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This paper addresses two related problems in the context

of transparent optical networks. In the network design prob-
lem, the aim is to identify a set of fiber links to connect a

given set of nodes. In the network upgrade problem, the

aim is to identify a set of new fiber links to add to a given

network topology. For a given fiber length budget, the aim

in both problems is to maximize the network resilience to

the simultaneous failure of its critical nodes. The resilience

is evaluated by the Average 2-Terminal Reliability (A2TR)

against a set of critical node failures and the critical nodes

are the ones that minimize the A2TR of the network. So,
the design/upgrade problem is a bi-level max-min optimiza-
tion problem. Recently, a multi-start greedy randomized

heuristic was proposed for both problems. Here, we pro-
pose an alternative method based on a greedy determinis-
tic algorithm and we provide computational results show-
ing that the new method obtains better solutions. The re-
sults show that the resiliency difference between existing

network topologies and the best network design solutions

is very high but this difference can be significantly reduced

by network upgrades with small fiber length budgets.
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1 | INTRODUCTION

Large-scale failures can seriously disrupt a telecommunications network due to either natural, technological or ma-
licious human activities [14]. Two recent surveys conducted within COST Action RECODIS are [10] on strategies
to protect networks against large-scale natural disasters and [9] on security challenges in communication networks.
When dealing with large-scale failures, it is important not only to recover from failures as quick as possible (the post-
disaster problem), but also to prepare the network to minimize the impact of such failures (the pre-disaster problem).

This work deals with the pre-disaster problem by addressing the design/upgrade of telecommunication networks
aiming to enhance their resilience to large-scale failures. To reach this goal, we first adopt a proper network resiliency
metric and, then, we propose design methods aiming to optimize the network resiliency metric. We address the design
of resilient network topologies in the context of transparent optical networks. Note that, in general, multiple failures
might involve only links or nodes and links (a node failure implies that its links also fail). For example, in malicious
human attacks, node shutdowns are harder to realize but they are the most rewarding in the attackers’ perspective
since the shutdown of a single node also shuts down its incoming/outgoing fiber links. Moreover, power outages can
only shut down nodes since fiber links do not require power supply. Here, we consider as large-scale failures the case
of multiple node failures as they are the most harmful cases.

For a given network topology, if some nodes are considered critical due to some reason, the network design
should take it into consideration, as in [3] where the approach proposed in [1] is adapted to the design of a transparent
optical network minimizing the failure impact of a given set of critical nodes. Here, we consider that the resilience
of a network topology is evaluated by the Average 2-Terminal Reliability (A2TR) against a set of critical node failures.
The A2TR metric is defined as the number of node pairs that remain connected if all critical nodes fail. The critical
nodes of a network are the nodes that minimize the A2TR of the network, an optimization problem commonly named
Critical Node Detection (CND) problem. So, the design problem is a bi-level max-min optimization problem.

CND problems have been considered in different contexts and are gaining special attention in the vulnerability
evaluation of telecommunication networks to large-scale failures [10]. In [2], the CND problem is defined as the
detection of a given number c of critical nodes aiming to minimize the number of connected node pairs. Recently,
this and other variants of CND have been addressed [7, 18, 21, 22], but none of these works addresses the CND
problem in the context of transparent optical networks. Other metrics have been used to evaluate the vulnerability
of networks in other contexts [16] or assuming multiple geographically correlated failures [12]. There are also works
on improving the preparedness of networks to multiple failures, some by changing the network topology [5, 11, 23],
while others by proposing strategies to recover from failures [8, 17]. None of these works, though, uses the optimal
solution of the CND problem to assess the vulnerability of networks. On the other hand, CND was used in [6] but
resiliency improvement is exploited by optimal robust node selection on a given network topology. The advantage of
using CND is that it provides a worst case resiliency analysis, i.e., in any failure involving the same number of failing
nodes, the resulting A2TR is never worse than the value provided by the CND optimal solution.

In transparent optical networks, data is converted into light in the source node and transmitted through an all
optical path, named lightpath, towards the destination node. Due to many optical degradation factors, like attenua-
tion, dispersion, crosstalk and other non-linear factors, there is a maximum length, named transparent reach, for each
lightpath to work properly. If a lightpath is required on a path whose length is higher than the transparent reach,
regenerators must be placed at intermediate nodes to convert the optical signal into the electrical domain, regener-
ate the signal and reconvert it back to the optical domain (when regenerators are used, the network is referred to
as a translucent network). Nevertheless, the use of regenerators is expensive and puts an additional burden on the

network management and, so, they are avoided when possible. The design of translucent networks must take into
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account the cost imposed by the required regenerators, which is out of the scope of this work. The methods proposed
in this work are applicable to transparent optical networks, i.e., optical networks whose diameter (the highest optical
length among the shortest paths of all node pairs) is not higher than the transparent reach. Note that the optical
length of a path depends both on the length of its links and on its number of hops, i.e., number of intermediate nodes).
We model the optical degradation suffered by a lightpath while traversing an intermediate node as a fiber length value
A, i.e., by considering it equivalent to the degradation incurred due to the transmission over a fiber of length A. So,
when accounting for the A2TR metric, the CND problem has to consider that two nodes are connected only if the
surviving network provides them with at least one path whose optical length is within the required transparent reach.

In [4], a multi-start greedy randomized method was proposed to generate network topologies, with a given fiber
length budget, that are resilient to critical node failures. The method is also adapted in [4] to the upgrade of an existing
network topology. Here, we propose an alternative method for the same network design/upgrade problem based on
a greedy deterministic algorithm and provide computational results showing that the new method obtains better
solutions than the one proposed in [4]. With the updated results, we review the conclusions taken in [4] concerning
the resiliency values obtained between the network design and the network upgrade solutions. The computational
results will show that the resiliency difference between existing topologies and the best network design solutions is

very high but this difference can be significantly reduced by network upgrades with small fiber length budgets.

The paper is organized as follows. Section 2 describes a path-based Mixed Integer Linear Programming (MILP)
model defining the CND problem in the context of transparent optical networks and a row generation algorithm that
is used to solve the problem. Section 3 proposes deterministic algorithms to generate network topologies resilient to
the simultaneous failure of their critical nodes. The computational results are presented and discussed in Section 4.

Finally, Section 5 presents the main conclusions of the work.

2 | CRITICAL NODE DETECTION PROBLEM

Consider a transparent optical network represented by an undirected graph G = (N, E) where N = {1, ..., n} is the set
of nodes and E C {(i,j) € NXN : i < j} is the set of fiber links. For each link (/, /) € E, parameter /;; represents its
length. The transparent reach of the network is denoted by parameter T > 0 and the fiber length equivalent to the
degradation suffered by a lightpath while traversing an intermediate node is denoted by parameter A > 0. We assume

that /;; < T forall (i, j) € E; otherwise, such link is worthless and can be removed from G.

The set of all paths in G between i € N andj € N (with i < j and (/,j) ¢ E) with length not greater than T is
denoted by P;;. Each path p € P;; is defined by the binary parameters ﬁ/’:, indicating whether node k € N (which can
be an end node) is in p or not, and 0‘/,:: indicating whether link (k. t) € E is in p or not. So, P;; is composed by all paths
psuchthat > af le+A(D Bf-2) <T.

(k,t)eE keN

To model the CND problem, we consider for each node i € N a binary variable v; indicating whether / is a critical
node or not. We consider also for each node pair (/,), with /,j € N : i < j, a binary variable u;; which is 1 if nodes /
and j can be connected through a path satisfying the transparent reach T, and 0 otherwise. Then, for a given number ¢
of critical nodes, a path-based formulation for the CND problem is given by the following Integer Linear Programming
(ILP) model:
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n-1 n
min z = ujj (1)
=1 j=it
n
s.t. Z vi <¢, (2)
i=1
ujj +vi+v; > 1, (/,j)EE, (3)
n
uj+ Y Bgve =1, (L)) £ E. p € Py, @
k=1
vi € {0,1}, i €N, (5)
ujj € {01}, ihjeEN: i<j. (6)

The objective function (1) value z is the A2TR value defined as the total number of connected node pairs in the
surviving graph (i.e., the graph given by removing all critical nodes from G). Constraint (2) ensures that at most ¢ nodes
are selected as critical nodes (in any optimal solution, ¢ critical nodes are selected). Constraints (3) guarantee that a
pair of adjacent nodes (i.e., with a direct link between them) is connected if none of the two nodes is a critical node.
Constraints (4) are the generalization of constraints (3) for the node pairs that are not adjacent in G: node pair (i, ) is
connected if there is one path p € P;; such that none of its nodes is a critical node. Constraints (5)-(6) are the variable
domain constraints. Note that, since variables v; are binary, constrains (3) and (4) impose ujj = 1 when nodes j and j
are connected, which then, due to the objective function, forces u;; = 1. Therefore, constraints (6) can be replaced by

uj; > 0. The resulting MILP model will be considered henceforward and is referred to as the exact CND model.

The total number of constraints (4) depends on the graph topology, the link lengths and the values of T and A.
However, the exact CND model becomes too large (i.e., with too many constraints) for relatively small sized instances
which does not allow solution by any available solver for reasonable sized instances. Instead, a row generation ap-
proach can be used to solve the exact CND model as described in Algorithm 1.

Algorithm 1 Exact algorithm for the CND problem

1: Initialize and solve MILP’ model (1)-(6) without constraints (4). Let (v*, v*) be the optimal solution
2: repeat

SetNCuts —~O0and K « {i e N:v/ =1}

Compute subgraph Gx = (N\K, Ex), where Ex = {(i,j) € E: i,j ¢ K}

for all node pair (i, j) ¢ Ex do

w

4

5

6 Compute shortest path p € P;; and its optical length d
7: ifd <Tand uj.‘j + 20 B vi =0then

8 Add to MILP’ constraint (4) corresponding to path p
9 NCuts « NCuts +1

10: end if

11:  end for

12:  if NCuts > 0 then

13: Solve MILP’ model with the added constraints. Update (v*, v*) accordingly
14:  endif

15: until NCuts =0
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In line 1, a MILP’ model given by the exact CND model without constraints (4) is initialized and solved. Then,
in the main cycle (lines 2-15), the separation problem associated with constraints (4) is solved (lines 3-11) where
the identified violated constraints (whose number is accounted in NCuts) are added to MILP’ (lines 7-10) and, finally,
MILP’ is solved again (lines 12-14). The algorithm ends when no violated constraint is found (line 15) and the optimal
solution is the solution of the last solved MILP’ model.

The separation problem associated with constraints (4) is solved as follows. In line 4, the subgraph Gx = (N\K, Ex)
is computed by removing from G the critical nodes of set K (determined in line 3) and the corresponding incident
edges and adding A to the length of each edge in Ex. Since the number of intermediate nodes of a path is equal to
the number of edges minus one, the shortest path value in G is equal to the optical path length plus A. So, between
each pair of nodes / and j in N\K, such that (i,j) ¢ Ex (line 5), the shortest path p in Gk is determined (by Dijkstra
algorithm) and its optical length d computed as the length of p minus A (line 6) and the violation of the constraint (4)
associated to p is checked (line 7).

Note that if the imposition of the transparent reach T is relaxed (i.e., considering T — +), we get one of the
classical CND problem variants for which there are known efficient compact MILP models. One such model, proposed
in [18], is as follows. Consider for each pair of nodes (i, ) the set N;; ¢ N which represents the set of adjacent nodes
to i (on graph G) if the node degree of i is not higher than the node degree of j, or the set of adjacent nodes to j,

otherwise. Then, the previous constraints (4) can be replaced by the following (polynomial sized) constraints:
Ujj 2 Ugjky + Ugkjy —“1+v, (ILj)RE, k € N,'j‘. (7)

In these constraints, u(;(, represents variable v if i < k or variable uy; otherwise (the same meaning to u ;).
Constraints (7) guarantee that for each pair of nodes i and j not adjacent in G, they are connected if there is a
non-critical node k € N;; connected to both / and j. The resulting MILP model, i.e., replacing constraints (4) by
constraints (7), is referred to as the compact CND model.

Note that the optimal solution value of the compact CND model is an upper bound on the optimal solution value of
the exact CND model since all node pairs that are connected are accounted in the objective function of the compact
CND model while the ones whose shortest path length over the surviving network is higher than the transparent
reach T are not accounted in the exact problem. Nevertheless, in most cases, the optimal solution of the compact
CND model is also the optimal solution of the exact problem and its resolution is much quicker when using a standard
solver (it does not require the row generation method of Algorithm 1). As will be described in the next section, we

use this fact to derive computationally efficient algorithms for the network design/upgrade problem.

3 | NETWORK DESIGN/UPGRADE PROBLEM

Consider an existing network G = (N, E) with a total fiber length L and a fiber length budget B = L + L/, with L’ > 0.
The Network Design Problem aims to identify a new network topology connecting all nodes in N whose total fiber
length is not higher than B. The Network Upgrade Problem aims to identify a set of fiber links within the budget L’
to be added to the existing topology. In both cases, the aim is to obtain a network (design or upgrade) topology that
maximizes the A2TR value of the simultaneous failure of its critical nodes.

In [4], a multi-start greedy randomized algorithm was proposed for this network design/upgrade problem. The
method randomly generates multiple network topologies, with a fiber length budget given by B. Each topology is

generated by a greedy randomized algorithm that builds a network by randomly selecting one link at a time until no
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new link can be added within the fiber budget B. In that stochastic method, the evaluation of each network topology
uses centrality based heuristics in a preliminary evaluation and, if necessary, Algorithm 1 to compute its exact A2TR
value. At the end, the method outputs the best generated topology, i.e., the one with highest A2TR value. Here, we
propose an alternative deterministic method based on a greedy approach. The main differences when compared with
the previous approach are that a single greedy solution is generated and, on each greedy step, the selected link is
based on the critical nodes of the current partial topology (resulting from all already selected links). As a consequence,
the critical nodes must be computed at each step of the greedy algorithm.

The proposed method is composed by three tasks which are run in sequence. In the first task, a greedy determin-
istic algorithm is run so that a topology solution is computed. In the second task, a local search method is applied to
the previous solution to try to find a better one. Both first and second tasks consider the network A2TR evaluation
imposed by the critical nodes based on the compact CND model. Finally, the third task evaluates the previous solution
in terms of optical transparency and using the exact CND model. If the previous solution is not optically transparent
and/or the evaluation provided by the exact CND model is lower than the evaluation value provided by the compact
CND model, the third task uses the unused budget to add new links so that the network topology becomes optically
transparent and the exact A2TR value becomes as close as possible to the value provided by the compact CND. Next,
we describe the tasks in three separate subsections and, then, describe the overall algorithms in the fourth subsection.

3.1 | Greedy deterministic approach

In the first task, both network design and upgrade problems are conceptually modeled as the upgrade of a network
topology represented by graph G = (N, E) where E = {} in the network design problem and E is the set of fiber links
of an existing network in the network upgrade problem. In both cases, parameter /;;, with i < j, represents the length
of the fiber link between nodes 7 and j (either an existing link or a possible new link).

Consider the following notation. For a general graph G = (N, &) and a given set of critical nodes K c N, consider
the surviving graph given by Gk = (N\K, Ek), with Ex = {(i,j) € & : i,j ¢ K}. The surviving graph Gx might be
composed by different connected components where a node in one component has no connectivity to a node of any
other component. So, for a given set of critical nodes K c N, parameter mg indicates the number of connected
components of the surviving graph Gx and the binary parameters cpg(i,/) indicate that nodes /,j € N\K are in
different components of G (if cpk(i,j) = 1) or in the same component (if cpk (i,/) = 0).

Algorithm 2 presents a greedy deterministic algorithm to upgrade a network represented by graph G = (N, E)
with a fiber budget B. This algorithm iteratively selects a candidate link among the ones whose end-nodes belong
to two different components in the current surviving network topology, i.e., the topology resulting by removing its
critical nodes from the current partial topology.

Algorithm 2 has four input parameters (line 1): besides the graph G and the fiber budget B, the algorithm has a
third integer parameter c representing the number of critical nodes of interest and a fourth parameter which is an
input set of links £’ considered as follows. In the network upgrade problem, we consider the input link set £/ = {}.
In the network design problem, we follow [4] considering the input link set £’ given by the Relative Neighbourhood
Graph (RNG) [20], which is defined as follows: nodes /,j € N are connected by a link if and only if there is no other
node k € N\{i,j} such that /;x < /;; and /;x < /;;. The preliminary tests have shown that this set of links provides a
good initial balance between connectivity and amount of used fiber budget in the network design problem.

In line 2, some relevant variables are initialized: z which represents the CND optimal value of the current partial
topology; Br which represents the amount of fiber budget still available; and set K which includes all computed sets

of critical nodes. Algorithm 2 is an iterative process (lines 3-18) where each iteration is composed of two phases: an
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Algorithm 2 Greedy deterministic algorithm
1: INPUT: G = (N, E), B,c, E’
2: 2« 0,Bg — Band K « {}

3: repeat

4: E;dd<—{}andElfem<—{}

5.  repeat

6: Solve compact CND model for graph G < (N, E U E’)

7: Let z* be the optimal value and (v*, v*) be the optimal solution
8: Ze—zKe{ieN:v/=1}and K « KU {K}

9: Compute the mg components of graph (N\K, (E U E’)k)
10: if mg =2 and ming ) {/ij : cpk(i,j) = 1} < Bg then
11: Compute new link (7, j) corresponding to min(; ;) {f (i, ) : epx(i.j) = 1,1;j < Br}
12: E" — E'U{(i, )}, Elyy — Elgq U {(i)} and Bg « Bg — 1
13: end if

14:  until no new link added to set E;dd

15 if E],, # {} then

16: [Removing Phase]

17:  endif

18: until £],, = {} or Efey, = {} or Efep = {last |E/em | links added to set E;dd}

Adding Phase, where links are added to set £’ in order to improve the CND value of the resulting topology until the
available budget is not enough to add more links; and a Removing Phase, where all links in £’ are reevaluated and
removed if their elimination does not decrease the CND optimal value of the resulting topology. In each iteration,
set E;dd (and set E/,,,) represents the set of links added to (and removed from) the network in the current iteration.
These sets are initialized empty at the beginning of each iteration (line 4).

In the Adding Phase (lines 5-14), the compact CND model is solved for the current partial topology (N, E U E’)
(lines 6-7), its set of critical nodes is stored in set K (line 8) and the set of network components imposed by the critical
node set K is determined (line 9). In line 10, if the number of components my is one (the network is fully connected
to any c node failures) or if the shortest available link connecting two components is larger than the remaining budget,
no new link is added and the Adding Phase ends. Otherwise, the link (7, ) ¢ E U E’ with the smallest value of a given
function 7(/,j) that connects two nodes belonging to different components is selected (line 11) and the selected link

is added to the current partial topology (line 12). Function (i, ) can be one of the two following possibilities:
() A@.j) = Iy, e, the link length;

(ii) £(i.j) = Il x (6; + §;), where &; and &; are the degree of nodes / and j in the current partial topology (N, E U E”).

The Adding Phase is repeated until no new link is selected (line 14). In lines 15-17, if at least one link was added
in the Adding Phase, the Removing Phase (described in Algorithm 3) is run. Algorithm 2 runs until no links are added
in the Adding Phase, or no links are removed in the Removing Phase or the last links added in the Adding Phase are
the links removed in the Removing Phase (line 18).

The Removing Phase (Algorithm 3) is an iterative process (lines 2-14) that evaluates each link (i,j) € E’ in de-
creasing order of its length /;;. For each (i,) € E’, first, the algorithm computes (in line 3) graph G’ that represents

the upgraded network without link (7, j). Then, the compact CND of G’ is solved (line 8) and if its CND value z’ is
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Algorithm 3 Removing Phase of Algorithm 2
1: INPUT: Set of selected candidate links E’, ordered from the longest to the shortest
2: forall (i,j) € E’ do
3 G (N, (EVEN{(NY)

4:  forall K € K do
5: z}. « resiliency value given by set of critical nodes K in graph G’
6:  end for
7: if mingex{z} } = Z then
8: Solve compact CND model for graph G’ and set z’ as the optimal value
9: Ke{ieN:vi=1}and K « KU {K}
10: if z/ > Zz then
1 E"  EN{( )}, Efemn < Efern U {(i))} and Bg « Bg +1;;
12: end if
13:  endif
14: end for

not lower than the current resiliency value z (line 10), the link (i, j) is removed from E’ since it does not degrade the

resilience of the current topology (line 11).

Our preliminary tests showed that most of the CND optimal solutions in this phase overlap with previous solutions
(stored in set K, line 8 of Algorithm 2). So, in order to improve the computational efficiency of the Removing Phase,
in lines 4-6 of Algorithm 3, the resiliency value z is computed for each critical node set K € K in graph G’ (i.e., the
number of connected node pairs in graph G’ without nodes K). Then, if the minimum of these values is not lower than
the current resiliency value (line 7), the algorithm needs to solve the compact CND model. Otherwise, we know that
the current link (7, j) cannot be removed and, therefore, we do not need to solve the compact CND model for graph

G’ (line 8) which is the most time consuming part of the algorithm.

Figure 1 is an illustration of Algorithm 2 for a graph with 9 nodes shown in (a), a fiber budget L’ = 15%L, f(i,j) =
f1(i,j) and ¢ = 2 critical nodes. Initially, the compact CND model is solved for the initial graph to compute its critical
nodes, highlighted in red in (a). By removing the critical nodes, it results in the surviving network in (b) with mg = 2
network components (with 3 and 4 nodes, respectively) and the selected link is the shortest one (recall that £, (i, j) = /;;)
that connects both components, highlighted in dashed blue in (b). This link is added to the topology, resulting in the
upgraded graph in (c), and the optimal critical node set is recomputed. This process is repeated once more, obtaining
the upgraded graph in (e). Then, by removing its critical nodes from the graph, there is no candidate link to be added
within the remaining fiber budget. At this stage, the Removing Phase starts and the first added link, highlighted in
dashed red in (f), is now removed because the resulting topology in (g) has the same resiliency value as the one in
(e). This removal increases the available fiber budget Bz. The Adding Phase runs again which now adds a new link,
highlighted in dashed blue in (h), obtaining the topology in (i). In this example, this last topology has maximal resiliency,

i.e., by removing its critical set of 2 nodes, the surviving network in (j) is fully connected.

In Algorithm 2, each added link takes into account the set of critical nodes given by the optimal solution of the
compact CND model. A potentially better algorithm is, for each partial topology, to consider the S best critical node
sets, with S > 1, as in Algorithm 4. Algorithm 4 has many similarities with Algorithm 2: lines 2-10 are similar and lines

25-31 in Algorithm 4 are equal to lines 12-18 in Algorithm 2 (which means that the Removing Phase is also equal).
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(a) CND (1): 2* =9 (b) Adding phase (1)

9
P

(c) CND (2): 2 =9 (d) Adding phase (2)

.
<P

(e) CND (3): z* =15 (f) Removing phase

§
5

(g) CND (4): z* =15 (h) Adding phase (3)

'Y ©
03

(i) CND (5): 2* =21 (j) Full connectivity

b
g

FIGURE 1 Example of Algorithm 2, considering ¢ = 2, £(i,j) = fi(i,j), L’ = 15%L, the initial graph in (a). On left,
graph (N, E U E”) in each iteration, with the critical nodes in red, links of £ in black and links of £’ in blue. On right,
the surviving graph in each iteration, added link in dashed blue and removed link in dashed red.
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Algorithm 4 Greedy deterministic algorithm, considering S CND solutions
1: INPUT: G = (N,E), B,c, E/,S
2.2« 0,Bg «— Band K « {}

3: repeat
4: E;dd<—{}andElfem<—{}
5.  repeat
6: Initialize and solve compact CND model for graph G « (N, E U E’)
7: Let z* be the optimal value and (v*, v*) be the optimal solution. Set z « z*
8: Ke{ieN:vi=1}and K « KU {K}
9: Compute the mg components of graph (N\K, (E U E’)k)
10: if mg 22 and ming ;) {/j; : cpk(i,j) = 1} < Bg then
11: Initialize s « 1 and ¢;; « 0, for all candidate links (i, j) ¢ £ U E” such that /;; < Bg
12: while s < S and mg > 2do
13: forall (i,j) ¢ EUE": cpk(i,j)=1,lj; < Bgr do
14: cij « cij +(2/27)
15: end for
16: if s < S then
17: Add constraint 3.7, vivi < pI vi — 1 to compact CND model of graph G
18: Solve compact CND model. Let z* be the optimal value and (uv*, v*) be the optimal solution
19: Ke{ieN:vi=1}and K « KU {K}
20: Compute the mg components of graph (N\K, (E U E")k)
21: end if
22: se—s+1
23: end while
24: Compute new link (7, j) ¢ E” corresponding to max; j{c;; /f(i,j) : l;j < Br}
25: E'— E"U{(L )} Elyy < ELgqV 0.1} and Br < Bg — I

26: end if

27 until no new link added to set £ ;|

28: if Elg#*{} then

29: [Removing Phase]

30:  endif

31: until £/, = {} or Ejem = {} Or Elem = {last |Efey | links added to set £/}

In line 11 of Algorithm 4, a set of variables c;; are initialized to zero. These variables count, in a weighted manner,
the number of times that each candidate link (7, ) ¢ E U E’ connects two components in the S alternative surviving
graphs, i.e., the surviving graphs of the S best CND solutions. Note that in line 7, z is set with the solution value of the
first compact CND (the lowest value among all S surviving graphs). Then, for each candidate link (i, j) that connects
two components of the current surviving graph (line 13), ¢;; increases by z/z* where z* is the solution value of the
current surviving graph. Note that the ratio z/z* is always less than or equal to 1. So, the idea behind this weighted
sum is to give a lower weight in the link selection to the links connecting two components of the surviving graphs
whose CND solution values are worst. Finally, in line 24, the link (7, /) ¢ £ U E” with the largest value of ¢;;/f(i.j) is
selected (like before, 7(/,) is set either with f;(/, ) or with £(i,))).
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While the best CND solution of each partial topology is computed in line 6 of Algorithm 4, the additional alterna-
tive CND solutions are computed in the loop 12-23. This loop ensures that the algorithm will continually compute a
compact CND solution until either it loops S times or my = 1 (line 12), i.e., the current surviving graph does not have
multiple components. The condition in line 16 ensures that the compact CND model is optimized at most S times.
Finally, given a set of critical nodes K, the added constraint (line 17) excludes this set from the set of feasible solutions
of the compact CND model so that, when it is solved again (line 18), it will result in the next best set of critical nodes.

Note that, while computing the S sets of critical nodes for each partial topology, they are computed in increasing
value of the A2TR (i.e., the number of connected node pairs). There might exist multiple optimal CND solutions, i.e., all
solutions next to the first one such that their optimal value z* is equal to z. Since these solutions are more damaging
than the subsequent ones, a meaningful alternative is to consider only the optimal CND solutions and ignore the
remaining ones. This is easily done by adding in line 12 of Algorithm 4 a third condition in the form z* = Zz. In the

computational results, we also test this algorithm variant.

3.2 | Local search approach

In the second task, a local search algorithm is applied to the solution provided by the first task. Note that in the
Removing Phase of Algorithms 2 and 4, a link can only be removed if the resiliency value of the current network
topology remains the same. Here, a local search algorithm (described in Algorithm 5) is proposed where each link
(i,j) € E’ is removed and excluded from the set of candidate links while re-running either Algorithm 2 or Algorithm 4.
Removing the link from the graph decreases the resiliency value z but increases the remaining fiber budget Bg, which
might enable to find an alternative topology with a better resiliency value.

Algorithm 5 Local search algorithm
1: INPUT: G = (N,E), E, z, Bg
2: repeat

3: Zis « Z, E|g « E’ and B\ s « Bg

4. forall (i,j) € E’ do

55 G e (N.(EUENG.)))

6 Run Algorithm 2 (or 4) starting from set £/\{(i,)}, fiber budget Bk + /;; and excluding link (i, ) from the set

of candidate links, obtaining a new set of selected links EI’J its resiliency value z;; and fiber budget B;;

7: if Zjj > z15 or (2,']' =z and Bjj > BLS) then
8: 2|5 « Zjj, Els E/"j and B|s « Bj;
9: end if

10:  end for

11:  if zg > Z then
12: Update z « 7|5, E/ « E;gand Bg « Bs
13:  endif

14: until z2,5 < z

The inputs of Algorithm 5 are the original topology G = (N, E), the added links E’, the resiliency value of graph
(N, E U E’) and the remaining fiber budget B of the solution provided by the first task. The main loop (steps 2-14)
ensures that the local search runs until the resiliency value is not improved. Variables Z s, E s and B| g store the best

alternative topology in the present iteration and are accordingly updated (line 8) when a better topology is found. The
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inner loop (lines 4-10) removes each link (7, /) € E’ from graph (N, E U E’) and runs the greedy deterministic algorithm
(Algorithm 2 or 4) excluding the removed link to be selected. If two alternative topologies have the same resiliency
value, the one with the highest remaining fiber budget is selected (line 7). Finally, in lines 11-13, the main variables z,
E’ and Bg are updated if the best alternative topology has a higher resiliency value than the current topology.

After running some computational tests, we observed that in the network design problem, the local search ap-
proach is very inefficient as it does not provide relevant gains in the resiliency value and the running time becomes

very high. Therefore, the second task is only included in the overall algorithm of the network upgrade problem.

3.3 | Transparent optical networks application

In the previous tasks, the A2TR value was computed by solving the compact CND model. So, in the network design
problem, it is necessary to check if the solution provided by the previous task is optically transparent, i.e., for each
node pair, the optical shortest path between them is not higher than the transparent reach T (this is not an issue in
the network upgrade problem since the optical transparency is guaranteed by the original network topology). If not,
the aim is to use the unused fiber budget to turn the solution optically transparent. Moreover, it is also necessary to
compute the A2TR value with the exact CND model and, if the two values are not equal, again we use the unused
fiber budget to add new links so that the two values become as close as possible.

In our preliminary tests, we observed that, from the three stopping criteria used in Algorithms 2 and 4, the most
common stopping criterion is the last one: E/y,, = {last |E/ep | links added to set E;dd}, i.e., the last added links do
not improve the A2TR value of the solution and, therefore, they are removed. Thus, the solutions tend to have a
reasonable amount of available fiber budget Bg. Algorithm 6 presents a deterministic method to use the remaining
budget B in order to make an input topology G = (N, E) optically transparent. Initially, the shortest path distances
between all node pairs without a direct link (i.e., (/,j) ¢ E) are computed in loop 3-5. In line 6, variable M is set to
the maximum distance between all node pairs (i,j) ¢ E and (ip,jum) is set to such a node pair. If M exceeds the
transparent reach (line 7), the algorithm selects the shortest link (i, ) that, when added to the current topology, turns
the distance between (i, jp) within the transparent reach. If the selected link is within the available fiber budget, it

is added to the topology (lines 9-11). The algorithm continues until no new link is added (line 13).

Algorithm 6 Network validation algorithm
1: INPUT: G = (N, E), Bg
2: repeat

3:  forall node pairs (i,j) ¢ E do

4 Compute shortest path p;; € P; and its length dj;

5. end for

6:  Compute M « max{d;; : (i,j) ¢ E} and the corresponding node pair (in, jm)
7

8

if M > T then
Compute link (/,j) ¢ E corresponding to ming ;) {/;; : d,‘.{/”.M < T}, where dejM is the distance between
nodes iy and ju on graph (N, E U {(i,j)})
9: if /;; < B then
10: E « EU{(i,j)} and Bg « Bg - Ij;
11: end if
12:  endif

13: until no new link added to set £
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Algorithm 6 is run when we aim to design a new topology based on the fiber budget of an existing optical network
and the existing optical network is not 2-connected (in the context of transparent optical networks, a topology is 2-
connected if it is optically transparent for every single node deletion). On the other hand, when the existing network
topology is 2-connected, we also require the solution obtained by the network design problem to be 2-connected.
Algorithm 7 is a generalization of Algorithm 6 aiming to use the remaining budget to turn an input topology G = (N, E)
into a 2-connected topology. In Algorithm 7, instead of computing the distance between all node pairs without a direct
link in G, these distances are computed in loop 3-8 for all reduced graphs G, i.e., graphs without node & and its links,
for all nodes k € N. Then, variable M is computed (line 9) with the maximum distance between all node pairs over
all reduced graphs G, and the selected link (7, j) is computed in a way similar to Algorithm 6 but now considering the

reduced graph G, over which the maximum distance M was computed.

Algorithm 7 Network validation algorithm (2-connected)
1: INPUT: G = (N, E), Bg
2: repeat
3: forallk € N do

4 Gy — (N\{k}, Ex), with Ex = {(i,j) € E :i,j # k}

5 for all node pairs (7, ) ¢ Ex with i,j € N\{k} do

6: Compute shortest path p,’.;. (on graph G) and its length d,.’;.

7: end for

8: end for

9:  Compute M « max{d,.’;. :(i,j) & Ex, k € N}, the corresponding node pair (ipr, jp) and removed node kp,
10:  if M > T then
11: Compute new link (/,j) ¢ E,, corresponding to ming ;) {/;; : dllmﬂ'; < T}, where d//m,\: is the distance

between nodes iy and jy on graph (N\{kw }, Ex,, U {(i,./)})

12: if /;; < Bg then
13: E «— EU{(i,j)}and Bg « Br - I;j
14: end if
15:  endif

16: until no new link added to set £

Finally, in Algorithm 8, we present a method that simultaneously solves the exact CND model (using Algorithm 1)
and uses the remaining fiber budget Bg to move the resiliency value provided by the exact CND solution as close as
possible to the resiliency value of the compact CND model. The inputs of Algorithm 8 are the network topology G, the
remaining fiber budget Bg, the target CND optimal value z and all the sets of critical nodes K previously generated
by the greedy deterministic algorithm (either Algorithm 2 or 4). Similarly to Algorithm 1, the MILP’ model is initialized
without the path constraints (line 2). Then, in order to accelerate the row generation process, the path constraints
associated to each set of critical nodes K € K are added to MILP’ model (lines 3-11). Next, the optimal solution
of the exact CND model is solved as in Algorithm 1. In lines 15-17, if the exact resiliency value z* is lower than
the target value z, the algorithm uses the remaining budget to compute new links to be added to the graph so that
each component of the surviving graph induced by the optimal critical node set becomes optically transparent (this is
equivalent to run Algorithm 6 in this surviving graph, line 16). Algorithm 8 is repeated until no new link is added (line
18), which happens either if z* = z (no need to add new links) or if no new link can be added due to the remaining
fiber budget.
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Algorithm 8 Exact CND upgrade algorithm

1:
2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:

5
6
7:
8
9

INPUT: G = (N, E), Bg, 2, K
Initialize MILP’ MILP model (1)-(6) without constraints (4)
forall K € K do

Compute subgraph Gx = (N\K, Ex) where Ex = {(i,j) € E: i,j ¢ K}
for all node pairs (i, j) ¢ Ex do
Compute shortest path p;; and its length d;;
if dij < T then
Add to MILP’ constraint (4) corresponding to path p;;
end if
end for
end for
Solve the MILP’ model. Let z* be the optimal value and (v*, v*) the optimal solution

repeat
[Lines 2-15 of Algorithm 1]
if z* < z then
Run Algorithm 6 in the surviving graph induced by the current optimal critical nodes
end if

until no new link added to set £

3.4 | Overall algorithm

Recall that, for a given network G = (N, E) with a total fiber length L and a fiber length budget of B = L + L’, with
L’ > 0, the network design problem aims to identify a new network topology connecting all nodes in N whose total

fiber length is not higher than B and the network upgrade problem aims to identify a set of fiber links within the budget

L’ to be added to the existing topology. So, the overall algorithm is a combination of the previous algorithms that

depends on the problem type (network design or network upgrade). Algorithms 9 and 10 describe how the different

algorithms are put together to solve the network design and the network upgrade problem, respectively. As previously

explained, the network design algorithm (Algorithm 9) does not include the local search algorithm (Algorithm 5) and

the network upgrade algorithm (Algorithm 10) does not need to run the network validation algorithms (Algorithms 6

and 7). On both Algorithms 9 and 10, we consider six algorithm variants: (i) Algorithm 2, (ii) Algorithm 4 considering

S CND solutions and (iii) Algorithm 4 considering the optimal CND solutions, each case using either £, (i, ) or f(i, )

as the criteria to select each new link.

Algorithm 9 Network design algorithm

1:
: Run Algorithm 2 (or 4) for graph (N, {}), with E” as the set of links of RNG topology
. if G is optically 2-connected then

©® N O v oA W N

INPUT: G = (N, E), B

Run Algorithm 7 for graph (N, E’), with E’ and Bg resulting from the previous method

: else

Run Algorithm 6 for graph (N, E’), with E’ and Bg resulting from the previous method

. end if
: Run Algorithm 8 for graph (N, E’), with variables z, Bg and K resulting from the previous methods
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Algorithm 10 Network upgrade algorithm
1: INPUT: G = (N,E), L’
2: Run Algorithm 2 (or 4) for graph G, with B « L’ and E’ « {}
3: Run Algorithm 5 for graph G, with variables E’, z and By resulting from the previous method
4

: Run Algorithm 8 for graph (N, E U E’), with variables z, Bg and K resulting from the previous methods

4 | COMPUTATIONAL RESULTS

All results reported in this section were obtained using the optimization software Gurobi Optimizer version 8.0.0, with
programming language Julia version 0.6.2, running on a PC with an Intel Core i7-8700, 3.2 GHz and 16 GB RAM.
Following [15], we have assumed a transparent reach T = 2000 km corresponding to the use of OTU-4 lightpaths with
a line rate of 100 Gbps. Moreover, we have considered A = 60 km. This value considers an optical node architecture
with an input and an output WSS (Wavelength Selective Switch) per fiber port and assumes an attenuation of 6.0
dB inserted by each WSS. Then, assuming that the attenuation on each WSS is the main optical degradation factor
suffered by a lightpath, an optical node introduces a total of 12.0 dB, equivalent to the attenuation on a fiber of 60
km, with an attenuation of 0.2 dB/km.

The network topologies used in these computational results are Germany50 [13], PalmettoNet [19] and Missouri
Network Alliance (MissouriNA) [19]. Table 1 presents their topology characteristics in terms of number of nodes |N|
and fiber links |£ |, total number of node pairs, minimum (&), average (5) and maximum (8max) node degree and an

indication if the topology is (or is not) 2-connected.

TABLE 1 Topology characteristics of each tested network.

Network IN| |E| no. Pairs Smin 6 émax  2-Connected
Germany50 50 88 1225 2 3.52 5 Yes
PalmettoNet 45 64 990 1 2.84 5 No
MissouriNA 64 80 2016 1 2.50 5 No

In all cases, the geographical location of nodes is publicly available but the geographical routes of fiber links is
not known. So, we have considered that each (existing or possible) link follows the shortest path over the surface of
a sphere representing Earth. Table 2 presents the resulting length characteristics in terms of minimum (/,,i,), average
(7), maximum (/max) and total link length (L), and diameter (i.e., the highest optical length among the shortest paths of
all node pairs adding A for each intermediate node). Note that the three topologies are optically transparent for T =

2000 km since all diameter values are below 2000 km.

TABLE 2 Length characteristics (in km) of each tested network.

Network Imin / Imax L Diameter
Germany50 26 100.7 252 8859 1417
PalmettoNet 19 67.0 177 4286 1298

MissouriNA 7 50.0 307 4001 1301
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In the computational experiments, we have considered ¢ € {2,3,4, 5,6} as the number of critical nodes. For each
network and each ¢, we started by computing a topology with a fiber budget B equal to the total fiber length L of the
original topology using Algorithm 9. Then, we computed an upgraded topology for each original topology assuming
a fiber budget L’ = p x L with p = 10% and 20% using Algorithm 10. Finally, we computed a topology with a fiber
budget B = L + p x L also for p = 10% and 20% using Algorithm 9. These cases are the same as the ones considered
in [4] so that we can compare the efficiency of the methods proposed here with the ones proposed in [4].

In all cases and in both types of problems (network design and network upgrade), we have run the six algorithm
variants (see Section 3.4). In the variants with Algorithm 4 considering S CND solutions, we present the results with
S = 10 as our preliminary tests have shown that this value is a good compromise between the running time and
the algorithm efficiency. Tables 3, 4 and 5 present the resiliency values of the network upgrade solutions for the
three network topologies. In these tables, in addition to the number of critical nodes ¢, column 'MS’ refers to the
solutions obtained by using the Multi-Start Greedy Randomized method proposed in [4]. Columns 'S1’ and 'S2’ refer
to the solutions obtained by Algorithm 2 (the values 1 and 2 mean the use of function £, (i, j) and £,(/, j), respectively).
Columns 'A1’ and 'A2’ refer to the solutions obtained by Algorithm 4 considering the optimal CND solutions and
columns ‘M1’ and 'M2’ refer to the solutions obtained by Algorithm 4 considering S = 10 best CND solutions. Finally,

the best values of each problem instance are highlighted in bold.

TABLE 3 Resiliency values z of the network upgrade solutions for Germany50.
Germany50, with Upgrade = 10% Germany50, with Upgrade = 20%

c MS S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2
1081 1081 @ 1081 1081 1081 1128 1128 1128 1128 1128 1128 1128 1128 1128
991 991 991 991 991 991 991 1035 1035 1035 1035 1035 1035 1035
830 830 830 830 867 795 867 906 946 947 946 947 906 947
640 616 640 640 640 666 666 756 756 756 790 790 790 790

o v A WN

498 483 478 478 478 511 487 606 583 543 606 606 583 606

TABLE 4 Resiliency values z of the network upgrade solutions for PalmettoNet.
PalmettoNet, with Upgrade = 10% PalmettoNet, with Upgrade = 20%

c MS S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2
821 821 821 821 821 821 821 861 861 861 861 861 821 821
616 616 616 616 616 616 616 709 709 709 709 709 709 744
427 400 389 400 389 406 412 510 510 532 524 532 532 532
325 333 333 337 333 325 319 380 380 380 380 380 380 380
235 223 238 235 238 238 234 286 295 307 325 319 310 325

o b WN

The first and most important observation of these computational results is that, with the exception of one instance
(PalmettoNet topology for ¢ = 4 and p = 10%), the resiliency value obtained by at least one of the proposed algorithm
variants is not lower (in many cases, it is significantly higher) than the resiliency value of the method proposed in [4].
This means that the best obtained upgrade topologies, in general, have an higher resiliency to critical node failures
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TABLE 5 Resiliency values z of the network upgrade solutions for MissouriNA.
MissouriNA, with Upgrade = 10% MissouriNA, with Upgrade = 20%

MS S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2

i3]

1555 1659 1659 1659 1659 1371 1371 1659 1771 1771 1771 1771 1771 1371
1362 1362 1242 1362 1172 1362 1320 1446 1500 1500 1500 1500 1452 1500
762 870 870 874 870 906 895 1039 1194 1246 1246 1270 = 1270 1194
618 667 653 711 653 753 733 758 843 841 861 871 896 897
457 505 460 505 460 526 520 550 701 688 722 681 701 722

o L b~ WN

when compared to the ones provided in [4]. Additionally, the comparison of the different algorithm variants (proposed
in this work) does not provide clear evidence that one of them is consistently better than the others. This means that,
in practice, we might need to run all of them to compute the best upgrade solution.

Tables 6, 7 and 8 present the resiliency values of the network design solutions for the three network topologies
(the meaning of each column is similar to the previous tables). In the Germany50 network, the strikeout values repre-
sent invalid solutions where the algorithm variant was not able to compute a 2-connected network design solution.

TABLE 6 Resiliency values z of the network design solutions for Germany50.

Germany50, Network Design Problem Germany50, Network Design Problem + 10% Germany50, Network Design Problem + 20%
c MS Ss1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2 MS S1 52 Al A2 M1 M2
1081 = 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128
991 1035 1035 961 1035 1035 1035 991 1035 1035 1035 1035 1035 1035 1035 1080 1035 1054 1081 1081 1081
830 906 947 906 947 946 906 906 947 947 947 947 947 947 906 947 990 990 990 990 990
640 724 790 756 787 790 826 756 790 826 826 862 826 826 790 862 826 864 903 864 903
498 573 631 623 651 651 658 606 631 687 658 718 A7 718 658 687 718 751 745 751 751

o v oA oW N

TABLE 7 Resiliency values z of the network design solutions for PalmettoNet.

PalmettoNet, Network Design Problem PalmettoNet, Network Design Problem + 10% PalmettoNet, Network Design Problem + 20%

@ MS S1 S2 Al A2 M1 M2 Ms S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2
861 = 861 861 861 861 861 861 861 861 = 902 900 = 903 903 903 861 | 903 903 903 903 903 = 903
676 709 744 709 744 709 709 709 780 744 744 781 781 744 744 781 781 820 781 781 781
510 510 @ 556 556 @ 490 556 @ 556 582 582 610 @ 636 640 640 = 640 582 605 672 | 669 672 640 = 706
379 373 380 380 380 380 379 409 429 380 429 461 461 444 480 461 549 444 524 549 549

o 0 M W N

266 295 246 315 297 325 313 322 342 337 325 342 346 337 358 346 361 367 403 391 381

When comparing the results using the different algorithm variants with the method in [4], it is possible to observe
that, in general, the network topologies obtained in this work are much more resilient to critical node failures than the
ones obtained in [4]. In the Germany50 network, all invalid topologies were obtained using function 7 (i, j). So, in this
case, it is preferable to use function £,(7, /) in the link selection. The reason for the superior performance of £,(i,/) is
because it favors the selection of candidate links connecting nodes with lower degrees. So, there is a lower chance
that the generated topology has leaves (nodes with degree one) and, even when this happens, Algorithm 7 needs, in
general, a lower amount of fiber budget to make it 2-connected. Nevertheless, in the other networks (PalmettoNet
and MissouriNA), there are some cases where the variants using f; (i, j) provide the best resiliency results. So, like in
the network upgrade problem, in the network design problem there is no clear evidence that one of the variants is
consistently better than the others.
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TABLE 8 Resiliency values z of the network design solutions for MissouriNA.

MissouriNA, Network Design Problem MissouriNA, Network Design Problem + 10% MissouriNA, Network Design Problem + 20%

MS S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2 MS S1 S2 Al A2 M1 M2
1714 1771 1771 1771 1771 1714 1771 1714 1830 1830 1830 1830 1771 1771 1771 1830 1830 1830 1830 1771 1830
1495 1550 1550 1550 1550 1550 1452 1500 1599 1654 1599 1602 1654 1654 1550 1656 1656 1656 1656 1656 1656
1126 1231 1231 1231 1231 1311 1311 1194 1354 1399 1354 1354 1354 1399 1311 1389 1441 1491 1495 1491 1446
841 931 1051 1025 951 1023 1051 917 1081 1113 1091 1147 1113 1147 1081 1113 1147 1183 1221 1261 1221

o v & ® N o

694 784 732 764 768 742 776 717 893 861 842 893 918 926 784 972 992 956 992 1037 1066

Table 9 presents the resiliency value z of the best topologies obtained for each instance presented in Tables 3-8.
Rows 'Original’ refer to the original topologies (in column '0%’) and upgraded topologies (in columns '10%' and '20%’)
while rows 'Alternative’ refer to the best network design solutions with a fiber budget B = L + p x L with p = 0%, 10%
and 20%. For each case, columns 'UB’ presents the trivial upper bound of the CND problem given by the number of

pairs of n — ¢ surviving nodes, i.e., (n — ¢)(n — ¢ — 1)/2, with n = |N|.

TABLE 9 Best obtained resiliency value z for all tested instances.

Network Germany50 PalmettoNet MissouriNA

c Instance 0% 10% 20% UB 0% 10%  20% UB 0% 10% 20% uB

2 Original 1036 1128 1128 1128 513 821 861 903 946 1659 1771 1891
Alternative 1128 1128 1128 861 903 903 1771 1830 1830

3 Original 711 991 1035 1081 346 616 744 861 602 1362 1500 1830
Alternative 1035 1035 1081 744 781 820 1550 1654 1656

4 Original 640 867 947 1035 284 427 532 820 455 906 1270 1770
Alternative 947 947 990 556 640 706 1311 1399 1495

5 Original 496 666 790 990 176 337 380 780 338 753 897 1711
Alternative 826 862 903 380 461 549 1051 1147 1261

6 Original 415 511 606 946 123 238 325 741 253 526 722 1653
Alternative 658 718 751 325 346 403 784 926 1066

An initial observation of these results is that the resiliency values are lower for higher number of critical nodes
¢, which is without surprise since more node failures disrupt an higher percentage of the network. Moreover, the
resilience of the upgraded topologies is always significantly better for higher budget values.

The best topologies are always significantly better than the original/upgraded ones, with the exception of Ger-
many50 for ¢ = 2 and with p = 10% and 20%, where the trivial upper bound is reached in both cases. Nevertheless,
when comparing the differences between the original/upgraded and the best topologies, it is significantly higher for
PalmettoNet and MissouriNA topologies than for the Germany50 topology. This means that the latter topology is
significantly more resilient to critical node failures than PalmettoNet and MissouriNA. To understand this fact, recall
from the topology characteristics of the different networks (Table 1) that Germany50 is the topology with the high-
est average node degree and the only one which is 2-connected. These two characteristics make this network more

resilient than the two other networks.

More important than analyzing the absolute resiliency values, we need to analyze the resiliency gap between the

original/upgraded topologies and the best topologies computed with the same fiber budget values. Figure 2 plots in
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a bar chart these gaps, for all networks and all values of ¢, computed as % x 100% where zg is the resiliency
value of the best topology and zg,y is the resiliency value of the original/upgraded topology. Blue bars present the
resiliency gap between the best topology and the original topology. The resiliency gaps between the best topologies
and the upgraded topologies are presented in the red and green bars for p = 10% and 20%, respectively.

Firstly, the blue bars of Figure 2 show that the resiliency gaps are lower for Germany50 (but still significant for a
number of critical nodes ¢ > 3) and very large for PalmettoNet and MissouriNA. These results reinforce the previous
conclusion that Germany50 is more resilient than the others but also show that, in general, existing network topologies
are not resilient to critical node failures. Secondly, the resiliency gaps shown in the red bars (corresponding to topology
designs with 10% more total fiber length) represent, in all cases, a significant gap reduction when compared with the
blue bars. This means that for all tested instances, adding new links to an existing topology with a fiber budget of
10% enables solutions with resiliency to critical node failures much closer to a topology designed to maximize this
resilience with the same amount of fiber. Thirdly, the results of the green bars (corresponding to topology designs
with 20% more total fiber length) are mixed, i.e., in some cases, the additional 10% fiber budget enables a significant

gap reduction while in other cases, the reduction is negligible.

70%
Germany50 m0% B10% @20% PalmettoNet MissouriNA

60%

50%
40%
30%
20%
10%
0% l
2 3 4 5 6 2 3 4 5 6

FIGURE 2 Resiliency gaps of all tested networks and for all ¢ € {2, ...,6}.

Finally, we can distinguish two cases. For a number of critical nodes ¢ < 3, the additional fiber budget of 20%
allows in all cases the resiliency gap to become small (below 10%). For a number of critical nodes ¢ > 5 (in the
Germany50 network) and ¢ > 4 (in the less resilient PalmettoNet and MissouriNA networks), the additional fiber
budget of 20% is still not enough to make the resiliency gap small. This means that more fiber links are required in the
upgrade of existing networks to reach the best resiliency to higher number of critical nodes.

For illustrative purposes, Figure 3 presents the original topologies, the best upgraded topologies with L’ = 10%L
and L’ = 20%L (with the additional links highlighted in blue) and the best topologies with the same fiber budget
L obtained considering ¢ = 4 critical nodes. To highlight the differences, links of the best topology (and the best
upgraded topologies) not in the original topology are highlighted in blue and, in all cases, critical nodes are represented

with red squares. The analysis of these topologies show that:

Germany50 The critical node set splits the original network in three components (1, 10 and 35 nodes each) while it
only isolates a pair of nodes from the others in the best topology. Moreover, the critical node set isolates 4 nodes
from the others in the 10% upgraded topology and a pair of nodes in the 20% upgraded topology. So, an upgrade
of 20% has the same resilience to 4 critical nodes as the best topology.
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GermanyS0

— PalmettoNet - |- [

MissouriNA

FIGURE 3 Original topologies (first column), best upgraded topologies with L’ = 10%L and 20%L (second and
third columns, respectively) and the best topologies with B = L (fourth column), considering ¢ = 4 critical nodes
(represented in red squares). Links not in the original topologies highlighted in blue.

PalmettoNet The critical node set splits the original network in four components (2, 6, 13 and 20 nodes each) while
it splits the best topology in only two components (8 and 33 nodes each). Moreover, the critical node set splits
the 10% upgraded topology in four components (2, 5, 5 and 29 nodes) and the 20% upgraded topology in two
components (9 and 32 nodes). In this case, the resilience to 4 critical nodes of the 20% upgraded topology is still

slightly lower than the resilience of the best topology.

MissouriNA The critical node set splits the original network in four components (8, 16, 17 and 19 nodes each) while
it splits the best topology in only two components (9 and 51 nodes each). Moreover, the critical node set splits the
10% upgraded topology in two components (24 and 36 nodes) and the 20% upgraded topology in two components
(10 and 50 nodes). As in the previous case, the resilience to 4 critical nodes of the 20% upgraded topology is still

slightly lower than the resilience of the best topology.

Concerning the running time of the proposed algorithm variants, Table 10 presents the average running time of
the Network Upgrade Problem (Algorithm 10), among all five values ¢ = 2, ...,6 of each problem instance. In the

instance name, ‘Ger’, ‘Pal’ and ‘Mis’ refers to the Germany50, PalmettoNet and MissouriNA networks, respectively,
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while the ‘10’ and ‘20’ refer to the fiber budget L’ = 10%L and 20%L, respectively. Similarly, Table 11 presents the
average running time of the Network Design Problem (Algorithm 9), among all five values ¢ = 2, ..., 6 of each instance.
In the instance name, the ‘0’ ‘10’ and ‘20’ refer to the fiber budget B = L + 0%L, B = L + 10%L and B = L + 20%L,
respectively.

TABLE 10 Average running time (HH:MM:SS) of the Network Upgrade Problem.

Instance S1 S2 Al A2 M1 M2

Ger_10 00:06:19 00:04:44 00:06:32 00:06:57 00:34:51 00:29:51
Ger_20 00:36:37 00:31:30 01:11:44 01:09:32 02:28:51 02:35:05
Pal_10 00:00:49 00:00:53 00:01:21 00:01:11 00:03:14 00:02:55
Pal_20 00:04:53 00:06:07 00:14:51 00:09:25 00:20:19 00:20:56
Mis_10 00:05:58 00:02:17 00:09:40 00:03:03 00:16:08 00:09:26
Mis_20 01:56:47 00:47:10 01:54:14 01:42:59 03:28:53 01:32:35

TABLE 11 Average running time (HH:MM:SS) of the Network Design Problem.

Instance S1 S2 Al A2 M1 M2
Ger_0 00:45:24 00:55:20 00:45:49 01:06:20 02:03:28 02:13:56
Ger_10 01:06:45 01:19:15 02:11:49 02:42:54 03:28:40 04:00:03
Ger_20 04:00:59 02:17:02 04:12:33 07:25:25 11:53:53 10:22:25
Pal_0 00:04:21 00:06:15 00:06:49 00:06:51 00:08:31 00:08:36
Pal_10 00:08:44 00:06:46 00:10:15 00:13:07 00:15:16 00:13:09
Pal_20 00:08:58 00:12:35 00:18:22 00:19:07 00:21:36 00:27:16
Mis_0 00:35:08 00:35:01 00:35:56 00:32:50 00:58:57 00:46:51
Mis_10 00:53:47 00:55:09 01:03:13 01:03:54 01:09:10 01:34:19
Mis_20 01:08:20 01:12:30 01:57:30 01:31:11 03:40:24 02:50:15

The analysis of the running times of Tables 10 and 11 let us draw the following conclusions. First, all algorithm
variants have higher running times when the problems consider higher fiber budget values. This was expected since

more links are added with an higher fiber budget and, therefore, the algorithms run a larger number of iterations.

Second, even without using the local search algorithm (Algorithm 5) in the Network Design Problem, this prob-
lem has much longer running times than the Network Upgrade Problem. The main reason is that Network Upgrade
Problem starts with a fixed set of fiber links (the links of the original topology), while the Network Design Problem
has to built a solution from scratch.

Third, note that at each iteration, Algorithm 2 solves a single CND model, Algorithm 4 considering the optimal
CND solutions solves a variable number of CND models and Algorithm 4 considering S CND solutions solves an even
higher number of CND models (in our case, 10 CND models, as we consider S = 10). Moreover, solving the CND
models is the most time-consuming part of all algorithms. As a consequence, the running times of both Algorithms
4 are higher, on average, than the running times of Algorithm 2 and the running times of Algorithm 4 considering S
CND solutions are higher, on average, than the running times of Algorithm 4 considering the optimal CND solutions.

Note that the use of £ (7, /) or (i, ) as the criterion to select each new link does not have a significant impact in the
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obtained running times.

Another aspect of interest is the comparison of the node degree distributions between the original topologies
and the best topologies with the same total fiber length L. Figure 4 shows these distributions for the three network
cases with the best topologies obtained for ¢ = 4 critical nodes (original topologies in blue and best topologies in
green). For example, in Germany50 original topology, there are 10 nodes with the minimum degree of 2 and 11 nodes
with the maximum degree of 5 while in the best topology all nodes have a degree between 3 and 4. In the other two
networks, we observe from the original topology to the best topology that the number of nodes with degree 1 and
2 decreases and the maximum network degree also decreases from 5 to 4 in both cases. So, the conclusion is that in
the best topologies, there is a decrease in the number of nodes with the lowest and highest degrees and an increase
in the number of nodes with degrees closer to the average. This observation also stands in the best topologies for the

other values of ¢ showing that resilient topologies tend to have more homogeneous node degrees.

Germany50 PalmettoNet MissouriNA

| L. =L

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FIGURE 4 Node degree histograms of original topology (in blue) and the best topology (in green) for ¢ = 4.

5 | CONCLUSIONS

In this work, we have addressed the topology design of transparent optical networks aiming to maximize their re-
silience to the simultaneous failure of their critical nodes. We have proposed different algorithm variants of a deter-
ministic method that can be used both in the design of network topologies and in the upgrade of existing topologies.
We have run the proposed algorithm on three network topologies with publicly available information comparing the
resiliency gap between the existing and upgraded topologies with the best topologies designed to maximize its re-
silience with the same fiber budget.

The results have shown that the resiliency gap of existing topologies is significantly large but network upgrades
with L’ = 10%L can already reduce significantly the resiliency gaps provided that such upgrades are aimed at maximiz-
ing the network resiliency to the critical node failures. Finally, comparing the best topologies with the existing ones,
the best topologies are characterized by a decrease of the number of nodes with the lowest and highest degrees and
an increase of the number of nodes with degrees closer to the average node degree. This clearly shows that network
topologies resilient to critical node failures tend to have more homogeneous degrees among all their nodes.
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