Threshold Reliability of Networks
with Small Failure Sets

Michael O. Ball
University of Maryland, College Park, MD

and

University of North Carolina, Chapel Hill, NC

Jane N. Hagstrom
University of Illinois, Chicago, IL

J. Scott Provan
University of North Carolina, Chapel Hill, NC

March 10, 1993

Abstract

This paper addresses two classes of reliability analysis models: a network
flow model and a project scheduling model. For the network flow model we
are given a capacitated source/sink graph in which arcs fail randomly. The
system is defined as operating whenever the max-flow value is greater than a
threshold. For the project scheduling model we are given a directed acyclic
source/sink graph in which each arc has two lengths. Each arc randomly
takes on one of two states. In the “operating” state it takes on its smaller
length and in its “failed” state it takes on it larger length. The system is
defined as operating whenever the length of the longest path is less than a
threshold. We address a special case of the threshold flow problem in which
all arcs have the same capacity and a special case of the project scheduling
model in which the difference between the lower and higher arc lengths is
constant. For these special cases we show that if the underlying systems are
1-critical, namely, all arcs are in some cutset of size two, then the threshold
flow problem can be solved in polynomial time and planar project scheduling
problem can be solved in polynomial time. Both solutions are obtained by
reducing the problems to the problem of determining the probability that
the failed arcs in a directed acyclic graph lie on a single path. We also show
how the basic approach can be used to generate bounds for systems that are

“almost critical”.

1 Introduction

This paper examines threshold reliability problems associated with two popu-
lar stochastic network models: the network flow model and a project schedul-
ing model. These problems take as input standard flow or PERT networks,
with the capacities or task times being stochastic, together with a threshold
parameter which specifies an acceptable level of system performance. The
underlying system is said to operate if the random system performance level
is within the specified acceptable level of operation. Specifically, for the flow
problem, the system operates if the value of the maximum flow is greater
than or equal to the threshold flow parameter, and for the project scheduling
model, the system operates if the project completion time is less than or
equal to the threshold completion time parameter. This paper concerns the
problem of computing the probability of system operation in threshold flow
and PERT systems. The threshold measures studied in this paper are simple
examples of performability measures. Performability measures have received
significant attention recently because of the recognition that, in many situa-
tions, for a system to be useful it must not only operate, but it must operate
with an adequate performance level.

One novel aspect of our analysis relates to the classes of problem in-
stances we have chosen to examine. The philosophy we espouse is that,
when searching for special structure that renders a problem tractable, one
should first consider classes of problems that arise in practice. Problems that
arise in practice are likely to be those that would be output by (automatic or

manual) system design procedures. The most typical reliable system design

criterion is that the system be survivable, that is, that it be able to withstand
the failure of any single component. A typical system design process would
attempt to minimize cost subject to the constraint that the system be surviv-
able. Systems output by such a process would be minimally survivable in the
sense that the deletion of any single component would result in a system that
was not survivable. In this paper we address reliability analysis problems for
systems that are minimally survivable or close to minimally survivable. It
turns out that the structure these classes of problems can be employed to
give efficient algorithms for threshold reliability computations.

The paper is organized as follows. The remainder of the introduction
gives basic definitions and, in the final subsection, states the main results.
Sections 2 and 3 give structural and complexity results for the flow and PERT
problems respectively. In particular, they relate special classes of the thresh-
old flow and planar PERT reliability problems to stochastic path problems on
acyclic graphs. These involve computing the probability that the failed arcs
are contained in a collection of (s,¢)-paths (arc-disjoint paths, in the case of
flows) of cardinality equal to the differential between the threshold and opti-
mal system performance. In Section 4 we present Algorithm 1-PATH, which
computes this probability for the case where the differential is one. This
algorithm solves the threshold flow problem and planar PERT problem for
systems that are minimally survivable. The final section uses 1-PATH to pro-
vide bounds on threshold reliability for systems that are “almost” minimally

survivable.

1.1 Threshold Flow Systems

Capacitated flow networks model transportation systems, communication
networks, and power grids. In these contexts, a common reliability crite-
rion is the ability to carry sufficient flow when failures may cause certain
links in the network to be unavailable or only partially available. In this
paper, we consider a two-terminal reliability problem, in which the criterion
concerns the ability to carry sufficient flow between a specific origin node and
a specific destination node.

The Model. A flow graph is defined by G = (N, A, ¢, £, s,t) where N is
a set of nodes, A is a set of directed or undirected arcs, ¢ and £ are non-
negative integer capacity vectors defined on the arcs with ¢ > £; and s and ¢
are two specified terminal nodes. The inputs to the threshold flow reliability
analysis problem consist of a flow graph G, a probability vector p defined
on the arcs and a flow threshold, f. Each arc e operates and has capacity
c. with probability p. and fails and has capacity ¢, with probability 1 — p..
The state of a given arc is independent of the state of any other arc. The
threshold flow reliability analysis problem is to compute

RF(G,p, f) = Pr{G admits a flow of at least f}.

Let us now examine some special cases of this problem. A very natural
model with many applications arises when we assume that £, = 0 for all e.
This assumption implies that a failure renders an arc completely unusable.
The results of this paper apply to this model with the further restriction that
¢ = 1 for all e. We note that this second restriction is equivalent to the not

unrealistic case of ¢, = ¢ for all e, since we could set ¢. = 1 for all e and

divide f by ¢ to obtain an equivalent problem with all capacities equal to one.
The case of ¢, =1 and ¢, = 0 is a special case of a more general unit failure
decrement model in which ¢, — ¢, = 1 for all e. Most of our results apply
in this slightly more general setting. One of our motivations for considering
it is the parallels that arise with the restricted project scheduling model we
consider. Since we will assume the unit failure decrement model throughout
the paper, we will specify a flow graph by G = (N, A,c,s,t) where it is

understood that ¢, = ¢, — 1 for all e.

1.2 Project Scheduling with a Completion Time Thresh-
old

Project networks are often used to represent the precedence constraints be-
tween tasks of a project. We will consider the activity-on-arc network, in
which each task is represented by an arc and required precedence of one task
before another is represented by directing the earlier task’s arc into a node
and directing the later task’s arc out of the same node. Using the activity-on-
arc representation sometimes requires the addition of so-called dummy arcs
in order to correctly represent all precedence requirements. An alternative to
this representation is the activity-on-node graph. The latter graph has the
advantage that no dummy activities need to be created. We will continue
with the activity-on-arc representation because it maintains easier parallels
with the flow graphs of the previous section. Throughout our analysis, we
will assume that the activity-on-arc representation requires no dummy tasks.

At the end of Section 3, we explain how dummy tasks may be accounted for

in the analysis.

If the project has a deadline d for completion, and task durations are
random variables, we can consider the project schedule to work if the project
can be completed in time d; otherwise we will say it has failed. The reliability
of the project schedule will be the probability that the deadline can be met.
The Model. An activity precedence graph is defined by G = (N, A, a, b, s,t)
where N is a set of nodes, A is a set of directed arcs, containing no directed
cycles; a and b are non-negative integer length vectors defined on the arcs
with @ < b; and s and ¢ are two specified terminal nodes. The graph should
be such that s is the only node with indegree 0 and ¢ is the only node
with outdegree 0. The inputs to the project scheduling reliability analysis
problem are an activity precedence graph, G, a probability vector, p, defined
on the arcs and a project duration threshold d. The arc e “operates” and
has duration a. with probability p., and “fails” and has duration b, with
probability 1 — p.. The state of any given arc is independent of the state of
any other arc. The network is considered to be working if the longest path
from s to ¢ has length no more than d; otherwise the network is failed. The
threshold project scheduling reliability analysis problem is to compute

RP(G,p,d) = Pr{the length of the longest path from s to ¢ is no more
than d}.

In our analysis we restrict our attention to the unit failure increment
model in which b, — a, = 1 for all e. We note that this is equivalent to the
case of b, — a, = d for all e, since we could set b, = 1 + a, for all e and
set d = d' + [(d — d')/d] where d' is the project completion time when all

durations are equal to a. ([r] = the smallest integer greater than or equal to

5

r). Note that the resultant problem is equivalent to the original problem and
has b, — a. =1 for all e. In a manner similar to the flow model, throughout
the paper we will specify an activity precedence graph by G = (N, A4, a, s,t)

where it is assumed that b, = a, + 1 for all e.

1.3 Coherent Binary Systems, k-Survivable Systems

and k-Critical Systems

A stochastic binary system (SBS) represents a system that fails randomly
as a function of the random failure of its components. Each component, e,
in the system component set, T', operates with probability p. and fails with

probability 1 — p.. The structure of the system is represented by a function
#(S) defined for each S C T by

1 if when S operates and T — S fails, the system operates
0 if when S operates and T — S fails, the system fails.

An SBS is coherent if ¢(T) =1, ¢(0) = 0 and ¢(S") > ¢(S) for any S’ D S.
The third property implies that the failure of any component can only have

a detrimental effect on the operation of the system. The reliability analysis

problem is to compute:
Pr{ ¢(S) = 1 where S is the set of operative components}

given some representation of ¢(). For any stochastic coherent binary system
(SCBS), define a pathset as a set of components whose operation implies
system operation, and a minpath as a minimal pathset; similarly, define a

cutset to be a set of components whose failure implies system failure, and a

6

mincut to be a minimal cutset. An SCBS is k-survivable if it continues to
operate after the failure of any set of elements of size k or smaller, i.e. if there
are no cutsets of size k or less; this definition applies for any k greater than
or equal to 0. An SCBS k-critical if it is k-survivable and if each element
1s in some mincut of size k+1. 1-survivable and 1-critical systems are also
referred to simply as survivable and critical systems, respectively.

In this paper we concentrate our efforts on the solution of reliability anal-
ysis problems on k-critical systems or systems that are almost k-critical. We
treat most extensively critical or near-critical systems. It is our contention
that when one considers design philosophies and design criteria that it be-
comes clear that critical or near-critical systems are found in the majority of

cases encountered in practice.

1.4 Summary of Results

The acyclic graph reliability analysis problems that result from the threshold
flow and project scheduling problems all involve definitions of system oper-
ation where failed arcs must be restricted to certain path subsets. Given a
directed acyclic graph, we define a k-path as a subset of arcs that can be
formed by taking the union of k£ paths and a k-dpath as a set of arcs that
can be formed by taking the union of k£ disjoint paths. A k-path subset and
k-dpath subset are sets of arcs that are the subset of some k-path or k£-dpath,
respectively.

Given an acyclic graph G = (N, A), a non-negative integer, k£ and a

probability vector p defined on the arcs of G so that each arc e operates with

probability p. and fails with probability 1 — p,, we define

U(G, p, k) = Pr{the set of failed arcs form a k—path subset}
¥4(G, p, k) = Pr{the set of failed arcs form a k—dpath subset}

Note that k-paths and k-dpaths define the same structures for £ = 1 and so
we define

¥(G,p) = ¥(G,p,1) = ¥Y(G,p,1)

Section 2 shows that computing threshold flow reliability on a k—critical
directed flow graph is equivalent to computing ¥4(G, p, k) on the graph when
ce = 1 for all e. When k& = 1, this result also holds for unit failure decrement
case. Section 3 shows that the project scheduling reliability analysis problem
can be solved on a k-critical planar activity precedence graph by computing
U(G,p, k) on the dual graph. In Section 4 we present Algorithm 1-PATH,
which computes ¥(G, p) in O(n?) time. Thus, it forms the basis for the two

main results of the paper,

Theorem 1.1 The threshold flow reliability analysis problem can be solved

in O(n*) time for directed 1-critical systems with unit failure decrements.

Theorem 1.2 The threshold project scheduling reliability analysis problem
can be solved in O(n?) time for planar I-critical systems with unit failure

mmcrements.

Section 4 also presents other results for critical systems. In particular,
it shows how 1-PATH can be used to compute threshold flow reliability for

undirected 1-critical graphs.

Section 5 embeds 1-PATH in a procedure for computing bounds on “almost-
critical” threshold flow systems.

Both the threshold flow reliability analysis problem and the project schedul-
ing reliability analysis problem are NP-hard, with the project scheduling
problem being NP-hard even for 1-critical systems. Basic complexity results
are given in Sections 2 and 3. In a sequel to this paper we will present a
more detailed complexity analysis as well as solvable cases for higher values

of k.

2 Analysis of Threshold Flow Systems

In this section we derive some basic properties of threshold flow systems.
Let G = (N, A, ¢, s,t) be a flow graph, with the capacities ¢ and unit failure
decrements. Denote by f* the max flow value for G, and let f be the given
threshold flow value.

We start by deriving some basic complexity results. Note that when
ce = 1 and f = 1 we have that RF(G,p, f) = Pr{there exists an operating
path from s to t}, the 2-terminal reliability value. Further, by adding a
single arc ¢’ = (¢,#) from ¢ to new node t' and setting ¢ = 1 (see Figure
1), we can transform a 2-terminal reliability analysis problem defined on an
arbitrary graph, G, into a threshold flow reliability analysis problem defined
on a graph G', with f = f* so that RF(G',p, f*) = p+«RF(G,p,1). Thus,

we have,

Figure 1: Transformation with Max Flow = 1

Proposition 2.1 The threshold flow reliability analysis problem is NP-hard
even when all of the following hold:

1. cc=1 (and I, =0) for all ¢,

2. G is directed, planar, acyclic and has node degree at most 3 or G s

undirected, planar and has node degree at most 3,
3. f=f"orf=1.

Proof: The result follows from the preceding discussion and the fact that
the 2-terminal reliability analysis problem is NP-hard when restricted to the
class of graphs given in (2.) [8]. K

We remark that a more detailed analysis which would use techniques
similar to those given in [5] could be used to show that problems equivalent
to those mentioned in the proposition are in the class #NP-complete. #P-

complete is an equivalence class of counting problems that contains problems

10

such as counting Hamiltonian circuits, 3-matchings, or most other solutions
to NP-complete problems (see [11]).
We next investigate properties of the coherent binary system underlying

the threshold flow problem. An (s,t)-cut of G is a subset of arcs of the form
C={e=(u,v)€Ajuec X andve X}.

where X and X are subsets of nodes with s € X andt € X = N\ X. For
directed graphs, the arc orientation is important so that the cut contains
only those arcs that are directed from X to X. The capacity of C, cap(C), is
the sum of the capacities of the arcs of C'. Cutsets of threshold flow systems,
which we call f-flow-cuts, are simply subsets of arcs for which decreasing
capacities to their lower value — i.e. decreasing the capacity in these arcs by
1 — leaves the value of the max (s, t)-flow strictly less than f. The following

proposition relates f-flow-cuts and (s, t)-cuts.

Lemma 2.2 Let G be a flow graph with unit failure decrements, f* the maxi-
mum flow value for G, and v* the minimum number of arcs in an (s,t)-cut for

G. Then for any subset D of arcs and any threshold flow value f > f* —~*:

(2) D is an arc-minimal f-flow-cut if and only if D is contained in every

cut C with cap(C) = f+|CND|—1 and there is at least one such cut.

(21) D is a minimum cardinality f-flow-cut if and only iof |D| = f*—f+1
and D is contained in some (s,t)-cut C* with cap(C*) = f*.

Proof: (2): Denote by ¢p the capacity vector obtained by decreasing each

of the capacities of arcs in D by one unit, and for any (s,¢)-cut C' denote

11

by capp(C) the capacity of C' with respect to cp. Note that capp(C) =
cap(C) —|DNC|. Now D is an f-flow-cut if and only if the max flow using
the capacity vector ¢p has value at most f — 1, and from the Max-flow
Min-cut Theorem this occurs if and only if there is an (s,t)-cut C° with
capp(C®) = cap(C®) — |C° N D| < f — 1. Further, D is arc-minimal if and
only if in addition to the above each proper subset D’ of D has the property
that cap(C) — |C N D'| > f for every (s,t)-cut C. Part (z) follows from the
above two observations.

(¢2): First note that every f-flow-cut must have cardinality at least f*— f+1,
and this cardinality can be achieved by taking any min cut C*— of capacity
f* — and choosing any f*— f +1 < v* < |C*| arcs to be the f-flow-cut.
Part (z2) now follows directly from part (z). g

In Figure 2, let all capacities be 1 and the let threshold flow value be 2.
Then f* = 4, and {(1,3),(2,3),(4,5),(4,8)} is a minimal 2-flow-cut of size 4
while {(3,5),(4,5),(4,6)} is a minimum cardinality 2-flow-cut of size 3.

The algorithm and bounds we give in this paper concern r-critical or
near r-critical systems. We say that a flow graph G is threshold flow r/f-
survivable (threshold flow r/f-critical) if it is r-survivable (r-critical) with
respect to RF(G,p, f). The flow system in Figure 2 is thus r/f-survivable
for 4 — f > r, and r/f-critical for 4 — f = r < 3. In general, we get from
Lemma 2.2 that as long as f > f*—~* a threshold system is r/ f-survivable if
and only if f* — f > r. It turns out that for the threshold flow problem r/ f-
critical systems have a particularly simple structure, which depends almost
exclusively on the flow graph itself rather than the values of f or r. We call

a directed flow graph G a k-flow graph if the following conditions hold:

12

Figure 2: A 4-Flow Graph

1. G is acyclic;
2. s has total capacity k on its outgoing arcs and has no incoming arcs;
3. t has total capacity k on its incoming arcs and has no outgoing arcs;

4. Every node other than s and ¢ has the same total capacity on its sets

of outgoing and incoming arcs.

The flow graph described in Figure 2 is in fact a directed 4-flow graph. We
say that an undirected flow graph is a k-flow graph if the arcs can be directed
in such a way that the resulting directed graph is a directed k-flow graph.
Note that one can trivially test whether a directed flow graph is a k-flow
graph. To determine whether an undirected graph is a k-flow graph, first
compute a max (s,t)-flow. If the flow has value &, is acyclic and saturates
all the undirected arcs then the undirected graph is a k-flow graph.

It is clear that a directed or undirected flow graph has a unique acyclic

max flow if and only if it is a k-flow graph. What is more, there is a close

13

connection between k-flow graphs and criticality of the associated flow sys-

tem.

Proposition 2.3 Let G = (N, A, c,s,t) be a flow graph with unit failure

decrements and f*, ¥* as in Lemma 2.2. Then the following are equivalent
(¢) G is threshold flow v/ f-critical for some r, f with f* — f =r <77,
(i7) G s threshold flow v/ f-critical for every v, f with f*— f =r <7,
(173) G is an f*-flow graph.

Proof: (1) = (i11): Since G is r-survivable with respect to threshold f and
r < 7%, then there must be a flow of at least f +r in G. Now in order for G
to be r-critical with respect to f, it must be that every arc e of G must be in
an f-flow-cut of (minimum) cardinality r + 1, which by Lemma 2.2 implies
that e must be in an (s,t)-cut of capacity f +r = f*. But since all arcs are
now in some minimum capacity cut, then the maximum (s, ¢)-flow must be
unique and saturate all of the arcs of the graph. This immediately implies
that G satisfies the conditions of being an f*-flow graph.

(11) = (i7): Choose r and f satisfying f* — f = r < 4*. Since G is an
(f + r)-flow graph, then G has a unique flow of value f + r that saturates
every arc. This means (a) that G is r-survivable, and (b) that every arc of
G is in a cut of capacity f + r. Lemma 2.2 implies that every arc of G is in
an f-flow-cut of cardinality r, and (:7) follows.

(12) = (2): This is immediate.

14

What Proposition 2.3 implies is that the structure of an r-critical thresh-
old flow system is essentially independent of either r or the threshold flow
value f, depending only on the flow graph itself. This means that we can
henceforth refer to critical threshold flow systems by simply giving a k-flow
graph, with the precise degree of criticality specified when a particular r or
f 1s given.

The property of criticality in the threshold flow reliability analysis prob-
lem immediately gives the reliability when f = f*, since in a critical (in this
case 0-critical) threshold flow system all of the arcs must operate in order
that the system operate. Thus

RF(G,p, f*) =[] pe-
e€A
We prove in a subsequent paper that the problem of computing RF(G, p, f*—
2) in critical systems is NP-hard. This paper concentrates specifically on the
computation of RF(G,p, f* —1).

In the remainder of this section we will restrict our attention to directed
flow graphs. In Subsection 4.2, we will show that the results for 1-critical
systems can be extended to undirected flow graphs.

For the next result we need to make the further assumption that ¢, =
1 for all arcs. To begin with, this means that in the definition of k-flow
subgraph we can replace “capacity” by “cardinality”; that is, k-flow graphs
are characterized entirely by the underlying graph structure rather than by
particular capacity values. Second, since f* = ~*, then the assumption
f* — f < 7" can simply be replaced by f > 0 in all of the results. The

following lemma gives properties that are very useful in the development of

15

analysis algorithms.

Lemma 2.4 Let G be a directed k-flow graph with unit capacities and unit

failure decrements. Then

(¢) For any 0-1 (s,t)-flow in G of value f, the set of flow-bearing arcs
induces an f-flow subgraph of G. Thus the pathsets for the f-threshold
flow system on G are precisely those collections of arcs containing an

f-flow subgraph.

(¢22) For any 0-1 (s,t)-flow in G of value f, the set of non-flow-bearing
arcs induces a (k — f)-flow subgraph of G. Thus the non-cutsets for
the f-threshold flow system on G are precisely those collections of arcs

contained in a (k — f)-flow subgraph.

Proof: (1): The first statement follows from the definition of f-flow sub-
graph and the fact that flows are all 0-1, and the second follows since flows
can always be assumed to be 0-1 and the set of flow-bearing arcs must be
contained in the set of operating arcs.
(22) The first statement follows since both the flows and the capacities are
0-1, and the second follows since flows can always be assumed to be 0-1 and
the set of non-flow-bearing arcs must contain the set of failed arcs. J
Lemma 2.4 leads to a simple reliability formula. Let G = (N, 4,¢,s,t)
be a k-flow graph with unit capacities and unit failure decrements. For any

set S of failed arcs and S = A\ S, we have

RF(G,p,f) = Pr{(N,S) contains an f-flow subgraph} (1)
= Pr{(N,S) is contained in a (k — f)-flow subgraph} (2)

16

= Pr{Sis a (k — f)-dpath subset} (3)
If we define AF, = {S C A: S is a r-dpath subset}, then we have,

Proposition 2.5 For any directed k-flow graph G with unit capacities and
unit failure decrements,
RF(G,p,f)=0Gpk~f)= > I[A-p)[lP. (4
SEAFy_s e€S e€S
Of course, Equation 4 does not lead directly to an efficient algorithm to
compute RF(G,p, f), since |AF;_;| can grow exponentially in the size of &
even when |k — f| = 1. Section 4 shows one of the situations where Equation
4 can be used to compute RF(G,p, f) efficiently.
We end this section by noting that one case of Proposition 2.5 can be

generalized to the case of general capacities.

Proposition 2.6 Let G = (N, A, c,s,t) be a k-flow graph with general inte-

ger capacities ¢ and unit failure decrements. Then
RF(G,p,k—1) =¥(G,p) (5)

Proof: Let S be the set of failed arcs, and let ¢s be the capacities obtained
by decreasing the capacity of each of the arcs in S by one unit. Then S is a
non-(k —1)-flow cut for G if and only if there exists a flow £ = {{; e € A} of
value (k — 1) with respect to cg, which we can further assume to be integer.
Since the network GE = (N, A€, s,t) is an (k — 1)-flow-graph and G itself
is a k-flow-graph, then it follows that the flow graph G,;,- = (N,A,c—§,s,t)
must be a 1-flow-graph for which S is contained in the set of nonzero capacity

arcs in G ¢ The proposition follows. §

17

We note that Proposition 2.6 can be extended to threshold values less
than k—1, although the characterization is now dependent upon the capacity
values as well as the structure of the graph, and is not particularly instructive

with regard to this paper.

3 Analysis of Project Scheduling Systems

We next analyze the project scheduling problem. Let G = (N, A, a,s,t) be
an activity precedence graph, with task completion times @ and unit failure
increments for all arcs. Let d* be the minimum project duration, and d > d*
the given threshold project completion target. Hagstrom [5] has shown that
the problem of computing RP(G, p,d) is NP-hard. In this section we show
that the more specific problem of computing RP(G, p,d*+1) is also NP-hard,
but that the problem can be reduced to a path problem in the special case
where G is planar.

To characterize the coherent binary system underlying the threshold project
scheduling problem, we note first the well-known fact that a given state of arc
operation allows project completion by time d if and only if the longest path
from s to t — with arc lengths set according to the arc states — has length
less than or equal to d. It follows that a cutset for this system is any set
of tasks D whose failure causes some path I' of tasks to have length greater
than d. Let us call such a set a d-deadline-cut. The following proposition
characterizes minimal and minimum cardinality d-deadline cuts. We use the
notation throughout that for any (s,t¢)-path T', L(T") will be the length of T

using the normal duration times a.

18

Proposition 3.1 Let G be an activity precedence graph with unit failure
increments, d* the minimum project duration, and [* the minimum number
of arcs in an (s,t)-path. Then for any subset D of arcs and any threshold
project completion target d, d* < d < d* + [*:

(2) D is a minimal d-deadline-cut if and only if D is contained in every

path T with L(I') = d — |D NT'| + 1 and there is at least one such path.

(22) D is a minimum cardinality d-deadline-cut if and only if [D| =
d—d*+1 and D is contained in an (s,t)-path I'* for which L(I'*) = d*.

Proof: (1): For any path I, let Lp(I") denote the length of I' after increasing
any arcs in D by one unit. Note that Lp(T') = L(T') + |DNT|. Now D
is a minimal d-deadline-cut if and only if there exists an (s,#)-path I'® with
Lp(T%) = L(I%)+|DNT° > d+1. Further, D is arc-minimal if and only if in
addition each proper subset D’ of D has the property that L(I')+|DNT| < d
for every (s,t)-path I'. Part (¢) follows from the above two observations.
(7): Simply note that a d-deadline-cut must have cardinality at least d —
d*+1, and that this can be achieved by taking any (s,t)-path I'* — of length
d* — and choosing any d — d* + 1 < [* < || arcs to be the d-deadline cut.
Part (iz) now follows from part (z). §

In Figure 3, each arc e is labeled with its normal task duration a.. Let d =
8 be the given threshold project completion target. Then {(s,b), (b,d), (d, f),
(f,t)} is a minimal 8-deadline-cut of size 4, while {(s,a),(c,e),(e,t)} is a
minimum cardinality 8-deadline-cut of size 3.

We will say that an activity precedence graph is deadline r/d-survivable
(r/d-critical) if it is r-survivable (r-critical) with respect to RP(G,p,d).

19

2

\

0
bor
3 |]
Yosll

()
e
L

Figure 3: Activity Precedence Graph

The system given in Figure 3, for example, is r/d survivable for d > 10 or
0 £ r < d— 6, but r/d-critical for no pair r and d. The graph in Figure 4,
however, is r/(r + 19)-critical for r = 0,1,2,3 (and not r = 4), and r/d-
survivable for d > 24 or r < d — 19. In general, we get from Proposition 3.1
that as long as d < d* + [* a threshold project scheduling system is r/d-
survivable if and only if r < d — d*. As in the threshold flow systems, it
turns out that r/d-critical activity precedence graphs have a similar simple
structure which depends on the activity precedence graph itself rather than

the particular value of r or d.

Proposition 3.2 Let G = (N, A, a, s,t) be an activity precedence graph with

unit failure decrements . Then the following are equivalent
(2) G is deadline r/d-critical for some r, d withd —d* =r < I*;

(17) G is deadline r/d-critical for every r, d withd —d* =r <I*;

20

(¢17) every arc of G is in an (s,t)-path of length d*;
(tv) every (s,t)-path in G has the same length d*.

Proof: (i) = (u12): Since G is deadline r/d-survivable, and every (s,t)-path
must have at least [* > r arcs then it must be that every (s, t)-path in G has
length at most d — r. Now in order for G to be r-critical with respect to d,
it must be that every arc e of G must be in a d-deadline-cut of cardinality
r + 1, which by Lemma 3.1 implies that every arc must be in an (s,t)-path
of length d — r = d*.
(172) = (1v): Suppose there exists an (s,t)-path I' having L(I') < d*. Label
each node v in G by the length d, of the longest path from s to v. Since
L(T') < d*, there must be a first arc e = (u,v) on I' with a. < d, — d,. By
the labeling, the longest path from s to u is of length d, and the longest path
from v to ¢ is of length d* — d,. But this means that the longest (s,t)-path
containing e must have length d, + a. + (d* — d,) < d*, contradicting (z21).
(iv) = (21): Choose r and d satisfying d — d* = r < [*. Since every (s,1)-
path of G has the same length d*, then G is r-survivable, and Proposition 3.1
insures that every arc is in a d-deadline-cut.
(12) = (2): This is immediate. I

As in Proposition 2.3, Proposition 3.2 allows us to refer to activity prece-
dence graphs as simply being deadline-critical, without having to specify r
or f. Figure 4 illustrates a deadline-critical activity precedence graph. We
remark that the {* given in Proposition 3.2 is not the best possible, since
G is 3/22-critical. Proposition 3.2, together with Proposition 3.1, gives the

following useful corollary. The proof is immediate.

21

Figure 4: A Deadline-critical Activity Precedence Graph

Corollary 3.3 Let G be a deadline-critical graph with d* and I* as in Propo-
sition 3.1. Then for any threshold project completion target d, d* < d <
a+ 1,
all minimal d-deadline-cuts have the same cardinality d — d* + 1.

We next characterize the complements of the pathsets for project scheduling
systems, 1.e. the “non-cutsets”. They are most easily described in terms of
special kinds of cuts. Let C be an (s,t)-cut and (X, X) the associated node
partition. Then, C is uniformly directed if there are no arcs in A directed
from X to X. In Figure 4, the (s,t)-cut with node partition ({s,a,b,¢,d},
{e, f,9,h,t}) is uniformly directed, while the (s,t)-cut with node partition
({s,a,b,d, f}, {c,e,g,h,t}) is not.

Proposition 3.4 Let G be a deadline-critical activity precedence graph with
d* and I* as in Proposition 3.2, and let d, d* < d < d* + [*, be the threshold

project completion target. Then for any subset D of arcs, D is a non-cutset

22

if and only if there exists a set of d — d* uniformly directed (s,t)-cuts whose

union contains D.

Proof: From Corollary 3.3 and Proposition 3.1, we get that D is a d-deadline-
cut if and only if G has an (s,t)-path containing d — d* 4+ 1 arcs of D. Since
no (s,t)-path can cross a uniformly directed (s, ¢)-cut in more than one arc,
then if D is a d-deadline-cut it requires at least d — d* + 1 uniformly directed
cuts for their union to contain D.

Conversely, suppose that D is a non-cutset, so that no (s, t)-path contains
more than d — d* arcs of D. Define the length vector a’ having a, = 1 for
all arcs in D and a/ = 0 otherwise. Label each node with the length of the
longest path from s to that node, using these lengths. Since D is a non-
cutset, then no node of G can have label more than d — d*. Now, associate
with each label j the set of arcs directed from nodes with label less than j
into nodes labeled j or greater. This is a uniformly directed cut since every
arc directed out of a node with label ; must be directed into a node with a
label of at least 7. Furthermore, for each j, there exists a path containing
7 arcs of D joining s to a node labeled j. Finally, any arc of D directed
into a node labeled j must belong to the j’th uniformly directed cut, and so
the collection of uniformly directed cuts so defined contains every arc of D.
Since there are at most d — d* of these, the proposition follows. J

As in the threshold flow problem, the property of criticality in the thresh-
old project scheduling reliability analysis problem immediately gives the re-

liability when d = d*, since again,

RP(G,p,d") = [] p..

e€A

23

The next result shows that for nonplanar graphs, this is in some sense the

best possible efficient case.

Proposition 3.5 The computation of RP(G, p,d) is NP-hard, even when G
is deadline-critical and d = d* +1 = 1.

Proof: Provan and Ball [9] have shown that the following problem is NP-
hard:

ANTICHAIN

Given: acyclic graph P = (V, E)

Find: the number of antichains (sets of noncomparable arcs) of P

Define G to be the activity precedence graph defined on P by setting a;; = 0
for every arc of P. Clearly G is deadline-critical, with d~ = 0. We prove that
the number of antichains in P is equal to 2" RP(G, %, 1) where % is the vector
of 1/2’s and n is the number of arcs in P. It follows that ANTICHAIN can
be reduced to a threshold scheduling reliability analysis problem with the
restrictions given above.

We first make the important observation that 2" RP(G, 3,1) is the num-
ber of pathsets of the threshold system G. From Proposition 3.4 we know
that a set of arcs is a pathset for RP(G, —;—, 1) if and only if its complement
is contained in d = 1 uniformly directed cut. Computing RP(G, %,1) is
therefore equivalent to counting the number of arcsets that are subsets of
uniformly directed (s, t)-cuts of G. But since the collection of subsets of uni-

formly directed cuts of G are precisely the antichains of P, the propositions

follows. 1

24

As in the case of threshold flows a problem equivalent to the one treated
in the proposition can be shown to be #P-complete.
The final result of this section relates RP(G, p, d) to the function ¥(G, p)

given in Section 1.4, in the case where the activity precedence graph is planar.

Theorem 3.6 Let G be a planar deadline-critical activity-precedence graph
with unit failure increments, let d* and [* be as in Proposition 3.2 and let
G* be the (s,t)-dual graph to G. Then, for any project completion target d,
d*<d<d+ 10

RP(G,p,d) = ¥(G",p,d—d%) (6)

Proof: If we construct the planar (s,t)-dual graph G* to G ([6] pp.33-34)
with § and ¢ being the corresponding dual source and sink, then the (3,%)-
paths in G* correspond precisely to the uniformly directed (s,t)-cuts of G,
and so from Proposition 3.4 we get that the non-cutsets in G correspond to
arcs in G which are contained in the union of d —d* (3,%)-paths in G*. The
theorem follows. j

Two things should be noted here. First, the paths in Theorem 3.6, unlike
those for Theorem 2.5, do not have to be disjoint. Thus the k-critical cases of
these two problems when & > 1 will have quite different solution techniques,
while the 1-critical cases covered in this paper can be solved by the same
algorithm. Second, note that Theorem 3.6 holds for general duration times
a, while Theorem 2.5 requires unit capacities. Theorem 2.5, on the other
hand, does not require planarity of G.

We end the section by addressing the inclusion of dummy activities into

the project scheduling problem. If we continue with the activity-on-arc rep-

25

resentation, precedence relations may require the inclusion of dummy arcs,
which are then assigned a deterministic task length of 0. The number of
dummy arcs necessary is no more than the number of precedence pairings
originally specified for the project. In our discussion so far, we assumed
that all tasks could potentially fail. The discussion can be extended to cover
the possibility that there are dummy tasks in the project if we restrict our
specification of a deadline-cut D by requiring in addition that D contain no
dummy arcs. Equation 6 continues to hold by simply putting p, = 1 for all

dummy arcs e.

4 Results for 1-Critical Systems

4.1 Algorithm for Analyzing 1-Critical Systems

In this section we present the algorithm 1-PATH, which computes the prob-
ability ¥(G, p) that the failed arcs in an acyclic graph G = (N, A) form
a l-path subset. Sections 2 and 3 show that such an algorithm will com-
pute both RF(G,p, k—1) for k-flow graphs with unit failure decrements and
RP(G,p,d* +1) for planar deadline-critical activity precedence graphs with
unit failure increments. The algorithm given here is based on the fact that
the vertices and arcs of any acyclic graph G form a partial order where, for
elements a,b € E'U N, we say that a precedes b (a < b) whenever there is a
directed path on which b follows a. It follows that the operating states for
U (G, p) are exactly those states for which the failed arcs form a chain in this

partial order, which means that any pair of failed arcs is comparable. Thus

26

the problem is reduced to that of computing the probability that the failed
arcs of G form a chain.

The algorithm assumes that the acyclic graph G input is a source-sink
acyclic graph G = (N, A,s,t) with s the unique initial node of G — i.e.
node having in-degree 0 — and ¢ the unique terminal node of G — i.e. node
having out-degree 0. We note that the flow and dual activity precedence
graphs given in Sections 2 and 3 have this property. On the other hand, if
we wish to compute W(G, p) on a graph that does not have this property, then
G can be modified by adding a super-source s and super-sink ¢, connecting s
to each original initial node with a perfectly reliable arc and connecting each
original terminal node to ¢ with a perfectly reliable arc. The resulting source-
sink graph G = (N, A, s,t) now has s and ¢ the unique initial and terminal
nodes, respectively, and there is a 1-1 correspondence between chains in the
two graphs with corresponding chains having equal weights. Further, the
number of added edges is at most 2x(the number of nodes in the original
graph).

We next define, for any node v of G, the auxiliary graph G¥ = (NV, A, s,v)
to be the subgraph of arcs and vertices which precede v in the partial or-
der. From our assumption, we have immediately that G = G?, and hence
U(G, p) = ¥(G', p). Now for auxiliary graph G*, define U°(G",p) to be the
probability that the set of failed arcs in G forms a 1-path subset whose highest
arc points into v. Observe that for each state contributing to U(G, p), there
is a unique highest arc in the chain of failed arcs, and hence a unique highest
node v into which this arc points. It follows that the states contributing to

U(G,p) can be partitioned into events according to the highest node into

27

which a failed arc points. Specifically, we have recursive equation

the set of failed arcs in G* forms a 1-path
UG p) = Z Pr < subset whose highest arc points into u and

u€N"?
all arcs of G” not preceding u operate

= > w@Ghp) JI 0 pe (7)
u<v c€E
exXv, efu

On the other hand, for each state contributing to W°(G"?, p), there is a unique
arc ¢ = (u,v) in the chain of failed arcs which points into v, and so these
states can be partitioned into events according to which arc is the final arc

of the chain. Specifically, we have second recursive equation

the set of failed arcs in G¥ below u 1
WG, p) = Z Pr forms a 1-path subset and
uEN?:(up)€E arc (u,v) fails and

all other arcs of G¥ not preceding u operate |

>, ¥GEp) (1-puw) II P (8)
(uw)€E (u,v) #Fe€E
efv,edu

il

Finally, we have the trivial initial equation
v(G,p) = L (9)

Now ¥(G?, p) can be computed by solving equations (8) followed by (7),

in order of nondecreasing v with respect to <. This requires evaluating n — 1

28

formulae of each type, each formula of which has O(n) terms, where n = |N]|.

Each term, in turn, involves computing products of the form

a(u7v) = H Pe
e€E
efv,edu
for v = v € N”. To obtain O(n?) complexity, we need to show that these
products can be computed in constant time after a preprocessing step. We
first define, for any v € NV,
Bv) = I pe.
exv

It follows that for any pair of vertices u < v,

Blv) (10)

The term B(v) can be easily computed by setting
)= II p (11)
e=(u,v)€A

and then
B(v) = [T 7(w). (12)

The equations for computing 3(v) and v(v) involve at most n arithmetic
operations, and moreover, after computing the n values for () and (), we
have that a(u,v) can be obtained using one arithmetic operation, as required.
These equations can in fact be computed in the process of evaluating ¥(G, p).

We thus obtain the algorithm 1-PATH, which computes the probability that

29

INPUT: Source-sink acyclic graph G = (N, A, s,t), probability vector
p

OUTPUT: ¥(G,p)
ALGORITHM:
for v € N in nondecreasing order (with respect to <) do

Step 1: Compute v(v) using (11)
Step 2: Compute B(v) using (12)
Step 3: ifv # s then compute ¥°(G?, p) using (8), where again the

appropriate value of a(u,v) is found using (10);

Step 4: Compute (G, p) using (7) or (9), where the appropriate

value of a(u,v) is found using (10);

end do

output U(G*, p).

Figure 5: 1-PATH Algorithm

30

all failed arcs in an acyclic graph, GG lie on a single path. The algorithm is
given Figure 5.

We now summarize the analysis given in this section with,
Theorem 4.1 Algorithm 1-PATH correctly computes U(G, p) in O(n?) steps.

Proof: The correctness of the algorithm follows from the formula derivations
given earlier in this section. The construction of the nondecreasing order on
N performed at the beginning of 1-PATH can be accomplished in O(n logn)
time through classic sorting algorithms. The index sets for each of the formu-
lae can be found in O(n) time. It follows that the number of computational
steps involved in computing any of the formulae (1)-(6) is O(n) and the result
follows.

We can now apply this analysis to demonstrate the solvability of the
threshold flow and project management problems introduced in the first sec-
tion.

Proof and Theorems 1.1 and 1.2: From Proposition 2.6 and Proposi-
tion 3.2 we have that, for 1-critical systems, the threshold flow problem with
unit failure decrements and the planar project management problem with
unit failure increments both reduce to the problem of computing ¥(G,p).

Theorem 4.1 now implies the results.

4.2 Extension to 1-Critical Threshold Flow Problems
Defined on Undirected Graphs

An interesting and useful property of many network reliability problems is

that undirected problems can be transformed into equivalent directed prob-

31

lems. In the flow graph setting, this transformation consists of replacing each
arc in an undirected graph by its asymmetric pair of directed arcs, where each
directed arc inherits the failure probability and capacity of the undirected arc
from which it was derived. Hagstrom [4] showed that this transformation is
reliability preserving in the stochastic flow graph setting. This fact provides
a means for transforming the threshold flow reliability analysis problem de-
fined on an undirected 1/ f-critical flow graph with unit failure decrements
into a directed threshold flow problem. However, the resulting directed graph
is clearly not 1/ f-critical since it is not acyclic. It turns out that 1-PATH
can be used to compute RF(G,p, f) by applying it to a particular acyclic
subgraph. The algorithm is described in Figure 6
The validity of the algorithm is given by the following Proposition.

Proposition 4.2 All arcs deleted in Step 3 are irrelevant with respect to a

unit fatlure decrement threshold flow system with threshold f = f*—1 = k—1.

Before proving this proposition we define a certain network flow construct,
a flow decrementing path. The flow augmenting path is a fundamental concept
in network flow theory. It has the property that if a flow of value f is not
maximum then there exists a flow augmenting path that produces a flow of
value f + 1 from the flow of value f. Similarly, for any flow of value, f > 0,
there exists a flow decrementing path that produces a flow of value f — 1.
Moreover, for any flow of value f that is not optimal there exists a flow of
value f + 1 and a flow decrementing path that converts the flow of value
f + 1 to the flow of value f. A flow decrementing path is a path from the

sink node t to the source node s. If ¢ is the flow vector, then the directed

32

INPUT: An undirected k-flow graph, GG, with unit failure decrements
and a probability vector p defined on the arcs of G.

OUTPUT: RF(G,p,k-1)

ALGORITHM:

Step 1: Replace each undirected arc with its asymmetric pair of directed
arcs, where each directed arc inherits the failure probability and

capacity of the undirected arc from which it was derived.

Step 2: Find an acyclic max flow (note that the max flow must have

value k).

Step 3: Delete all arcs which carry no flow (note that the resultant di-
rected graph is a k-flow graph since we started with an acyclic max

flow).

Step 4: Apply the 1l-critical directed graph algorithm to the network

constructed in Step 3.

Figure 6: Undirected Threshold Flow Algorithm

33

arc (¢,7) may be on a flow decrementing path if z;; > 0 orif z;; < ¢;;. We
can now proceed with the proof.

Proof: (of Proposition 4.2) Let x = {z;;} be the acyclic max flow vector
found by the algorithm. Since G is a k-flow graph it must be that for any
undirected arc, [z, j], either z,; = Cli,j] OF Tji = ¢[; ;1. We prove the Proposition
by showing that if z;; is zero in the acyclic flow of size k then z;; must be
zero in any acyclic flow of size k¥ — 1. Consider any acyclic flow of size k£ — 1.
Since the flow of size k is unique, there exists a flow decrementing path that
converts the flow of size k to the flow of size £ — 1. For any undirected arc
[¢, 7] the flow decrementing path must traverse the arc in the direction (7, 1)
where z;; = ¢}; j;. Now in implementing the flow decrementing path we have
the choice of setting z;; = 1 or ;; = ¢;) — 1. If we set z;; = 1 then we
obtain a cycle so to get an acyclic flow we must set z;; = ¢ ;; — 1. Thus, no
flows that were previously zero become non-zero, i.e. if z;; = 0 in the flow of
size k then z;; = 0 in the flow of size £ — 1 and the result follows. J

We now have

Corollary 4.3 The threshold flow reliability analysis problem can be solved

in O (n?) time for undirected 1-critical systems with unit failure decrements.

4.3 Properties of Minimal Cutsets for 1-Critical Thresh-

old Flow Systems

In Section 3, we observed that for r-critical project scheduling systems with

unit failure increments, all minimal d-deadline-cuts had the same cardinality.

34

We note that this property is not in general true for threshold flow systems.
That is, for r-critical threshold flow systems with unit failure decrements it
is not always the case that all minimal flow-cuts are minimum cardinality
flow-cuts. For example, in Section 2 minimal flow-cuts of size 3 and 4 were
given for a 2-critical threshold system. In this subsection we show that this
property does hold for 1-critical systems.

The main result of this subsection requires the following Lemma which is

also used as part of the bounding arguments in the final section.

Lemma 4.4 Given an acyclic graph, G and an arc subset, A', then ezactly

one of the following holds
a.) A’ is I-path subset,

b.) there ezists an A C A’ with |A] = 2 where A is contained in some

uniformly directed cut.
Proof:

1. Suppose for all e1,e2 € A', €1 # e, either e; < e; or e3 X ey. Since G
is acyclic this property implies that we can totally order the elements

of A" and find a single path that contains A’ so that case a.) occurs.

2. If the conditions given in 1.) do not occur then A’ contains a 2-antichain
{e1,e2}. Let S = {v € N | v =< e orv =< e} Then, the set of
arcs directed out of S is a uniformly directed (s,t)-cut which contains

{e1,e,} and case b.) occurs.

We can now derive the cutset property.

35

Proposition 4.5 For I-critical threshold flow systems with unit failure decre-
ments, all mincuts (minimal flow-cuts) have cardinality 2, i.e. the set of

mincuts is the same as the set of minimum cardinality cutsets.

Proof: Let G be the f + 1-flow graph associated with the 1-critical threshold
flow system. Since all arcs are saturated by the unique max-flow, the capacity
of any uniformly directed cut equals f + 1 (the value of the max flow). Now
consider an A’ with |A’| > 2. If condition a.) of the Lemma occurs then A’
is a 1-path subset which implies that it is not a flow-cut. If condition b.)
occurs then since uniformly directed cuts have capacity f + 1, there is a A
strictly contained in A’ which is a mincut. This implies that A’ is a flow-cut
but it is not minimal. The result now follows since no A’ with |A’| > 2 can
be a mincut. J

We feel that it may be possible exploit this property in further work on
this problem. Note that we did not use it directly in developing an efficient
algorithm for 1-critical systems. One might be tempted to list all minimal
flow-cuts, which could certainly be done in no more than O(|AJ®) time by the
proposition, and then to compute the reliability from this list. The problem
of computing system reliability given a list of minpaths or mincuts is called
the union of products problem. In [2], it is shown that the union of products
problem is NP-hard even when the set of minpaths or mincuts input all have
cardinality two. Thus, a direct application this approach does not obviously
lead to an efficient algorithm. What the results of this paper show is that the
threshold flow problem for critical systems provides a solvable special case of

the union of products problem.

36

5 Bounds for Almost Critical Threshold Flow
Systems

In this section we present a method for generating bounds on RF(G,p, f)
for systems that are “near-critical”. We will not give a formal definition of
near-critical, however, we will assume that the system is survivable and that
there exist some arcs in flow-cuts of size 2. This is equivalent to assuming
that f* = f + 1. The qualitative requirement that makes the system near-
critical is that a “large percentage” of the arcs should be in some flow-cut of
size 2. Note that we continue to assume that unit failure decrement model.

Our approach makes use of the flow reduced graph which is defined
in Ball and Provan [1] (equivalent structures are described by Picard and
Queyranne{7] and Gardner[3]; see also Provan and Shier[10]). After execut-

ing a max-flow algorithm the arcs can be partitioned into three sets:

critical arcs (denoted by AC): the arcs that are in all flows of size f* (these

are simply the arcs in some min-capacity cut).
back arcs (denoted by AB): the arcs that are in no flows of size f*.

redundant arcs (denoted by AR): the arcs that are in some flow of size f*

but not all flows of size f*.

The flow reduced graph is a directed acyclic graph. Its arc set consists of the
union of the critical arcs and the back arcs, where the orientation of each
back arc is reversed. The redundant arcs are collapsed into pseudo-nodes.

If we let NR be the set of nodes in the flow-reduced graph and AB’ be the

37

Figure 7: Flow Graph with f* =3

set of back arcs with reversed orientation then, the flow reduced graph is

(NR,AC U AB'). In the graph in Figure 7,

AC = {(s,1),(s,2),(s,3),(2,7),(3,7),(7,8),(7,9),(6,2),(8,2), (9, 1) },

AB = {(5,2),(9,5),(9,8)}

AR = {(1,4),(1,5),(4,5),(5,4),(5,6),(4,6),(2,3),(3,2)}
Figure 8 illustrates the corresponding flow reduced graph. Note that redun-
dant arcs, {(1,4),(1,5),(4,5),(5,4),(5,6),(4,6)} have been collapsed into
pseudo-node 1’ and redundant arcs, {(2,3),(3,2)} have been collapsed into

pseudo-node, 2’.

An important property of the flow reduced graph (see [1]) is:

A pair of arcs is contained in a minimum capacity (s,t)-cut if and

33

Figure 8: Flow Reduced Graph (Back Arcs Indicated in Bold)

only if the arcs are critical and are contained in some uniformly

directed cut in the flow reduced graph.
This, in turn, implies:

A pair of arcs is a minimum cardinality flow cut, i.e. a flow cut
of size two, if and only if the arcs are critical and they do not lie

on a common path in the flow reduced graph.

¥

This property together with Lemma 4.4 imply that the only mincuts (minimal
flow cuts) consisting entirely of critical arcs have cardinality 2. Based on the
preceding discussion it now follows that we can apply algorithm 1-PATH to

compute:

RF(G,p, f* — 1] all non-critical arcs operate).

39

= Pr{no cutset of size 2 fails}

= V((NR,ACUAB'),pyc X 1)

where p . is the probability vector p restricted to AC' and 1 is the vector
of 1’s over AB’. We also have that

RF(G,p, f* — 1 | all redundant arcs operate and all back arcs

fail)

= lII((]VR’ AC)’pAC)
In our lower bound we will use ¥((NR, ACUAB'),p4c x 1)=V((NR.AC),psc)
which can be interpreted as the probability that the threshold flow system
operates with flow threshold f* — 1 and at least one operating back arc is

necessary to insure system operation given that all redundant arcs operate.

Since

Pr{some cutset of size 2 fails}

<1-RF(G,p,f"-1)
we immediately have the following upper bound.
RF(G,p,f*—1) < VY((NR,ACUAB'),psc x 1)

The flow reduced graph can also be used to generate a lower bound on
RF(G,p, f). The process of forming the flow reduced graph involves shrink-

ing redundant arcs into pseudo-nodes. We call the set of redundant arcs

40

associated with one such pseudo-node an R-set. The set of all R-sets is de-
noted by {RS(7)}7Z, Thus, the set of R-sets form a partition of the redundant
arcs, i.e. AR =UX RS(7) and RS(z) N RS(j) = O for 7 # j.

Proposition 5.1 Let RS be any R-set and (NS, RS) be the graph induced
by RS. Let IN be the set of critical arcs directed into NS and OUT the set
of critical arcs directed out of NS. Let e be any arc in RS, then there exists
a flow from the tail nodes of IN through IN, (NS, RS —e) and OUT to the
head nodes of OUT of value | IN |=| OUT |.

Proof: The result follows from the fact that critical arcs are in all max flows

and for each redundant arc, e, there exists a max flow that does not contain

e.q

An immediate consequence of this proposition is,

Corollary 5.2 If an arbitrary arc is deleted from each of the R-sets then
there still exists a flow of value f* that uses only redundant arcs and critical

arcs.

Define
I''(S, k) = Pr{k or fewer components in the set S fail}
I'°(S, k) = Pr{exactly k components in the set S fail}
We can now state our lower bound.

Theorem 5.3 RF(G,p,f*—1) =

Pr{graph supports a flow of size f* — 1 and at least 2 redundant

arcs in some R-set fail} +

41

Pr{graph supports a flow of size f* — 1 and at least I redundant

arc fails but at most 1 redundant arc in each R-set fails} +

Pr{graph supports a flow of size f* — 1 and no redundant arcs

fail}

2

FO(AC,O)‘i (F"(RS(z’),Q)HF’(RS(j),l))
i=1 J#i

+

T'(AC,1) [(H I'(RS(3), 1)) ~T°(AR, 0)}

+ =1

FO(ARv 0)[(\P((NR’ ACU ABI)’pAC X l) - \I/((NR7 Ac)vaC)FO(ABv 0)
+\I}((NR’ AC)7pAC)}

Proof: We prove the result by showing that each of the three terms given
in the bound is the probability of an event contained in the respective event
whose probability sum is given before the inequality.

A quick inspection of the terms in the bound indicates that the first is
the probability of an event in which exactly 2 arcs in some R-set fail, the
second is the probability of an event in which at least 1 redundant arc fails
but at most 1 in each R-set fails and the third is the probability of an event
in which no redundant arcs fail. Thus, to prove the Theorem we must show
that each of the terms is the probability that a certain set of operative states
occur. From Corollary 5.2, we know that if at most 1 arc fails in each R-

set then there will still exist a flow of size f*. Now the first term is the

42

probability that exactly 1 additional arc fails where that arc is a redundant
arc. The second term is the probability that at most 1 additional arc fails
where that arc is a critical arc. Thus, both cases correspond to operating
states since we start with a flow of f* and delete at most 1 additional arc
which can reduce the flow by at most 1. The third term is the product of
the probability that all redundant arcs operate multiplied by the sum of two
probabilities. The first is the probability that all back arcs operate and the
system operates, where the operation of at least one back arc is necessary for
system operation. The second is the probability that sufficient critical arcs
operate soas to imply system operation (when combined with the operating
redundant arcs). |

We now provide an example of the calculation of the bound given in this
Theorem using the example from Figure 7. To ease the exposition we assume

that all arcs fail with the common failure probability p. If we let,

RS(1) = {(1’4)7(175)’(475)7(5’4)a(576)a(476)} and
Rk5(2) = {(2,3),3,2)},

we have that,
|AC| = 10,|AB| =3,|RS5(1)| = 6,|RS(2)| = 2,

and the lower bound is,
p'° [(g)p"(l - p)* (P + @p(l —-p))+ (;) (1-p)*(° + (?)p(l - p)s‘)}
+ [p“’ + (110)p9(1 - p)}

43

(o) ()

+ p°[(Y((NR,AC U AB"),psc x 1) = W((N R, AC), p)) p° + ¥((N R, AC),)]

We note that this lower bound “contains” the exact value of Pr{system
operates and 2 or fewer arcs fail}. In addition, it includes lower bounds on
higher order components.

To illustrate that it is not possible to make more “liberal” use of 1-PATH
in generating bounds consider once again the graph in Figure 7 with flow
threshold f* -1 =2. {(s,3),(2,3),(2,7)} is a mincut (minimal flow-cut) of
size 3 that consists of 2 critical arcs and 1 redundant arc. This implies that it
would not be possible to eliminate the second term and multiply the last term
by [T:Z, I"(RS(2),1) rather than by I'°(AR, 0). Similarly, {(4,6),(5,6),(7,9)}
is a mincut of size 3 that consists of 2 redundant arcs and 1 critical arc. This
implies that it would not be possible to multiply the first term by [(AC, 1)
rather than I'°(AC, 0).

6 Acknowledgements

The work of the first author was supported by NSF grant No. CDR-8803012.
The work of the second author was supported by NSF grant No. CCR-
9200572.

44

References

[1] M.O. Ball and J.S. Provan, Calculating Bounds on Reachability and
Connectedness in Stochastic Networks, Networks 13 (1983), 253-278.

(2] M.O. Ball and J.S. Provan, Disjoint Products and Efficient Computation
of Reliability, Operations Research, 36 (1988), 703-715.

[3] M.L. Gardner, Application of an Algorithm for Networks, Congressus
Numeratium, 2 (1980), 31-38.

[4] J.N. Hagstrom, Note on Independence of Arcs in Antiparallel for Net-
work Flow Problems, Networks 14 (1984), 567-570.

[5] J.N. Hagstrom, Computational Complezity of PERT Problems, Net-
works, 18 (1988), 139-147.

[6] E.L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart, and Winston, 1976.

(7] J.-C. Picard and M. Queyranne, On the Structure of All Minimum Cluts
in a Network and Applications, Math. Programming Study 13 (1980),
8-16.

[8] J.S. Provan, The complezity of reliability computations in planar and
acyclic graphs, SIAM J. Computing 15 (1986), 694-702.

[9] J.S. Provan and M.O. Ball, The complezity of counting cut and of com-
puting the probability that a graph is connected, SIAM J. Comp. 12
(1983), T77-788.

45

[10] J.S. Provan and D.R. Shier, A Paradigm for Listing (s,t)-Cuts in
Graphs, Technical Report UNC/OR TR91-3, Department of Operations
Research, University of North Carolina at Chapel Hill, February, 1991.

[11] L.G. Valiant, The complezity of enumeration and reliability problems,
SIAM J. Comp. 8 (1979), 410-421.

[12] D. Vertigan, The computational complezity of Tutte invariants for planar

graphs, preprint, Mathematical Institute, Oxford University.

46

