
FINDING A MANHATTAN PATH AND RELATED PROBLEMS

by

Witold Lipski, Jr.

This work was supported in part by the University of
Illinois.

FINDING A MANHATTAN PATH AND RELATED PROBLEMS

Witold Lipski, Jr.
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Abstract. Let S be a set of n horizontal and vertical segments on the plane,

and let s, t € S. A Manhattan path (of length k) from s to t is an alternating

sequence of horizontal and vertical segments s = r^,r.,...,r^ = t where r^
2intersects r^+ p 0 < i < k. We give an 0 (nlog n) algorithm to find, for a

given t, a tree of shortest Manhattan paths from all s € S to t. We also

determine a maximum set of crossings (intersections of segments) with no

two on the same segment, as well as a maximum set of nonintersecting segments,
3/2 2both in 0(n log n) time. The latter algorithm is applied to decomposing,

3/2 2in 0(n log n) time, a hole-free union of n rectangles with sides parallel

to the coordinate axes into the minimal number of disjoint rectangles. All
2the algorithms require O(nlogn) space, and for all of them the factor log n

can be improved to lognloglogn, at the cost of some complication of the

basic data structure used.

Keywords and phrases: computational geometry, horizontal and vertical

segments, segment tree, Manhattan path, minimal decomposition into

disjoint rectangles.

On leave from the Institute of Computer Science, Polish Academy of Sciences,
P. 0. Box 22, 00-901 Warsaw PKiN, Poland.

This work was supported in part by the University of Illinois.

1

1. INTRODUCTION

In this paper we investigate a number of geometric problems related to

a finite collection S of n horizontal and vertical segments in the plane.

The simplest of them is that of finding a Manhattan path between two

segments. By a Manhattan path (of length k) from s to t we mean an

alternating sequence of horizontal segments (streets) and vertical segments

(avenues) s = rQ,r^,...,r^ = t, where r^ intersects r^+ ,̂ 0 < i < k

(see Fig. 1).

In Section 3 we give an O(nlog n) time algorithm to find, for a given t,

a tree of shortest Manhattan paths from all (reachable from t) segments

s to t (i.e., a tree with root t where the path from any node s to the

root is the shortest Manhattan path between these segments).

In Section 4, we present algorithms to determine a maximum set

of crossings (intersections of segments) with no two on the same segment,

as well as a maximum set of nonintersecting segments. Both algorithms run
3/2 2in time 0(n log n) .

Finally, in Section 5, the efficient determination of a maximum set of
3/2 2nonintersecting segments is applied to produce an 0 (n log n) algorithm

to solve the following problem (see [10]): Given n rectangles, R^,...,R^

with sides parallel to the coordinate axes, with the union F = R^ U ... U R^
without holes, find a decomposition of F into the minimal possible number

of disjoint rectangles.

All the algorithms use the same basic data structure for storing and

manipulating the collection S of segments. This data structure is

essentially Bentley’s segment tree (see [2,3]). We show how this basic

data structure can be refined, by using techniques developed by van
2Emde Boas [4,5], so that for all our algorithms the factor log n is

improved to lognloglogn. However, this modification considerably

complicates the data structure. Under both implementations all our

algorithms require 0 (nlogn) space.

3

Notice that a Manhattan path corresponds to the usual path in the

intersection graph of S , i.e., the graph with vertices corresponding to

segments s £ S, two vertices joined by an edge iff the corresponding

segments intersect each other. However, the naive approach based on

transforming the problem of finding a Manhattan path into the corresponding
2problem for the intersection graph requires in general Q(n) time for merely
2constructing the intersection graph, which may have up to n /4 edges.

Before we describe the basic data structure in more detail in Section 2,

let us introduce some notation. We denote the collection of streets

(horizontal segments) and avenues (vertical segments) by H and V, respectively,

so that S = H U V, |h | + |Vj = n. We may normalize the coordinates of the

segments by replacing every abscissa and ordinate of an endpoint of a segment

by its rank in the set of all different abscissae and ordinates,respectively.

Denote by M the number of distinct abscissae and by N the number of distinct

ordinates (clearly, M,N < 2n). Every segment s may be represented by three

integers Y[s], L[s], R[s] interpreted as its ordinate, left abscissa and

right abscissa, respectively, if s is horizontal; for a vertical segment

they are interpreted as its abscissa, bottom ordinate and top ordinate,

respectively. We identify the segments by integers l,...,n in such a way

that segments 1,...,|HJ are horizontal, segments jHj+l,...,n are vertical,

and, moreover, Y[l] < ... < Y [| h |] and Y[|h |+1] < ... < Y[n]. It is clear

that the above normalization process can be carried out in O(nlogn) time.

Notice that from now on all sorting operations are doable in 0(n) time

by standard bucket sorting (see e.g. [1]).

4

2. SEGMENT TREES

Let a, b be two integers with a < b. The segment tree T(a,b) is defined

in the following recursive way. It consists of the root v with B[v] = a,

E[v] = b, and, if a < b, of a left subtree T(a, L(a+b)/2J) and right subtree

T(L(a+b)/2J+l,b). The roots of these subtrees are given by LSON[v] and

RSON[v], respectively. If b = a then LSON[v] = RSON[v] = A. Every node u

of T(a,b) corresponds to the interval [B[u],E[u]] of (integer) values of

abscissa; in particular, B[u] = E[u] if u is a leaf, so that the leaves

are in a one-to-one correspondence with the integers a,a+l,...,b.

Define TH = T(1,N). We say that a street covers node v if

[L[s],R[s]] ^ [B[v],E[v]] and this inclusion is not true for the father of v.

Every street s € H will be stored at each of the nodes it covers - it is

easily seen that there are at most 2l~logNl -4 such nodes (for N > 4) . The

collection of streets covering a node v will be maintained as a usual

balanced binary search tree corresponding to the ordering of the streets

by the increasing ordinate. Street s can be inserted into and deleted from

this tree by insert(s,v) and delete(s,v), respectively in time

logarithmic in the number of streets currently stored at node v.

Inserting a street s into TH is accomplished by calling INSERT(s,root(TH)),

where INSERT is the following recursive procedure:

procedure INSERT(s,v)
(*insert segment s at node v of segment tree*)
begin

if (L[s] < B[v]) and (E[v] ^ R[s]) then insert(s,v)
else begin if L[s] ^ (B[v]+E[v])/2 then INSERT(s,LSON[v])

if (B[v]+E[v])/2 < R[s] then INSERT(s,RSON[v])
end

end

5

Similarly, s can be deleted from TH by DELETE(s,root(TH)), where DELETE

follows the same pattern as INSERT:

procedure DELETE(s,v)
(*delete segment s at node v of segment tree*)
begin

if (L[s] < B[v]) and (E[v] ^ R[s]) then delete (s,v)
else begin if L[s] < (B[v]+E[v])/2 then DELETE(s,LSON[v])

if (B[v]+E[v])/2 < R[s] then DELETE(s,RSON[vj)
end

end

It is easy to see that both inserting and deleting a street involve

visiting O(logN) = O(logn) nodes of TH with O(logn) work spent at each node,
2which amounts to O(log n) total work (we assume the number of streets

currently represented in TH does not exceed n).

In exactly the same way we store»insert, and delete avenues in a

segment tree TV = T(1,M). For any segment (street or avenue) t we can

now find all segments in S intersecting t, by calling the following

procedure:

procedure LIST(t,QUEUE)
(*put on QUEUE all segments intersecting t*)
begin

if t < |H| then v:= root(TV) (*t is horizontal*)
else v:= root(TH) (*t is vertical*)

while v 4- A do
begin list(t,v,QUEUE)

if Y[t] < (B[v]+E[v])/2 then v:= LSON[v]
else v:= RSON[v]

end
end

Here list(t,v,QUEUE) is a procedure which puts on QUEUE all segments p

with L[t] < Y[p] < R[t] stored at node v. To prove the correctness of LIST

assume, without loss of generality, that t is vertical. Notice that a

street s intersects t if and only if (a) s has its ordinate between the

6

bottom and top ordinates of t, i.e. L[t] < Y[p] ^ R[t], and (b) s covers

some node v with [B[v],E[v]] containing Y[t], the abscissa of t. Our

procedure follows a path from the root to the leaf corresponding to Y[t],

i.e. visits all nodes v with [B[v],E[v]] containing Y[t]. At each such

node v, list(t,v,QUEUE) selects from all segments covering v only those

satisfying condition (a).

We can implement list(t,v,QUEUE) in O(logn+c) time, where c is the

number of segments it puts on QUEUE. It follows that the total complexity
2of LIST is O(log n+k) , where k is the total number of segments put on Q.

The simplest way to construct the segment trees representing collections

H and V is the following. We first form segment trees TH and TV with an

empty search tree at each node. This can be done in 0(n) time by a

recursive algorithm exactly following the definition of a segment tree.

Then we insert all streets into TH and all avenues into TV, one by one,
2by using INSERT. Such a method clearly takes O(nlog n) time. This can

be improved by inserting both all streets and all avenues in the

increasing order of Y[t], and first assembling the segments covering a

node of a segment tree as a linked list, ordered by Y[t]. Then every

insertion takes only O(logn) time; moreover, at the end of the process

each of the lists can be converted into a balanced binary search tree

in time linear in its length, so that the total work involved is

0 (nlogn).

Notice also that since every segment is identified by an integer, and

since both for streets and for avenues this labelling corresponds to an

ordering by nondecreasing value of Y, we may assume that any node of the

7

segment trees stores a collection of integers in the range [l,n]. This

enables us to use instead of the usual search tree, a special tree

structure developed by van Emde Boas [4,5] and to implement both insert

and delete in O(loglogn) time, and consequently both INSERT and DELETE

in 0 (lognloglogn) time. It is also clear that list can then be

implemented in O(loglogn+c) time, which results in an 0 (lognloglogn+k)

version of LIST.

8

3. FINDING A MANHATTAN PATH

Given a segment t € s we shall find a tree of shortest (in the

sense of the number of segments) Manhattan paths to t from all segments s

from which t is reachable. More exactly, for any such segment s we find

a segment NEXT[s] such that the sequence s = s^,s^,s^,..., where

si_|_i = NEXT[s^], determines the shortest Manhattan path from s to t.

We perform what is essentially a breadth first search in the

intersection graph of the segments, so that the tree obtained corresponds

exactly to the breadth first search spanning tree of (a connected component of)

this graph (see e.g. [8]). We start with segment t, and any segment s reached

from t is first deleted from the segment tree containing it and put on a

QUEUE; when its turn comes, it is deleted from QUEUE and explored, i.e.

all so far unreached segments it intersects are put on QUEUE. The

algorithm is summarized below.

Algorithm 1 (Finding a breadth first search spanning tree of shortest
Manhattan paths to t)

1 begin
2 for s:= 1 to n do NEXT[s]:= A ('«initialize*)
3 QUEUE:= 0, Q:= 0
4 QUEUE <= t (*the breadth first search starts at t*)
5 while QUEUE 4 0 do
6 begin s * QUEUE (*consider next unexplored segment*)
7 if s < |h | then v:= root(TV) (*s is horizontal*)
8 else v:= root(TH) (*s is vertical*)
9 LIST(s,Q) (*put segments intersecting s on Q*)
10 while Q 4 0 do
11 begin p * Q
12 DELETE(p,v)
13 QUEUE « p
14 NEXT[p]:= s
15 end
16
17 end

end

9

An example of a tree of shortest Manhattan paths constructed by

Algorithm 1 is given in Fig. 2.

Figure 2. A breadth first search tree of shortest Manhattan paths to t.

In order to evaluate the time complexity of Algorithm 1 notice that

each segment is listed by LIST and deleted by DELETE at most once. Let us

denote by the number of segments put on Q by the i-th call of LIST. The

total complexity of the algorithm is

2 2 2 O(nlog n + £(log n+k.)) = O(nlog n) .
i

The implementation using the van Emde Boas trees improves this to

0 (nlognloglogn + 2 (lognloglogn +k.)) = 0 (nlognloglogn).
i

10

Notice that if we replace NEXT[p]:= s in line 14 of Algorithm 1 by

R00T[p]:= t, and if we perform the breadth first search over the whole

collection of segments (by choosing a new, not yet considered segment t

as a starting point each time when QUEUE = 0), then we obtain a structure

capable of answering in constant time questions of the form "is there

connection between s and t?" (there is a connection iff R00T[s] = R00T[t]).
2Of course the complexity of such a modified algorithm remains 0 (nlog n) or

0 (nlognloglogn), depending on the implementation.

11

4. FINDING MAXIMUM INDEPENDENT SET OF CROSSINGS AND MAXIMUM

SET OF NON-INTERSECTING SEGMENTS

A crossing is the intersection point of a street and an avenue.

A set C of crossings is called independent if no two crossings in C lie

on the same segment s € S. The word "maximum" means, as usual, "with the

maximal possible number of elements."

Let G be the intersection graph of our collection S of segments.

Clearly, G is bipartite, every edge of G corresponds to a crossing,

any maximum independent set of crossings (MISC) corresponds to a maximum

matching in G, while any maximum set of non-intersecting segments (MSNIS)

corresponds to a maximum independent set of vertices in G. This is shown

in Fig. 3.

Figure 3. A maximum independent set of crossings, a maximum set of
non-intersecting segments; and the corresponding maximum
matching and maximum independent set in the intersection
graph.

12

Our method of finding an MISC follows closely the Hopcroft and Karp

maximum matching algorithm [7], as applied to G; however, we shall not
2explicitly construct G, as it would require ft(n) time in worst case. We

assume the reader is familiar with [7], and with the basic notions related

to matchings, such as that of an augmenting path.

The current matching constructed by the algorithm is represented by

an array MATCH[1:|h |], where MATCH[s] is the avenue currently matched to

street s; MATCH[s] = A if s is free (unmatched). All streets are

represented in a segment tree TH. Assume that every edge of G is directed

from a street to an avenue if this edge is in the current matching, and

from an avenue to a street otherwise. Then any augmenting path corresponds

to a Manhattan path a^,s

a!nd MATCH[s^] = 1 S i < k. Below we describe the steps of our algorithm,

closely corresponding to steps of the original Hopcroft and Karp algorithm.

Algorithm 2 . (Finding a maximum set of independent crossings.)

Step 1. Initialize the empty matching by putting MATCH[s] = A,

1 < s < | H | .

Step 2 . Starting with the set of currently free avenues breadth first

search our directed graph G. Let l be the length of a shortest path from

a free avenue to a free street (the algorithm halts if no such path exists).

Put into segment tree T all streets reachable from free avenues by paths

of length not exceeding i. This step can easily be implemented by a

modification of Algorithm 1. Notice that it is not necessary to store

the avenues in a segment tree, since the only avenue intersecting a

given street s we consider is MATCH[s].

1,a2,s2,...,ak ,sk , where k ^ 1, ax and s, are free, k

13

Step 3. Find a maximal set of disjoint augmenting paths using the

streets stored in T, and augment the matching along these paths. (Note 1:

A set is "maximal" with a given property if it is not properly contained

in any other set with this property; Note 2: The paths are disjoint in the

sense that no two of them use the same vertex of the intersection graph -

but segments corresponding to vertices of two different paths may of course

intersect). This is done as in [7], by a depth first search of G starting

in the set of free avenues and using only streets in T. Each time we

reach a free street, we obviously found an augmenting path. In such a

case we augment the matching along this path, and we continue the search

starting at a new free avenue. The depth first search is implemented in

the usual way, by using a STACK (instead of the QUEUE in the breadth

first search). Instead of LIST, we use a procedure which finds, for any

avenue a, some street CROSS(a) in T intersecting a; CROSS(a) = A if no

such street exists. The key to the efficiency of our search is, similarly

as in the case of Algorithm 1, the fact that every street reached by the

search is immediately deleted from T (see line 13 of the procedure

AUGMENT below), so that T always contains only so far unreached streets.

The search is summarized below by a procedure AUGMENT. FREEAVENUES is a

queue containing all free avenues, and STACK always contains an alternating

sequence of avenues and streets corresponding to an initial part of an

augmenting path which the search tries to construct.

14

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

procedure AUGMENT
(^augment current matching along maximal collection of disjoint
augmenting paths*)

begin
while FREEAVENUES ^ 0 do

begin
a « FREEAVENUES (*a is a current free avenue*)
STACK * a (*STACK assembles the segments of an augmenting path*)
(*depth first search starting at a*)
while STACK 4 0 do

begin
a:= top (STACK)
s:= CROSS(a)
if s 4 A then (*s is a street intersecting a*)
begin STACK * s

DELE TE(s,root(T))
if MATCH[s] = A then (*s is a free street*)
while STACK 4 0 do (*augment the matching*)

begin sm STACK
am STACK
MATCH[sm]:= am

end
else (*MATCH[s] 4 A, i.e. s is not free*)

begin a:= MATCH[s]
STACK « a

end
end

else (*s = A, i.e. sequence on STACK cannot be extended*)
begin a « STACK

if STACK 4 0 then s « STACK

end
end

end

end

After the completion of Step 3 we return to Step 2, and the loop

consisting of Step 2 and Step 3 is iterated until we arrive at the

situation where no augmenting path is found in Step 2; the execution of

the algorithm is then completed.

It follows from the analysis given in [7] that the main loop of the

algorithm, i.e. Steps 2 and 3 are executed 0(>\/n) times. The complexity

of Step 2, including the construction of the segment tree T, is clearly

15

O(nlog n). Since procedure CROSS can easily be implemented in O(log n)

time, and since in procedure AUGMENT every segment is reached by CROSS,

pushed onto, and poped from the STACK at most once, it follows that
2Step 3 also runs in 0 (nlog n) time. Consequently, the total complexity

3/2 2of our algorithm is 0(n log n). As before, this can be improved to
3/20 (n lognloglogn).

There is a standard method for obtaining a maximum independent

set of vertices from a maximum matching in a bipartite graph (see e.g.

[6,10]). As applied to the construction of an MSNIS from an MISC it can

be described as follows. We find the sets and S^ of streets and

avenues, respectively, reachable by alternating paths originating in

the set of free avenues. An MSNIS is then obtained as S* = S^ U (h\Hq).
2The sets S^ and can easily be obtained in 0(nlog n) time by the

usual breadth first search (in fact, they are actually found in the

last execution of Step 2 in Algorithm 2). We conclude that an MSNIS
3/2 2 3/2can be obtained in 0(n log n) (or 0(n lognloglogn)) time.

16

5. AN APPLICATION TO DECOMPOSING INTO THE MINIMUM NUMBER OF RECTANGLES

Finding a maximum set of non-intersecting segments is a crucial step

in solving the following problem (see [10]): Given a collection on n

rectangles R-,... ,R with sides parallel to the coordinate axes, find i n
the decomposition of the union F = R^ U . .. U Rn into the minimal possible

number of disjoint rectangles. We shall consider here only the case

where F does not contain holes (our algorithm works correctly in the
3general case, without however being superior over the 0 (n) method given in

[10]). In such a case the boundary of F consists of at most 8n-4 edges,

and it can be constructed in O(nlogn) time (see [9]). The main idea of

the decomposition algorithm, as described in [10], is the following.

We cut F along a (vertical or horizontal) segment s joining a concave

vertex of the contour of F with some other point on the contour, and

contained entirely within F. Then the decomposition procedure is called

recursively for the two resulting figures. Since this cutting process is

repeated until there are no concave vertices left, and since the number

of rectangles in the decomposition is equal to the number of cuts plus

one (for a connected F) it is clear that we should try to make each of

the cuts along a segment joining two concave vertices, which decreases

the total number of concave vertices by two, instead of just one.

More precisely, it is shown in [10] that the optimal decomposition is

obtained by first cutting F along a maximum set of non-intersecting segments

joining pairs of concave vertices.

17

Clearly, the collection S of segments involved in the above problem is

the collection of all vertical and horizontal segments joining pairs of

concave vertices of F and contained entirely in F. We now show how to

find the subcollection V of vertical segments (finding H is analogous).

We store the collection of horizontal edges of the contour in a segment

tree TH, and we scan the sequence of vertical edges of the contour

sorted primarily by the value of abscissa and secondarily by the bottom

ordinate. For any two consecutive edges with the same ordinate, the

segment joining the upper endpoint of the first one to the lower endpoint of

the second one is included to V provided (i) both its endpoints are concave

vertices of F, and (ii) no horizontal edge intersects it. Since
2condition (ii) can easily be tested in O(log n) time, it is clear that

2S can be found in O(nlog n) time. Then we find an MSNIS S*, as described

in the previous section, and we cut F first along the segments in

S*, and then along some other allowable lines. Leaving the details

of an efficient implementation of the cutting process to the reader,
3/2 2we conclude that the whole decomposition algorithm runs in 0(n log n)

3/2time (again, an improvement to 0(n lognloglogn) is possible).

18

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, Mass. 1974.

2. J. L. Bentley, Solutions to Klee's rectangle problems. Unpublished
notes, Carnegie-Mellon University, 1977.

3. J. L. Bentley and D. Wood, An optimal worst-case algorithm for
reporting intersections of rectangles. Carnegie-Mellon University,
1979.

4. P. van Emde Boas, Preserving order in a forest in less than
logarithmic time. Proc. 16th Annual Symp. on Foundations of Comp.
Sci., Univ. of California, Berkeley, Oct. 1975, pp. 75-84.

5. P. van Emde Boas, Preserving order in a forest in less than
logarithmic time and linear space. Information Proc. Lett. 6
(1977), pp. 80-82.

6. F. Gavril, Testing for equality between maximum matching and minimum
node covering. Information Proc. Lett. 6 (1977), pp. 199-202.

5/27. J. E. Hopcroft and R. M. Karp, An n algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput. 2 (1973), pp. 225-231.

8. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, Inc., Potomac, MD, 1978.

9. W. Lipski and F. P. Preparata, Finding the contour of a union of
iso-oriented rectangles. Coordinated Science Lab., Univ. of Illinois
at Urbana-Champaign, July 1979.

10. W. Lipski, E. Lodi, F. Luccio, C. Mugnai and L. Pagli, On two
dimensional data organization II. Tech. Rep. S-77-43, Inst, of
Computer Sci., Univ. of Pisa, Italy, December 1977. To appear
in Fundamenta Informaticae.

2

In Section 4, we present algorithms to determine a maximum set

of crossings (intersections of segments) with no two on the same segment,

as well as a maximum set of nonintersecting segments. Both algorithms run
3/2 2in time 0 (n log n).

Finally, in Section 5, the efficient determination of a maximum set of
3/2 2nonintersecting segments is applied to produce an 0 (n log n) algorithm

to solve the following problem (see [10]): Given n rectangles, R^,...,Rn

with sides parallel to the coordinate axes, with the union F = R^ U ... U R^

without holes, find a decomposition of F into the minimal possible number

of disjoint rectangles.

All the algorithms use the same basic data structure for storing and

manipulating the collection S of segments. This data structure is

essentially Bentley's segment tree (see [2,3]). We show how this basic

data structure can be refined, by using techniques developed by van
2Emde Boas [4,5], so that for all our algorithms the factor log n is

improved to lognloglogn. However, this modification considerably

complicates the data structure. Under both implementations all our

algorithms require 0 (nlogn) space.

