 0.

Theorem 4 allows us to select parameters α and β such that the upper bound on
the competitive ratio is minimized. We calculate the objective value of LPdet

α,β(N) for all
pairs of α, β when they are both multiples of 0.01 using Gurubi. For example, Figure 1
illustrates the objective value of LPdet

1,β(N) when β varies.
Our observation of the numerical results indicates that the lowest upper bound on

the competitive ratio among different α and β occurs when (α, β) = (1, 1). As a result,
we conjecture that (α, β) = (1, 1) is the parameter that minimizes the upper bound
provided by Theorem 4. The objective value of the LP when N = 10000 is slightly
below 5.135. Taken into account possible numerical errors, we conclude that the upper
bound part of Theorem 1 holds. Moreover, our observation of the numerical results
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indicates that when β ≥ 2α2 + 3α, LPdet
α,β(N) → (1 + α)(1 + 2α)/α as N → ∞, which

implies that Theorem 4 does not give a better upper bound than Theorem 3.
When it comes to lower bounds, we have the following result for PACα,β:

Theorem 5. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of PACα,β is at least 3 + 1

α
; and as

β →∞, the competitive ratio of PACα,β is at least (1+α)(1+2α)
α

.

The second statement of Theorem 5 together with Theorem 3 show that the analysis
is tight when β →∞.

Similarly, we have the following results for the randomized online algorithms RPACα,β:

Theorem 6. When β ≥ 2α2 +3α, the competitive ratio of RPACα,β is at most 2(1+α)
ln(1+2α) .

Theorem 7. For any positive integer N , the objective value of LPrand
α,β (N) is an upper

bound on the competitive ratio of RPACα,β where LPrand
α,β (N) is defined by LPdet

α,β(N)
with constraint (5) replaced by the following constraint:

1 ≥ α ln(1 + 2α)

β − α
CN +

(β − α(1 + 2α)) ln(1 + 2α)

2(β − α)
T0 (if β > α). (8)

Similar to the case of the deterministic algorithms, we find the objective value of
LPrand

α,β (N) for all pairs of α, β when they are both multiples of 0.01. For example,

Figure 2 displays the objective value of the linear program for LPrand
1,β (N) when β varies.

Our observation of the numerical results indicates that the lowest upper bound on
the competitive ratio among different α and β occurs at all (1, β) with β ≥ 5. Therefore,
we conjecture that for all β ≥ 5, (1, β) minimizes the provable competitive ratio in our
analysis. According to Theorem 3, for β ≥ 5, the competitive ratio of RPAC1,β is at
most 4/ ln(3) ≈ 3.64. Hence we have obtained the upper bound part of Theorem 2.
The lower bound of Theorem 2 is a special case of the following theorem:

Theorem 8. For the case where the metric space M contains the real line, for any
α ∈ (0, 1] and β ∈ [α,∞), the competitive ratio of RPACα,β is at least 1 + 2α

ln(1+2α) ; and

as β →∞, the competitive ratio of RPACα,β is at least 2(1+α)
ln(1+2α) .

The rest of this section is organized as follows: In Section 3.2.1, we prove the results
related to the upper bounds on the competitive ratio, i.e., Theorems 3, 4, 6, and 7. In
Section 3.2.2, we provide adversarial problem instances that prove Theorems 5 and 8.

Figure 1: Upper bounds on the competitive ratio of PAC1,β
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Remark 4. When β ≥ 2α2 + 3α, the expressions of the upper bounds on the compet-
itive ratios for our proposed algorithms are the same as that of the existing compet-
itive online algorithms INTERVAL [36] and BREAK [28], in both deterministic and
randomized cases, if one chooses the same common ratio for the geometric time steps.
However, we achieve lower competitive ratios, because our algorithms have a wider range
((1, 3]) of possible common ratios to choose from, compared to the existing algorithms do
(
(

1, 1 +
√

2
]

). The existing algorithms solve an auxiliary offline problem right after the
server completes a delayed version of the solution given by the auxiliary offline algorithm
in the previous time step. However, because the online algorithm must be compared to
the optimal offline algorithm that starts from the depot, in the analysis, the auxiliary
offline solution is compared with one that returns to the depot through the shortest path
and then follows the optimal solution (of the auxiliary offline problem). By doing so,
the online algorithm cannot use the information revealed before returning to the depot,
which ultimately limits the range of possible common ratios between time steps. On the
other hand, our algorithm addresses this issue by solving the auxiliary offline problem
after the server returns to the depot, which leads to a wider range of possible common
ratios between time steps.

3.2.1 Upper Bounds on The Competitive Ratios

We first claim that, for the sake of determining the upper bound on the competitive
ratio, we can assume that no request j has both rj = 0 and lj = D. The reason is the
following. If there is a request j such that rj = 0 and lj = D, then for any feasible
algorithm, cj = 0. Therefore, removing this request does not change the cost of any
(online or offline) algorithm. Hence, without loss of generality, we assume no request j
has both rj = 0 and lj = D.

Let us begin by describing the outline of proofs of Theorems 3, 4, 6 and 7. First, we
show that {Al}∞l=1 forms a partition of all requests I (Lemma 1). Because of Lemma 1
and (1), for any problem instance problem instance I, PACα,β(I) has the following
upper bound:

PACα,β(I) ≤
∞
∑

l=1

∑

j∈Al

wjc
algl
j +

∞
∑

l=1

∑

j∈Al

wjtl = C(α)(I) + T (0)(I)

Figure 2: Upper bounds on the competitive ratio of RPAC1,β
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where for all r ∈ [0, α],

C(r)(I) ,
∞
∑

l=1

∑

j∈Al,c
algl
j ≤rtl

wjc
algl
j and T (r)(I) ,

∞
∑

l=1

∑

j∈Al,c
algl
j >rtl

wjtl

(see Remark 5 for discussions regarding the definitions). For the case of the randomized
algorithm RPACα,β(I), we use the same notation C(r)(I) and T (r)(I) to represent
the expected value of the corresponding functions. As a result, for both PACα,β and

RPACα,β, supI
C(α)(I)
OPT(I) + T (0)(I)

OPT(I) is an upper bound on the competitive ratio. We drop the

parameter I and view {C(r)
OPT}r∈[0,α] and { T (r)

OPT}r∈[0,α] as variables in two factor-revealing
LPs, one for PACα,β and the other for RPACα,β. We then find linear inequalities
between T (r), C(r) and OPT that are valid for all problem instances I, and translates
those inequalities into linear constraints in the LP. Unless explicitly mentioned, the
inequalities we find are valid for any ω ∈ [0, 1), and thus are valid for both PACα,β and
RPACα,β. In some cases, the inequalities are valid for only the expected values of C(r)
and T (r) when ω is drawn uniformly from [0, 1), and thus those inequalities are valid for
only the randomized online algorithms RPACα,β. There are uncountably infinite many

variables {C(r)
OPT}r∈[0,α] and { T (r)

OPT}r∈[0,α], so we cannot solve the original LP numerically.

Therefore, after obtaining the linear inequalities, we obtain LPdet
α,β(N) and LPrand

α,β (N)
by dividing [0, α] into N + 1 arithmetic steps , and for all i = 0, 1, . . . , N , we use Ci to
represent C( iα

N
)/OPT and Ti to represent T ( iα

N
)/OPT. By definition, C0 = TN = 0, so

there is only a total of 2N nonnegative real variables {Ci}Ni=1 and {Ti}N−1
i=0 .

Let us briefly describe how we obtain the linear inequalities that are used as con-
straints in the LPs. The first sets of linear inequalities are a direct result of the def-
inition of {T (r)}r∈[0,α] and {C(r)}r∈[0,α] (Lemma 2) and is independent of the online
algorithm, which implies constraints (3) and (4). We then prove that for both PACα,β

and RPACα,β , t1 is small enough and satisfies Condition 2 in Section 3.1 (Lemma 3),
which is essential for the other linear inequalities. The main idea of the rest of the
linear inequalities is the observation that for all l, the offline algorithm algl is also
optimal if the summation of the auxiliary (offline) problem was taken over any set of
requests satisfying some properties (Lemma 4). Comparing the cost of the auxiliary
problem between algl and that of the optimal offline algorithm OPT, we obtain two sets
of linear inequalities between C(α), T (0), and OPT (Lemmas 5 and 6), which imply
constraints (5) (for PACα,β) or (8) (for RPACα,β) and (6) respectively. Theorems 3
and 6 can be derived from Lemmas 2 and 5. Finally, comparing the cost of the auxiliary
problem between algl and algorithms that are combinations of algl and algl+1 (Figure 3),
we obtain linear inequalities between {C(r)}r∈[0,α] and {T (r)}r∈[0,α] (Lemma 7), which
imply constraints (7).

Let us prove the lemmas in detail. To begin, we show that {Al}∞l=1 forms a partition
of I.

Lemma 1. The sequence of subsets {Al}∞l=1 is a partition of I, i.e.,
⋃∞

l=1Al = I and
for any i 6= j, Ai ∩Aj = ∅.

Proof. It is clear from the definition that for all i 6= j, Ai ∩Aj = ∅, so it is sufficient to
show that I =

⋃∞
l=1 Al.
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The statement I =
⋃∞

l=1Al is equivalent to saying that there exists an integer l̄
such that there are no requests to serve after the l̄th iteration, i.e., Rl = ∅ for all l > l̄.
Consider a number l̄ large enough such that

tl̄ > rn and tl̄ >
OPT(I)

αmin {wj |j ∈ I} .

Such l̄ exists because the right hand side of both of the inequalities above are finite, and
the sequence {tl}∞l=1 goes to infinity. The first constraint is to ensure that no request is
released after time tl̄. Let us prove that the second constraint implies that all requests
in Rl̄ will be completed at the l̄th iteration. If at least one request in Rl̄ is not completed
in the l̄th iteration, we have the following inequality:

β

α
OPT(I) < β min {wj|j ∈ I} tl̄ ≤

∑

j∈Rl̄

wjfα,β(c
algl̄
j , tl̄).

Because algl̄ is the algorithm that minimizes the auxiliary offline problem, we have
∑

j∈Rl̄

wjfα,β(c
algl̄
j , tl̄) ≤

∑

j∈Rl̄

wjfα,β(cOPT
j , tl̄).

Combining the two inequalities above, we obtain

β

α
OPT(I) <

∑

j∈Rl̄

wjfα,β(cOPT
j , tl̄) ≤

β

α
OPT(I)

which is a contradiction. Therefore for all l > l̄, Rl = ∅.

Let us prove that constraints (3) and (4) are valid. We prove this by proving the
following inequalities that follow from the definition of {C(r)}r∈[0,α] and {T (r)}r∈[0,α].
Lemma 2. For 0 ≤ r ≤ r′ ≤ α,

r(T (r)− T (r′)) ≤ C(r′)− C(r) ≤ r′(T (r)− T (r′)).

Proof. By definition,

C(r′)− C(r) =
∞
∑

l=1

∑

j∈Al,rtl<c
algl
j ≤r′tl

wjc
algl
j and T (r)− T (r′) =

∞
∑

l=1

∑

j∈Al,rtl<c
algl
j ≤r′tl

wjtl.

Clearly, for any j ∈ Al such that rtl < c
algl
j ≤ r′tl, rtl < c

algl
j ≤ r′tl.

The following lemma shows that t1 is small enough such that Condition 2 in Sec-
tion 3.1 holds, which is essential for proving the lemmas in the rest of this section. The
following lemma applies to all ω ∈ [0, 1), so it is valid for both PACα,β and RPACα,β.

Lemma 3. For both PACα,β and any realization of RPACα,β, for any (offline or online)
algorithm alg and any request j,

calgj >
1

1 + 2α
t1.
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This lemma is used later with the algorithm alg being OPT and alg1.

Proof. Because the server has a unit speed limit and a request cannot be visited before
the release date, for any request j, calgj ≥ max (rj , d(lj ,D)). On the other hand, for all
j, the t1 determined by PACα,β is at most max (rj, d(lj ,D)). Therefore, for PACα,β and

RPACα,β with ω = 0, for all request j, t1 ≤ calgj . For RPACα,β with any ω ∈ [0, 1),

t1 < (1 + 2α)calgi .

The other linear inequalities require the following property of algorithm algl.

Lemma 4. For any set S satisfying Al ⊆ S ⊆ ⋃∞
i=l Ai, algl is the offline algorithm that

minimizes the cost:
∑

j∈S

wifα,β

(

calgj , tl

)

.

Proof. Let alg be any offline algorithm. Any request j in S but not Rl is released after

tl, and thus calgj ≥ rj ≥ tl and fα,β

(

calgj , tl

)

= βtl. Therefore, we can decompose the

cost into two terms as follows:

∑

j∈S

wifα,β

(

calgj , tl

)

=
∑

j∈S∩Rl

wjfα,β

(

calgj , tl

)

+
∑

j∈S\Rl

wjβtl. (9)

The second term is independent of the algorithm, so this lemma is equivalent to algl
being optimal when the cost consists of the first term only.

Any request in Rl but not S is not in Al, and thus is not completed by algl before

time αtl. For those requests j, we have fα,β

(

c
algl
j , tl

)

= βtl. Therefore, suppose on the

contrary that algorithm alg′l obtains a lower value for the first term on the right hand
side of Equation (9) than algl, then

∑

j∈Rl

wjfα,β

(

c
algl
j , tl

)

=
∑

j∈S∩Rl

wjfα,β

(

c
algl
j , tl

)

+
∑

j∈Rl\S

wjβtl

>
∑

j∈S∩Rl

wjfα,β

(

c
alg′l
j , tl

)

+
∑

j∈Rl\S

wjfα,β

(

c
alg′l
j , tl

)

=
∑

j∈Rl

wjfα,β

(

c
alg′l
j , tl

)

,

which contradicts the definition of algl.

Let us now prove that for β > α, constraints (5) and (8) are valid for PACα,β and
RPACα,β respectively. This can be proved by the following lemma that is obtained by
using Lemma 4 with S =

⋃∞
i=l Ai and comparing the costs given by OPT and algl for

each integer l.
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Lemma 5. When β > α, for PACα,β,

OPT ≥ 2α2

(1 + 2α)(β − α)
C(α) +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T (0), (10)

and for RPACα,β,

OPT ≥ α ln(1 + 2α)

β − α
C(α) +

(β − α(1 + 2α)) ln(1 + 2α)

2(β − α)
T (0). (11)

Proof. Consider Lemma 4 with S =
⋃∞

i=l Ai. Since algl achieves the lowest cost value,
we have

∑

j∈
⋃∞

i=l Ai

wjfα,β
(

cOPT
j , tl

)

≥
∑

j∈
⋃∞

i=l Ai

wjfα,β

(

c
algl
j , tl

)

. (12)

For further discussion, we define A⋆
l to be the set of requests that are completed in

the time interval (αtl−1, αtl] by OPT, that is, for all positive integers l,

A⋆
l ,

{

j|j ∈ I, αtl−1 < cOPT
j ≤ αtl

}

(13)

where t0 , t1
1+2α for simplicity. Note that for RPACα,β, the sequence {tl}∞l=1 depends

on the realization of ω, and thus the sets {A⋆
l }∞l=1 are not deterministic. We drop the

dependency on ω to simplify the notation. We define {A⋆
l }∞l=1 this way in order to use

the following inequalities:

fα,β
(

cOPT
j , tl

)

≤ αtl +

{

0 for cOPT
j ≤ αtl.

(β − α)tl for cOPT
j > αtl.

Using these inequalities, we have the following upper bound on the left hand side of
(12):

∑

j∈
⋃∞

i=l Ai

wjfα,β
(

cOPT
j , tl

)

≤
∑

j∈
⋃∞

i=l Ai

αwjtl +
∑

j∈(
⋃∞

i=l Ai)∩(
⋃∞

i=l+1 A
⋆
i )

(β − α)wjtl.

Because
⋃∞

i=l+1A
⋆
i is a superset of (

⋃∞
i=l Ai) ∩

(
⋃∞

i=l+1A
⋆
i

)

, the inequality above still
holds even if we replace the second term on the right hand side with the summation
over the set

⋃∞
j=l+1A

⋆
j , which is what we will do.

On the other hand, we have the following equation for the right hand side of (12):

∑

j∈
⋃∞

i=l Ai

wjfα,β

(

c
algl
j , tl

)

=
∑

j∈Al

wjc
algl
j +

∑

j∈
⋃∞

i=l+1 Ai

βwjtl.

Summing the above inequalities and equations over all positive integers l, we obtain

∞
∑

l=1





∑

j∈
⋃∞

i=l Ai

αwjtl +
∑

j∈
⋃∞

i=l+1 A
⋆
i

(β − α)wjtl



 ≥
∞
∑

l=1





∑

j∈Al

wjc
algl
j +

∑

j∈
⋃∞

i=l+1 Ai

βwjtl



 .
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Interchanging the order of the summations on both sides, using equations
∑i−1

l=1 tl =
ti−t1
2α , and arranging terms properly, the above inequality is equivalent to the following

inequality:

α

1 + 2α

∞
∑

i=1

∑

j∈A⋆
i

wjti ≥
2α2

(1 + 2α)(β − α)
C(α)(I) +

α(β − α(1 + 2α))

(1 + 2α)(β − α)
T (0)(I). (14)

Since the left hand side of the above inequality is smaller than OPT(I), (10) holds.
For RPACα,β, since (14) is valid for any realization of ω, it is also valid when we take

expectation on both sides. For each j ∈ I, the minimum value αtl such that cOPT
j ≤ αtl

has the following expected value:

∫ 1

0
(1 + 2α)xcOPT

j dx =
2α

ln(1 + 2α)
cOPT
j . (15)

This equation gives us the following equation:

E





∞
∑

i=1

∑

j∈A⋆
i

wjti



 =
∑

j∈I

2

ln(1 + 2α)
wjc

OPT
k =

2

ln(1 + 2α)
OPT(I). (16)

Taking expectation on both sides of (14), using (16), and rearranging terms properly,
we obtain (11).

Let us now prove Theorems 3 and 6 using the lemmas above.

Proof of Theorems 3 and 6. Consider Lemma 2 with r = 0 and r′ = α, we obtain

0 ≥ C(α)− αT (0). (17)

The inequality
(1 + 2α)(1 + α)

α
× (10) +

β − (2α2 + 3α)

β − α
× (17)

proves Theorem 3. The inequality

2(1 + α)

ln(1 + 2α)
× (11) +

β − (2α2 + 3α)

β − α
× (17)

proves Theorem 6.

Let us now prove that constraint (6) is valid. This can be proved by the following
lower bound on OPT(I) that is obtained by using Lemma 4 with S = Al ∪ Al+1 and
comparing the costs given by OPT and algl for each integer l.

Lemma 6.

OPT ≥ α

2β
C(α) +

α

2 + 4α
T (0). (18)
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Proof. Using Lemma 4 with S = Al ∪Al+1, we obtain

∑

j∈Al∪Al+1

wjfα,β
(

cOPT
j , tl

)

≥
∑

j∈Al∪Al+1

wjfα,β

(

c
algl
j , tl

)

=
∑

j∈Al

wjc
algl
j +

∑

j∈Al+1

wjβtl.

(19)

The following inequality holds for any x, y ≥ 0:

β

α
x ≥ fα,β (x, y) . (20)

Combining (19) and (20), we obtain

β

α

∑

j∈Al∪Al+1

wjc
OPT
j ≥

∑

j∈Al

wjc
algl
j +

∑

j∈Al+1

wjβtl.

Summing over all positive integers l, using Lemma 3 and the equation tl+1 = (1+ 2α)tl,
we obtain the lemma.

Lemma 6 and the fact that C(α)(I) + T (0)(I) is an upper bound on PACα,β(I),

max

(

2β

α
, 4 +

2

α

)

is an upper bound on the competitive ratio of PACα,β. To obtain better bounds on
the competitive ratio, we need to prove constraints (7), which is done by the following
inequalities that is obtained by using Lemma 4 with S = Al+1 and comparing algl with
some algorithms that are combinations of algl and algl+1 for each integer l.

Lemma 7. For any γ ∈
[

0, α2
]

,

C(α) +
β − 2γ

1 + 2α
T (0) ≤ C(γ) + βT (γ) + C

(

α− 2γ

1 + 2α

)

+
β − 2γ

1 + 2α
T

(

α− 2γ

1 + 2α

)

.

Figure 3: Illustration of algl,l+1(γ).

γtl 2γtl αtl

Time t

lo
ca

ti
o
n

o
f

th
e

re
p

a
ir

m
a
n

algl,l+1(γ)
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Proof. For each γ ∈ [0, α2 ] and each positive integer l, we define the offline algorithm
algl,l+1(γ) (Figure 3) as the following combination of algorithms algl and algl+1:
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1. At time 0 ≤ t ≤ γtl, the server follows the route of algl.

2. At time γtl ≤ t ≤ 2γtl, the server travels reversely so as to arrive at D by time
2γtl.

3. Starting at time 2γtl, the server follows a delayed version (delayed by 2γtl) of
algl+1.

Compare algl,l+1(γ) with algl in Lemma 4 with S = Al ∪Al+1, we obtain the following
inequality:

∑

j∈Al∪Al+1

wjfα,β

(

c
algl
j , tl

)

≤
∑

j∈Al∪Al+1

wjfα,β

(

c
algl,l+1(γ)

j , tl

)

. (21)

The left hand side of (21) equals to

∑

j∈Al

wjc
algl
j + β

∑

j∈Al+1

wjtl.

The part of the summation over Al on the right hand side of (21) is

∑

j∈Al,c
algl
j ≤γtl

wjc
algl
j + β

∑

j∈Al,c
algl
j >γtl

wjtl.

The part of the summation over Al+1 on the right hand side of Inequality (21) is at
most

2γ

1 + 2α

∑

j∈Al+1

wjtl+1 +
∑

j∈Al+1,c
algl+1
j ≤α−2γ

1+2α
tl+1

wjc
algl+1

j +
β − 2γ

1 + 2α

∑

j∈Al+1,c
algl+1
j >

α−2γ
1+2α

tl+1

wjtl+1

where we have used the equation tl+1 = (1 + 2α)tl. This expression is not tight only if
the server under algl,l+1(γ) happens to visit some locations of requests j in Al+1 earlier

than 2γtl + c
algl+1

j .
Summing over all positive integers l and using Lemma 1 and 3, we obtain the

lemma.

Remark 5. In our analysis, we first find inequalities related to terms of the forms

∑

j∈Al,c
algl
j ≤rtl

wjc
algl
j and

∑

j∈Al,c
algl
j >rtl

wjtl

and then we take the summation of the inequalities over all positive integers l to obtain
linear inequalities as constraints. It may seem that we can obtain better bounds by
considering each of the linear inequalities separately without taking the summation over
all integers l. However, it is not the case. Denote lmax the maximum integer l such that
Al 6=∞. We observe that the upper bounds on the competitive ratio of PAC1,1 approach
the objective value of LPdet

1,1(N) when lmax increases. Similar results are also shown in
the numerical analysis for the randomized online algorithms case. Therefore, we cannot
reduce the upper bound on the competitive ratios significantly even if we did not take the
summation over all positive integers l.
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3.2.2 Lower Bounds on The Competitive Ratios

It is sufficient for us to prove the case where M = R and D = 0.
Let us first consider the lower bounds for the deterministic algorithms. We first

prove the first statement of Theorem 5. We start with the case in which α ∈ (0.5, 1]
in the following lemma. After proving the lemma, we explain how we may modify the
argument to show that the statement is true for all α ∈ (0, 1].

Lemma 8. For α ∈ (0.5, 1], for each ǫ > 0, define I(ǫ) to be the problem instance that
contains only one request with r1 = 1, l1 = (1 + 2α)α + ǫ, and w1 = 1, then

lim
ǫ→0+

PACα,β(I(ǫ))

OPT(I(ǫ))
≥ 3 +

1

α
.

Proof. We first consider the cost of the optimal offline algorithm. One feasible offline
algorithm is to let the server travel to the location of the request l1 with full speed
starting at time 0. The server arrives at time l1, and l1 > r1 because we have assumed
α > 0.5. As a result,

OPT(I(ǫ)) ≤ l1 = (1 + 2α)α + ǫ. (22)

Now let us consider the cost of PACα,β. For this problem instance, t1 = r1 = 1,
t2 = 1 + 2α, and t3 = (1 + 2α)2. Because the completion time of the request in any
offline algorithm is at least the location l1, which is greater than αt2, the request cannot
be completed in the first two iterations. As a result, the cost of the online algorithm
has the following lower bound:

PACα,β(I(ǫ)) = c
PACα,β

1 ≥ t3 + l1 ≥ (1 + 2α)2 + (1 + 2α)α + ǫ > (1 + 2α)(1 + 3α).
(23)

Considering (22) and (23), the lemma holds.

For fixed r1 = 1, the key in the proof above is to design the location l1 to be
slightly greater than αtl for some positive integer l (in the proof above, l = 2), with the
additional constraint that l1 > 1(= r1). We can use the same idea to design adversarial
problem instances when α ≤ 0.5. Defining k to be the minimum integer such that
(1 + 2α)kα > 1 and replacing the location of the only request by (1 + 2α)kα + ǫ,
Lemma 8 holds for all α ∈ (0, 1]. Therefore, Theorem 5 holds for all α ∈ (0, 1].

Now let us prove the second statement of Theorem 5. Similar to the proof of the
previous lemma, we start with the case α > 0.5, and then explain how we may generalize
the proof for the case of all α ∈ (0, 1].

Lemma 9. For α ∈ (0.5, 1], for each ǫ > 0, define the problem instance I(ǫ) to have
the following 3 requests.

(rj , lj , wj) ,











(1,−((1 + 2α)α2 − ǫ), ǫ2) for j = 1,

((1 + 2α)α, (1 + 2α)α, ǫ) for j = 2,

((1 + 2α)α + ǫ, (1 + 2α)α + ǫ, 1) for j = 3,

then

lim
ǫ→0+

lim
β→∞

PACα,β(I(ǫ))

OPT(I(ǫ))
≥ (1 + α)(1 + 2α)

α
.
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This lemma implies the following statement. For any real number ρ < (1+α)(1+2α)
α

,
there exists an adversarial problem instance I(ǫ) on which the ratio between PACα,β(I(ǫ))
and OPT(I(ǫ)) is greater than ρ for all big enough β. Thus, this lemma proves the sec-
ond statement of Theorem 5 for the cases where α ∈ (0.5, 1].

Proof. The cost of the optimal algorithm is lower than the algorithm alg that travels
to l3 starting at time 0 and then travels to l1 with maximum speed. Under algorithm
alg, the completion time of Request 3 equals l3, and as ǫ→ 0+, the completion time of
any other request is bounded above by a constant, e.g., α(1 + 2α)2 + 1. In addition, the
total weight for the first two requests approaches 0 as ǫ→ 0+. As a result,

OPT(I(ǫ)) ≤ alg(I(ǫ)) =

2
∑

j=1

wjc
alg
j + w3c

alg
3 (24)

which approaches (1 + 2α)α as ǫ→ 0+.
Now let us consider the online algorithm PACα,β. The key observation is that

requests 1 and 3 are completed in the last iteration and Request 3 is visited after
Request 1. Therefore, most of the weight (w3) will have a large completion time.

The first request defines t1 = 1, t2 = 1 + 2α, and t3 = (1 + 2α)2. For a fixed α
and a fixed problem instance I(ǫ), when β is big enough, PACα,β maximizes the total
weight of requests that can be completed at each iteration. Because (1 + 2α)α2 > α
when α > 0.5, we can find a small enough ǫ such that |l1| > α. For such an ǫ, the first
request cannot be completed in the first iteration, and therefore is in R2. At time t2,
the auxiliary offline algorithm alg2 will complete only the second request, because its
weight ǫ is greater than that of the first request ǫ2. As a result, the first request will not
be completed in the second iteration, and thus is in R3. Therefore, the set R3 contains
the first and the third requests.

At time t3, the only way to complete both requests in R3 is to visit l1 first. Thus,

lim
β→∞

c
PACα,β

3 ≥ t3 + 2|l1|+ |l3| = (1 + 2α)2(1 + α)− ǫ.

Therefore,

lim
β→∞

PACα,β(I(ǫ)) ≥ lim
β→∞

w3c
PACα,β

3 = (1 + 2α)2(1 + α)− ǫ. (25)

Considering (24) and (25), the lemma holds.

The key in the proof above is that the first request will not be completed until the
last iteration, which makes the completion time of most of the weight large. For general
α ∈ (0, 1], denote k as the smallest positive integer such that (1 + 2α)kα > 1. For each
ǫ > 0, we define I(ǫ) to be the problem instance that has the following 3 requests:

(rj, lj , wj) ,











(1,−((1 + 2α)kα2 − ǫ), ǫ2) for j = 1.

((1 + 2α)kα, (1 + 2α)kα, ǫ) for j = 2.

((1 + 2α)kα + ǫ, (1 + 2α)kα + ǫ, 1) for j = 3.

Using a similar argument as in the original proof, we can show that the lemma above
holds for all α ∈ (0, 1]. Thus, we have completed the proof of Theorem 5.

Let us now consider the lower bounds for RPACα,β. The first statement in Theorem 8
is implied by the following lemma.
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Lemma 10. Define I to be the problem instance that only has one request with (r1, l1, w1) =
(1, 1, 1). Then,

RPACα,β(I)

OPT(I)
= 1 +

2α

ln(1 + 2α)
.

Proof. Clearly, OPT(I) = 1.On the other hand, the expected cost of RPACα,β is

RPACα,β(I) = 1 + E(t1) = l1 +

∫ 1

0
(1 + 2α)x dx = 1 +

2α

ln(1 + 2α)
.

Similar to the comment between the statement and the proof of Lemma 9, the
following lemma proves the second statement in Theorem 8.

Lemma 11. For each ǫ > 0, define I(ǫ) to be the problem instance with the following
2M + 1 requests:

(rj, lj , wj) ,











(ǫ, ǫ2j, ǫ3) for j = 1, · · · ,M
(ǫ,−ǫ2 (j −M) , ǫ6) for j = M + 1, · · · , 2M
(α,α, 1) for j = 2M + 1

where M ,
⌊

1
ǫ2

⌋

. Then,

lim
ǫ→0+

lim
β→∞

RPACα,β(I(ǫ))

OPT(I(ǫ))
≥ 2(1 + α)

ln(1 + 2α)
.

Proof. The cost of the optimal algorithm is lower than the algorithm alg that travels
to location 1 starting at time 0 and then travels to −1 with maximum speed. The
completion time of request (2M + 1), which carries most of the weight, is α, and the
completion time of all other requests is upper bounded by 3. Moreover, the total weight
of the first 2M requests approaches 0 as ǫ → 0+. As a result, as ǫ → 0+, the cost of
OPT has the following upper bound:

OPT(I(ǫ)) ≤ alg(I(ǫ))→ w2M+1c
alg
2M+1 = α. (26)

Let us now consider the randomized algorithm RPACα,β. For a fixed α and a fixed
problem instance I(ǫ), when β is large enough, the online algorithm maximizes the total
weight of requests that can be completed at each iteration.

The problem instance I(ǫ) is designed so that when ǫ is small enough, the total
weight of the (M + 1)th through the 2M th request is smaller than the weight of any
other request. Therefore, none of the above mentioned M requests will be completed
at iteration l if tl < 1.

For each realization of ω, let k to be the smallest integer such that tk ≥ 1. The
expected value of tk is

E (tk) =

∫ 1

0
(1 + 2α)x dx =

2α

ln(1 + 2α)
.

At time tk, the optimal offline auxiliary algorithm algk maximizes the number of requests
that are completed among the (M + 1)th to the 2M th requests subject to the constraint

28



that the server arrives at location α by time αtk. As a result, the completion time of
the (2M + 1)th request in any realization of ω has the following lower bound:

c
RPACα,β

2M+1 = tk + c
algk
2M+1 ≥ (1 + α)tk − 2ǫ2.

Consider this and the expected value of tk calculated above, as ǫ → 0+, we obtain the
following inequality for the expected total weighted completion time of the randomized
online algorithm:

RPACα,β(I(ǫ)) ≥ E

(

w2M+1c
RPACα,β

2M+1

)

≥ E
(

(1 + α)tk − 2ǫ2
)

→ 2α(1 + α)

ln(1 + 2α)
. (27)

Considering (26) and (27), the lemma holds.

3.3 Probabilistic Version

In this section, we consider the probabilistic version of the online WTRP described
in Section 2.2.1, where assumptions 2, 3, and 4 are imposed. We prove that with
these assumptions, the deterministic online algorithm ReOpt (formalized later) is almost
surely asymptotically optimal. Finally, in Remark 6, we compare our results with that
of Jaillet and Wagner [30].

The algorithm ReOpt is defined as the following:

1. If all released requests are completed, the server stays at its location.

2. When a request is released, the server calculates and follows the route so as to
minimize the total weighted completion time of the released but not completed
requests (starting at the server’s current location).

Theorem 9. For any sequence of problem instances {Ii}∞i=1 where for any i < n, Ii is
the first i requests in In, almost surely,

lim
n→∞

ReOpt(In)

OPT (In)
= 1.

In order to prove this theorem, we denote TSPi the length of the shortest tour
among the depot and the locations of the requests in Ii (TSP stands for the Traveling
Salesman Problem). We need the following lemma that relates ReOpt(In) with TSPn:

Lemma 12.

ReOpt(In) ≤
n
∑

j=1

wj (rj + O (log n)TSPn) .

Proof of Theorem 9. For all j ∈ [n], cj ≥ rj . Thus, OPT (In) ≥ ∑n
j=1wjrj. With this

inequality, Lemma 12, and Assumption 4, we have

ReOpt(In)

OPT (In)
≤ 1 +

∑n
j=1wjO (log n) TSPn

∑n
j=1wjrj

≤ 1 +
nΩO(log n)TSPn

ω
∑n

j=1 rj
.

According to Beardwood et al. [10] and Assumption 2, TSPn = O(n1− 1
M ) almost surely.

On the other hand, according to Assumption 3,
∑n

j=1 rj can be written as
∑n

i=1(n +
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1 − i)Yi, which is Θ(n2) almost surely according to the strong law of large numbers.
Therefore, with probability one,

nΩO(log n)TSPn

ω
∑n

j=1 rj
=

Ω

ω
O(n− 1

M log n),

which approaches 0 as n goes to infinity.

For further discussion, for any positive integer i, we denote ReOpti the route of the
server under ReOpt when the problem instance consists of only the requests in Ii.

We prove Lemma 12 with the following two steps. First, we prove that for each
positive integer i, the total weight of unserved requests decreases “exponentially” under
ReOpti with a rate related to TSPi:

Lemma 13. For any integer k ≥ 0, 1 ≤ i ≤ n,

∑

c
ReOpti
j >ri+3kTSPi

wi ≤ 2−k
i

∑

j=1

wi

where all summations are restricted to 1 ≤ j ≤ i.

Second, we find an iterative relation for {ReOpti(I
i)}∞i=1:

Lemma 14. For any positive integers i and k,

ReOpti+1(I
i+1) ≤ ReOpti(I

i)+

(

ri+1 +

(

3k +
3

2

)

TSPi+1

)

wi+1 +
3

2
TSPi+12−k

i
∑

j=1

wj .

Proof of Lemma 12. According to Lemma 14 and mathematical induction, for any pos-
itive integer k,

ReOpt(In) = ReOptn(In) ≤
n
∑

j=1

wj

(

rj +

(

3k +
3

2
+

3

2
n2−k

)

TSPn

)

.

Set k = ⌈log n⌉, the smallest integer that is at least log n, we have

ReOpt(In) ≤
n
∑

j=1

wj

(

rj +

(

3 (log n + 1) +
3

2
+

3

2
n2− logn

)

TSPn

)

≤
n
∑

j=1

wj (rj + (3 log n + 6) TSPn)

where we have used n2− logn = 1.

Proof of Lemma 13. For any t ≥ ri, we define an alternative route Altt (of ReOpti) as
follows:

1. Follow ReOpti up to time t.

2. Return to the depot using the shortest path.
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3. Follow the tour TSPi.

The time it takes for the second step is at most 1
2TSPi and for the third step is TSPi.

Therefore, the completion time is at most t + 3
2TSPi for all requests (recall that in this

lemma, we consider only requests in Ii.) Thus, the cost of the alternative route Altt(I
i)

is at most

Altt(I
i) ≤

∑

c
ReOpti
j ≤t

wjc
ReOpti
j +

∑

c
ReOpti
j >t

wj

(

t +
3

2
TSPi

)

where we restrict the summations to j ∈ [i] through the proof of this lemma.
Because ReOpti achieves the lowest cost among all routes that are the same before

time ri, the cost of Altt for the first i requests is no smaller than that of ReOpti. Thus,

∑

c
ReOpti
j >t

wj

(

t +
3

2
TSPi

)

≥
∑

c
ReOpti
j >t

wjc
ReOpti
j

≥
∑

t+3TSPi≥c
ReOpti
j >t

wjt +
∑

c
ReOpti
j >t+3TSPi

wj(t + 3TSPi).

Canceling the same term wjt and dividing both sides by 3TSPi, we obtain

1

2

∑

c
ReOpti
j >t

wj ≥
∑

c
ReOpti
j >t+3TSPi

wj.

This inequality, together with mathematical induction, completes the proof.

Proof of Lemma 14. We consider the following alternative route Alt (of ReOpti+1):

1. Follow ReOpti until time ri + 3kTSPi. (If this value is less than ri+1, then go to
step 2 at time ri+1.)

2. Travel to the origin.

3. Follow the tour TSPi+1.

We continue the proof with the case ri + 3kTSPi > ri+1. We can prove that the
conclusion holds in the other case using a similar argument.

For all j ∈ [i], if c
ReOpti
j ≤ ri + 3kTSPi, then cAlt

j = c
ReOpti
j ; otherwise, c

ReOpti
j >

ri + 3kTSPi and thus

cAlt
j ≤ ri + 3kTSPi +

1

2
TSPi + TSPi+1 < c

ReOpti
j +

3

2
TSPi+1.

In addition, we have the following upper bound on the completion time of request i+ 1:

cAlt
i+1 ≤ ri + 3kTSPi +

1

2
TSPi + TSPi+1 ≤ ri+1 +

(

3k +
3

2

)

TSPi+1.
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According to Lemma 13, the total weight of requests in Ii such that c
ReOpti
j > ri +

3kTSPi is at most 2−k
∑i

j=1wj . As a result, we have

Alt(Ii+1) ≤ ReOpti(I
i) +

(

ri+1 +

(

3k +
3

2

)

TSPi+1

)

wi+1 +
3

2
TSPi+12−k

i
∑

j=1

wj .

The rest follows from ReOpti+1(Ii+1) ≤ Alt(Ii+1), which is the definition of ReOpti+1.

Remark 6. Theorem 9 is a special case of Theorem 3 in [30]. However, the proof of
Theorem 3 in [30] is invalid as it contains a wrong claim (described in detail in the next
paragraph). Using the arguments in this section, we can show that the general case of
Theorem 3 in [30] does in fact hold.

The proof of Theorem 3 in [30] relies on a lemma (Lemma 5 in [30]) whose proof
wrongly assumes that

max
j∈{1,2,...,n−1}

c
ReOptn−1

j ≤ rn +
3

2
TSPn−1. (28)

To see that this does not necessary hold, let us consider the problem instance that has
the following 5 requests in the 2-dimensional Euclidean space:

(rj , lj , wj) ,































(0, (0,−10), 1) for j = 1.

(0, (0,−9), 104) for j = 2.

(0, (0, 9), 106) for j = 3.

(0, (0, 10), 102) for j = 4.

(1, (0, 0), 1) for j = 5.

When the first 4 requests are released, the algorithm ReOpt4 travels in the order of

locations l3, l2, l4, and then l1. Therefore, maxj∈{1,2,...,n−1} c
ReOptn−1

j = 66. On the other

hand, the TSP tour for the first 4 requests has a length of 40. Therefore, rn+ 3
2TSPn−1 =

61 < 66, which contradicts (28).
Here, we do not say whether Lemma 5 in [30] is true or not. Instead, we use an

alternative lemma (Lemma 12) to prove that the main theorem holds.

4 Online Scheduling with Multi-state Machines

In this section, we develop online algorithms for the general case of online scheduling
with multi-state machines as defined in Section 2.1, and based on the best (α, β) pair
found in the previous section. For simplicity, we describe our algorithm and analysis
for the basic setting defined in Section 2.1.1, but our results are valid for all problem
variants described in Section 2.1.2. We assume r1 > 0 to simplify the initialization
stage of the algorithms and the corresponding analysis. However, it is clear that we
can modify the algorithms and analysis without increasing the upper bounds on the
competitive ratios for cases where r1 = 0. As a minor caveat, we impose some mild
technical assumptions as discussed in Section A.2.
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In section 4.1, we propose a deterministic online algorithm Plan-and-Commit (PAC)
and prove that the competitive ratio is upper bounded by 5.14. In section 4.2, for each
α ≤ 1, we propose a randomized online algorithm Randomized α-Plan-and-Commit
(RPACα). We show that the best possible algorithm in this class is RPAC1, which has
a competitive ratio of 4/ ln(3) ≈ 3.64.

4.1 Plan-and-Commit (PAC)

Algorithm

The algorithm has two stages: initialization and iterations.
The first stage starts at time 0 and ends at time r1. During that stage, The algorithm

PAC does not change the states of the machines and does not process any jobs. At
time r1, before finishing the initialization stage, PAC defines {tl , r13l−1}∞l=1, and
R1 , K(It1).

The second stage consists of iterations. For each positive integer l, the lth iteration
starts at time tl and ends at time tl+1. At time tl, PAC calculates what would an offline
algorithm algl have done starting at time 0 so as to minimize the following cost:

∑

k∈Rl

hk (min (xk, tl)) ,

where Rl roughly represents all uncompleted projects that are active with respect to
the partially revealed problem instance Itl . For l = 1, Rl is defined in the initialization
stage; for l ≥ 2, Rl is defined at the end of the (l− 1)th iteration. Here we assume that
such an offline algorithm algl exists, which is not necessarily true if the assumptions in
Section A.2 is not imposed. See Section A for a detailed discussion.

From time tl to time 2tl, PAC follows a delayed version (delayed by tl) of algorithm
algl with the following two modifications: First, if between time 0 and time tl, algl
processes some jobs that PAC has already completed before time tl, then PAC does not
process those jobs (but still control the states of the machines). Second, for each machine
i ∈ [m], PAC stops controlling the state of machine i and stops processing any jobs on
machine i when the last job processed by machine i with completion time at most tl
under algl is completed. By doing so, PAC is not processing any job nor controlling any
machine state at time 2tl. The algorithm PAC defines Al to be the projects in Rl that
are completed by time tl under the offline algorithm algl, i.e., Al , {k|k ∈ Rl, x

algl
k ≤ tl}.

Following the definition, for all k ∈ Al,

xPAC
k ≤ tl + x

algl
k . (29)

In addition for reasons mentioned for the online WTRP case, (29) is not necessarily
tight because the jobs required for completing a project k can be completed jointly in
multiple previous iterations.

From time 2tl to time tl+1, PAC controls the machine states so that all machines
i are at their original states Oi at time tl+1. This is feasible because the state spaces
of the machines correspond to symmetric metric spaces. At time tl+1, before entering
the next iteration, PAC defines Rl+1 to be Rl minus Al plus the projects that become
active between time tl and tl+1, i.e., Rl+1 , (Rl \ Al) ∪ (K(Itl+1

) \K(Itl)).
Competitive Analysis
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Theorem 10 with N = 1200 shows that PAC is 5.14-competitive. Similar to the
online WTRP case, we have taken into account the numerical errors so the proof is
rigorous.

Theorem 10. For any positive integer N , the objective value of LPdet(N) is an upper
bound on the competitive ratio of PAC where LPdet(N) is defined as follows:

max XN + T0,N (30)

s.t. Ti,j+1 + Ti,j−1 ≤ 2Ti,j for

{

i = 0, · · · , N
j = 1, · · · , N − 1

(31)

Xi+1 −Xi ≥ Ti,i − Ti+1,i for i = 0, · · · , N − 1
(32)

Xi+1 −Xi ≤ Ti,i+1 − Ti+1,i+1 for i = 0, · · · , N − 1
(33)

T0,⌊N3 ⌋ + XN ≤ 2. (34)

XN + T0,⌊N3 ⌋ ≤ Xi + Ti,N + X⌈N−2i
3 ⌉ + T0,⌈ 2i3 ⌉ + T⌊N−2i

3 ⌋,⌈N−2i
3 ⌉ for i = 0, · · · ,

⌊

N

2

⌋

(35)

Xi ≥ 0 for i = 1, · · · , N

Ti,j ≥ 0 for

{

i = 0, · · · , N
j = 0, · · · , N − 1

X0 = Ti,0 = TN,i = 0 for i = 0, 1, · · · , N

The proof of this theorem is similar to that of Theorem 4 for the online WTRP. In the
following proof, we omit arguments that are essentially the same as that of Theorem 4.

Proof. We first notice that using a similar argument as the proof of Lemma 1, we can
show that {Al}∞l=1 forms a partition of active projects K(I). Because of (29) and the
concavity of hk, the PAC(I) has the following upper bound:

PAC(I) ≤
∞
∑

l=1

∑

k∈Al

hk

(

x
algl
k

)

+
∞
∑

l=1

∑

k∈Al

hk (tl) , X(1)(I) + T (0, 1)(I)

where

X(r)(I) ,
∞
∑

l=1

∑

k∈Al,x
algl
k

≤rtl

hk

(

x
algl
k

)

and T (r, v)(I) ,
∞
∑

l=1

∑

k∈Al,x
algl
k

>rtl

hk (vtl) .

As a result,

sup
I

X(1)(I)

OPT(I)
+

T (0, 1)(I)

OPT(I)

is an upper bound on the competitive ratio of PAC. We drop the parameter I and view
{X(r)
OPT}r∈[0,1] and {T (r,v)

OPT }r,v∈[0,1] as variables in an LP. We then find linear inequalities
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between {X(r)}r∈[0,1], {T (r, v)}r,v∈[0,1] and OPT that are valid for all problem instances
I, and translate those inequalities into linear constraints in the LP. There are uncount-
ably infinite many variables X(r) and T (r, v), so we cannot solve the LP numerically.
Therefore, for all positive integers N , we define LPdet(N) by dividing [0, 1] into N + 1
arithmetic steps, and for all i = 0, 1, . . . , N , letting Xi to represent X( i

N
)/OPT and

for all i, j = 0, 1, . . . , N , letting Ti,j to represent X( i
N
, j
N

)/OPT . By definition, for all
i = 0, 1, . . . , N , X0 = Ti,0 = TN,i = 0. Therefore, there is only a total of N2 + N

nonnegative real variables {Xi}Ni=1 and {Ti,j}N−1
i=0

N

j=1.
Constraints (31) follows from the concavity of functions hk. Constraints (32) and (33)

follow from the definition of {T (r, v)}r,v∈[0,1] and {X(r)}r∈[0,1], and can be proven using
an argument similar to the proof of Lemma 2. Similar to Lemma 3, the set A1 is empty,
and this fact is useful for proving the other constraints. Similar to Lemma 4, algl is the
algorithm that minimizes the cost if the summation is taken over Al ∪ Al+1, i.e., the
cost

∑

k∈Al∪Al+1

hk (min (xk, tl)) . (36)

Similar to Lemma 6, comparing cost (36) of algl and that of OPT, we obtain the
following linear inequality:

T

(

0,
1

3

)

+ X(1) ≤ 2OPT.

This inequality gives us (34). Similar to Lemma 7, for all integers l and all r ∈
[

0, 12
]

,
define algorithm algl,l+1(r) to be the algorithm that does the following.

1. At time 0 ≤ t ≤ rtl, follows algorithm algl.

2. At time rtl ≤ t ≤ 2rtl, control the machine states in a way such that the states of
the machines i are Oi at time 2rtl.

3. Starting at time 2rtl, follow a delayed version (delayed by 2rtl) of algorithm algl+1

with the two modifications that are also used in PAC.

Comparing cost (36) of algl and that of algl,l+1(r), we obtain

∑

k∈Al

hk

(

x
algl
k

)

+
∑

k∈Al+1

hk (tl) ≤
∑

k∈Al,x
algl
k

≤rtl

hk

(

x
algl
k

)

+
∑

k∈Al,x
algl
k

>rtl

hk (tl)

+
∑

k∈Al+1,x
algl+1
k

≤(1−2r)tl

hk

(

2rtl + x
algl+1

k

)

+
∑

k∈Al+1,x
algl+1
k

>(1−2r)tl

hk (tl) .

Using two inequalities that comes from hk being concave, hk

(

2rtl + x
algl+1

k

)

≤ hk (2rtl)+

hk

(

x
algl+1

k

)

and hk (tl) ≤ hk (2rtl) + hk ((1− 2r)tl), and taking the summation over all

integers l, we obtain the following inequality:

X(1) + T

(

0,
1

3

)

≤ X(r) + T (r, 1) + T

(

0,
2r

3

)

+ X

(

1− 2r

3

)

+ T

(

1− 2r

3
,

1− 2r

3

)

.
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This inequality gives us (35).

4.2 Randomized α-Plan-and-Commit (RPACα)

Algorithm

The randomized online algorithm RPACα has a single random variable ω, uniformly
distributed in [0, 1). We use RPACα(ω) to denote the algorithm with realization ω. For
any ω ∈ [0, 1), RPACα(ω) has two major stages: initialization and iterations.

The first stage is initialization. In this stage, RPACα(ω) does the same thing as
PAC defined in Section 4.1 except that now {tl ← (1+2α)l−1+ωr1}∞l=1 and R1 is defined
at time t1. We drop the dependency on ω when writing tl for simplicity.

The second stage is composed of iterations. The lth iteration begins at tl and ends
at tl+1. At time tl, RPACα(ω) calculates the optimal offline algorithm algl that would
have minimized the following cost function:

∑

k∈Rl

(hk (tl+1)− hk (tl)) δ (xk > αtl) (37)

where δ is the indicator function with value 1 if the argument of the function is a
true statement and 0 otherwise throughout this paper; and Rl is defined either in the
initialization stage (when l = 1) or the previous iteration (when l ≥ 2). The existence
of such an algorithm algl is obvious because the cost (37) depends only on whether each
xk is greater than αtl or not, which depends only on the set of jobs that are completed
by time αtl, and there are at most 2n such sets. The intuition for choosing this cost is
to minimize the increase of the original cost due to the projects that are not completed
at each iteration.

From time tl to (1 + α)tl, RPACα(ω) follows a delayed an modified version of algl,
where the modifications are analogies of those for PAC described in Section 4.1. The
algorithm RPACα(ω) defines Al , {k|k ∈ Rl, x

algl
k ≤ tl}. By doing so, for all k ∈ Al,

x
RPACα(ω)
k ≤ tl + x

algl
k . (38)

Between time (1 + α)tl and tl+1, RPACα(ω) controls the machine states such that all
machines are at their original states at time tl+1. At time tl+1, before entering the next
iteration, RPACα(ω) defines Rl+1 , (Rl \Al) ∪ (K(Itl+1

) \K(Itl)).
Competitive Analysis

The main result is that the competitive ratio of RPAC1 is 4/ ln(3) ≈ 3.64, which
can be obtained from the following Theorem:

Theorem 11. For all α ∈ (0, 1], the competitive ratio of RPACα is 2(1+α)
ln(1+2α) .

The proof of the theorem requires the following lemma that is an analogue of
Lemma 4.

Lemma 15. For all positive integers l and any realization ω ∈ [0, 1):

∑

k∈K(I)

(hk (tl+1)− hk (tl)) δ
(

x
RPACα(ω)
k > (1 + α)tl

)

≤
∑

k∈K(I)

(hk (tl+1)− hk (tl)) δ
(

xOPT
k > αtl

)

.
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Proof of Theorem 11. The lower bound is trivial. For the special case of the online
WTRP, RPACα is reduced to RPACα,∞. According to Theorem 6, the competitive

ratio of RPACα is at least 2(1+α)
ln(1+2α) .

Now let us begin to prove the upper bound.

For a project k such that (1 + α)tl+1 ≥ x
RPACα(ω)
k > (1 + α)tl, we have the upper

bound on the cost incurred by the project: hk

(

x
RPACα(ω)
k

)

≤ hk ((1 + α)tl+1) ≤ (1 +

α)hk (tl+1) . Taking the summation over all active projects k and rearranging terms, we
have the following upper bound on RPACα(ω)(I):

RPACα(ω)(I)

1 + α
≤

∑

k∈K(I)

hk(t0) +

∞
∑

l=0

∑

k∈K(I)

(hk (tl+1)− hk (tl)) δ
(

x
RPACα(ω)
k > (1 + α)tl

)

where we have defined t0 , t1/(1 + 2α) for simplicity.
Using Lemma 15 and exchanging the order of the double summations, we obtain

RPACα(ω)(I)

1 + α
≤

∑

k∈K(I)

∞
∑

l=0

hk (tl+1) δ
(

αtl+1 ≥ xOPT
k > αtl

)

. (39)

Because hk is concave and hk(0) = 0, for αtl+1 ≥ xOPT
k , we have

αhk (tl+1) ≤ hk (αtl+1) ≤
αtl+1

xOPT
k

hk
(

xOPT
k

)

.

Therefore, taking the expectation on both sides of (39), we obtain

E (RPACα(ω)(I)) ≤ 1 + α

α

∑

k∈K(I)

(
∫ 1

0
(1 + 2α)x dx

)

hk
(

xOPT
k

)

=
2(1 + α)

ln(1 + 2α)
OPT(I).

(40)

Proof of Lemma 15. Obviously, for all i ≤ l− 1 and k ∈ Ai, x
RPACα(ω)
k < (1 + α)tl. On

the other hand, for any project k ∈ K(I) \ ⋃l−1
i=1 Ai such that x

algl
k ≤ αtl, k is in Al.

According to (38), x
RPACα(ω)
k ≤ tl + x

algl
k ≤ (1 + α)tl. Therefore,

∑

k∈K(I)

(hk (tl+1)− hk (tl)) δ
(

x
RPACα(ω)
k > (1 + α)tl

)

≤
∑

k∈K(I)\
⋃l−1

i=1 Ai

(hk (tl+1)− hk (tl)) δ
(

x
algl
k > αtl

)

.

Similar to Lemma 4, algl satisfies the following inequality:

∑

k∈K(I)\
⋃l−1

i=1 Ai

(hk (tl+1)− hk (tl)) δ
(

x
algl
k > αtl

)

≤
∑

k∈K(I)\
⋃l−1

i=1 Ai

(hk (tl+1)− hk (tl)) δ
(

xOPT
k > αtl

)

. (41)

Combining the two inequalities above, we obtain the lemma.
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Remark 7. Here we consider the effect of algl being an approximation. For each pair
of numbers ρ ≥ 1 and γ ≤ 1, we say that algl is a (ρ, γ)-approximation if the following
inequality holds:

∑

k∈Rl

(hk (tl+1)− hk (tl)) δ
(

x
algl
k > αtl

)

≤ ρ sup
alg

∑

k∈Rl

(hk (tl+1)− hk (tl)) δ
(

xalgk > γαtl

)

.

In other words, the cost of an (ρ, γ)-approximated algorithm is no more than ρ times of
the optimal algorithm that operates with a shorter period (γ portion) of time.

If for all integers l, algl is replaced with a (ρ, γ)-approximation, then the competitive

ratio of RPACα becomes 2(1+α)ρ
ln(1+2α)γ . Here the analysis goes through because when we

are applying an analogue of Lemma 4 to prove (41), the selected set is a superset of
Rl. For the deterministic version of this algorithm (where ω = 0 with probability one),

replacing
∫ 1
0 (1+2α)x dx with 1+2α in (40), we obtain a competitive ratio of (1+α)(1+2α)ρ

αγ
.

Among all α ∈ (0, 1], the minimum is achieved at α =
√

2 with a competitive ratio of
(1 +

√
2)2 ρ

γ
≈ 5.83 ρ

γ
.

5 Concluding Remarks

In this paper, we have formulated a new class of online scheduling problems, the online
scheduling problem with multi-state machines, which takes into account the case for
which each machine has multiple states and the processing time of a job depends on the
state of the machine. In addition, we formulated a new family of cost functions, which we
named the total costs of active projects, that covers many practical cost functions such
as the total weighted completion time and the makespan. For the general cases where
the objective is to minimize the total costs of active projects in the online scheduling
problem with multi-state machines, we derive a 5.14-competitive deterministic online
algorithm PAC, and a 3.65-competitive randomized online algorithm RPAC1. When
applying these algorithms to the online WTRP, we obtain competitive ratios lower than
the best in the literature. Finally, we proved that ReOpt is almost surely asymptotically
optimal for the online WTRP.

Even though we have made progress in considering a novel class of online scheduling
problems, some problems remain open. We conclude this paper by listing four such
problems.

Open Problem 1. For each α ∈ (0, 1] and β ≥ α, what is the competitive ratio of
PACα,β and RPACα,β for the online WTRP? What is the competitive ratio of PAC for
online scheduling with multi-state machines?

This open problem could be tackled by either a tighter analysis of the algorithm or
a better adversarial problem instance, or both.

Open Problem 2. What is the competitive ratio of ReOpt for the online WTRP? What
about for online scheduling with multi-state machines?

We proved that ReOpt is almost surely asymptotically optimal. However, when not
imposing stochastic assumptions, we do not even know whether ReOpt has a constant
competitive ratio or not (for both the online WTRP and online scheduling with multi-
state machines).
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Open Problem 3. What is the competitive ratios of the best-possible deterministic
and randomized online algorithms for the online WTRP when the metric space is the
non-negative real line, the real line, and the 2-dimensional Euclidean space?

In the online VRPs, the difficulties in determining the best-possible competitive
ratios typically arise when going from the non-negative real line to the real line, or
when going from 1D (real line) to 2D, while going from 2D to general metric spaces is
usually straightforward.

Open Problem 4. What is the competitive ratios of the best-possible deterministic and
randomized online algorithms for the online WTRP for general metric spaces? What
about for online scheduling with multi-state machines?

This problem is probably the central one which we would like to get an answer
to. The best-possible online algorithms could be ReOpt, PACα,β (RPACα,β for the
randomized case), or other algorithms.
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A On the Existence of algl

In this section, we discuss the existence of algl. In Section A.1, we show that algl
does not always exist by providing an example. In Section A.2, we provide a sufficient
condition under which algl must exist.

A.1 A Nonexistence Example

Assume m = 1, M1 = N≥1, O1 = 1, and d1(i, j) = 1 for all i 6= j. Assume the cost
is the total unweighted completion time (hence hk(x) = x). Let there be only one job
with r1 = 1, and

p11(i) =

{

∞ if i = 1

1 + 1
i

if i ≥ 2
.

In the first iteration (l = 1), the job cannot be completed. In the second iteration
(l = 2), the goal is to minimize h1(min(x1, t2)), which equals min(c1, 3). If processed
in state i, i ∈ N≥1 \ {1}, the best possible completion time of job 1 is 2 + 1/i (1 for
directing the state from 1 to i, 1 + 1/i for the processing time). On the other hand, if
processed in State 1, the completion time is infinity. Hence, the infimum of the cost is
2, but is not achievable by any offline algorithm. Therefore, such an offline algorithm
alg2 does not exist.

A.2 A Sufficient Condition for the Existence of algl

In this section, we show that the optimal offline algorithm algl exists when two mild
technical assumptions are imposed.

The first assumption is about the metric space:

Assumption 5 (Compactness). For any machine i ∈ [m] and any k ∈ R≥0, the subset
of the metric space {s : s ∈Mi, di(Oi, s) ≤ k} is compact.

This assumption is valid in many metric spaces of practical use such as a closed
subset of a multi-dimensional Euclidean space and a discrete metric space such that the
number of points within any finite distance from Oi is finite. This assumption is violated
for some artificially designed metric spaces such as the one discussed in Section A.1.

The second assumption is regarding the processing time:

Assumption 6 (Lower-semicontinuity). For any i ∈ [m] and j ∈ [n], pij is lower-
semicontinuous.

This assumption is valid in many practical settings such as the online vehicle routing
problems and the case where all processing time functions are continuous. However, for
artificially designed functions that violate this assumption, algl does not necessarily
exist. For example, assume m = 1, M1 = [0, 1], d1(i, j) = |i − j|, and O1 = 0. Assume
the cost is the total unweighted completion time (hence hk(x) = x). Let there be only
one job with r1 = 1, and

p11(s) =

{

∞ for s = 0.5

|s− 0.5| for s 6= 0.5.
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Because the processing time is always non-zero, x1 = c1 > r1 = t1. Therefore, the job
is not completed in the first iteration. In the second iteration, the goal is to minimize
h1(min(x1, 3)), which equals min(c1, 3). When being processed in any states s 6= 0.5.
the optimal completion time for the job is 1 + |s − 0.5| (1 for the release date and
|s− 0.5| for the processing time.) Therefore, the infimum of min(x1, t2) equals 1, but is
not achievable by any offline algorithm.

The primary result in this appendix is the following lemma:

Lemma 16. With Assumptions 5 and 6, there exists an (offline) algorithm that mini-
mizes the following cost:

∑

k∈Rl

hk (min (xk, tl)) .

Proof. Let {algi}∞i=1 be a sequence of algorithms such that

lim
i→∞

∑

k∈Rl

hk

(

min
(

xalg
i

k , tl

))

= inf
alg

∑

k∈Rl

hk

(

min
(

xalgk , tl

))

where two algorithms algi and algi
′

are allowed to be the same even if i 6= i′.
Now let us consider the following sequence of n-dimensional real vectors: S ,

{(min(calg
i

1 , tl), min(calg
i

2 , tl), . . . , min(calg
i

n , tl))}∞i=1. Since the vectors are in a compact
subset of the n-dimensional Euclidean space ([0, tl]

n), there exists a limit point. With-
out loss of generality, we assume S converges to a limit point, and denote this limit

point (v1, v2, . . . , vn), i.e., for all j ∈ [n], set vj , limi→∞ min(calg
i

j , tl). It is sufficient

to prove that there is an algorithm alg′ such that for all job j ∈ [n], min(calg
′

j , tl) ≤ vj
because for all k ∈ Rl, min(xk, tl) is a non-decreasing function of {min(cj , tl)}nj=1.

Let us now construct such an algorithm alg′. If vj = tl, then we are not concerned
about the completion time of job j under alg′ because min(cj , tl) ≤ tl independent of the
algorithm. Therefore, for simplicity, we can assume for all j ∈ [n], vj < tl, and all jobs
are completed by one of the machines under algorithm algi (for all large enough i). With
this assumption, there exists a subsequence of algorithms {algi}∞i=1 such that each job is
processed by the same machine among the algorithms because there are a finite number
(mn) of possible combinations. Without loss of generality, we assume {algi}∞i=1 is itself
such a subsequence. Now we consider jobs processed by each machine separately. For
simplicity, we say that all jobs are processed by Machine 1. We denote ρ a permutation
of [n] such that {vρ(j)}nj=1 is non-decreasing. For all positive integers i and jobs j ∈ [n],

we denote sj,i the state of Machine 1 under which job ρ(j) is processed under algorithm
algi. Because of the compactness (5) assumption, the sequence {(s1,i, s2,i, . . . , sn,i)}∞i=1

has a limit point (s̄1, s̄2, . . . , s̄n) where for all j ∈ [n], s̄j ∈ S1. We let alg′ to process
jobs in the order of ρ(1), ρ(2), . . . , ρ(n) at states s̄1, s̄2, . . . , s̄n, respectively.

It is sufficient to prove that for all j ∈ [n], calg
′

ρ(j) ≤ limi→∞ calg
i

ρ(j). To prove this, first

note that calg
′

ρ(j) =
∑j

i=1 d(s̄j−1, s̄j)+p1ρ(j)(s̄
j) and calg

i

ρ(j) ≥
∑j

i=1 d(si,j−1, si,j)+p1ρ(j)(s
i,j),

where s̄0 , O1 and for all i, si,0 , O1 for simplicity. The conclusion follows directly
from the fact {sj,i}∞i=1 converges to s̄j and the lower-semicontinuity (6) assumption.
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