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STEEPEST DESCENT PRECONDITIONING FOR NONLINEAR

GMRES OPTIMIZATION

H. DE STERCK∗§

Abstract. Steepest descent preconditioning is considered for the recently proposed nonlinear
generalized minimal residual (N-GMRES) optimization algorithm for unconstrained nonlinear op-
timization. Two steepest descent preconditioning variants are proposed. The first employs a line
search, while the second employs a predefined small step. A simple global convergence proof is
provided for the N-GMRES optimization algorithm with the first steepest descent preconditioner
(with line search), under mild standard conditions on the objective function and the line search pro-
cesses. Steepest descent preconditioning for N-GMRES optimization is also motivated by relating
it to standard non-preconditioned GMRES for linear systems in the case of a standard quadratic
optimization problem with symmetric positive definite operator. Numerical tests on a variety of
model problems show that the N-GMRES optimization algorithm is able to very significantly accel-
erate convergence of stand-alone steepest descent optimization. Moreover, performance of steepest-
descent preconditioned N-GMRES is shown to be competitive with standard nonlinear conjugate
gradient and limited-memory Broyden-Fletcher-Goldfarb-Shanno methods for the model problems
considered. These results serve to theoretically and numerically establish steepest-descent precondi-
tioned N-GMRES as a general optimization method for unconstrained nonlinear optimization, with
performance that appears promising compared to established techniques. In addition, it is argued
that the real potential of the N-GMRES optimization framework lies in the fact that it can make
use of problem-dependent nonlinear preconditioners that are more powerful than steepest descent
(or, equivalently, N-GMRES can be used as a simple wrapper around any other iterative optimiza-
tion process to seek acceleration of that process), and this potential is illustrated with a further
application example.
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1. Introduction. In recent work on canonical tensor approximation [3], we have
proposed an algorithm that accelerates convergence of the alternating least squares
(ALS) optimization method for the canonical tensor approximation problem consid-
ered there. The algorithm proceeds by linearly recombining previous iterates in a
way that approximately minimizes the residual (the gradient of the objective func-
tion), using a nonlinear generalized minimal residual (GMRES) approach. The re-
combination step is followed by a line search step for globalization, and the resulting
three-step non-linear GMRES (N-GMRES) optimization algorithm is shown in [3] to
significantly speed up the convergence of ALS for the canonical tensor approximation
problem considered.

As explained in [3] (which we refer to as Paper I in what follows), for the tensor
approximation problem considered there, ALS can also be interpreted as a precondi-
tioner for the N-GMRES optimization algorithm. The question then arises what other
types of preconditioners can be considered for the N-GMRES optimization algorithm
proposed in Paper I, and whether there are universal preconditioning approaches that
can make the N-GMRES optimization algorithm applicable to nonlinear optimization
problems more generally. In the present paper, we propose such a universal precon-
ditioning approach for the N-GMRES optimization algorithm proposed in Paper I,
namely, steepest descent preconditioning. We explain how updates in the steepest
descent direction can indeed naturally be used as a preconditioning process for the
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2 H. De Sterck

N-GMRES optimization algorithm. In fact, we show that steepest descent precon-
ditioning can be seen as the most basic preconditioning process for the N-GMRES
optmization method, in the sense that applying N-GMRES to a quadratic objective
function with symmetric positive definite (SPD) operator, corresponds mathemati-
cally to applying standard non-preconditioned GMRES for linear systems to the linear
system corresponding to the quadratic objective function. We propose two variants of
steepest descent preconditioning, one with line search and one with a predefined small
step. We give a simple global convergence proof for the N-GMRES optimization al-
gorithm with our first proposed variant of steepest descent preconditioning (with line
search), under standard mild conditions on the objective function and for line searches
satisfying the Wolfe conditions. The second preconditioning approach, without line
search, is of interest because it is more efficient in numerical tests, but there is no
convergence guarantee. Numerical results are employed for a variety of test problems
demonstrating that N-GMRES optimization can significantly speed up stand-alone
steepest descent optimization. We also compare steepest-descent preconditioned N-
GMRES with a standard nonlinear conjugate gradient (N-CG) method for all our test
problems, and with a standard limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method.

We consider the following unconstrained nonlinear optimization problem with as-
sociated first-order optimality equations:

optimization problem I:

find u∗ that minimizes f(u). (1.1)

first-order optimality equations I:

∇f(u) = g(u) = 0. (1.2)

The N-GMRES optimization algorithm proposed in Paper I for accelerating ALS
for canonical tensor approximation consists of three steps that can be summarized as
follows. (Fig. 1.1 gives a schematic representation of the algorithm, and it is described
in pseudo-code in Algorithm 1.) In the first step, a preliminary new iterate ūi+1 is
generated from the last iterate ui using a one-step iterative update process M(.),
which can be interpreted as a preconditioning process (see Paper I and below). ALS
preconditioning is used for M(.) in Paper I. In the second step, an accelerated iterate
ûi+1 is obtained by linearly recombining previous iterates in a window of size w,
(ui−w+1, . . . ,ui), using a nonlinear GMRES approach. (The details of this step will
be recalled in Section 2 below.) In the third step, a line search is performed that
minimizes objective function f(u) on a half line starting at preliminary iterate ūi+1,
which was generated in Step I, and connecting it with accelerated iterate ûi+1, which
was generated in Step II, to obtain the new iterate ui+1.

The second step in the N-GMRES optimization algorithm (Step II in Algorithm
1) uses the nonlinear extension of GMRES for solving nonlinear systems of equations
that was proposed by Washio and Oosterlee in [18] in the context of nonlinear partial
differential equation (PDE) systems (see also [12] and [18] for further applications
to PDE systems). It is a nonlinear extension of the celebrated GMRES method for
iteratively solving systems of linear equations [15, 14]. Washio and Oosterlee’s non-
linear extension is related to Flexible GMRES as described in [13], and is also related
to the reduced rank extrapolation method [16]. An early description of this type of
nonlinear iterate acceleration ideas for solving nonlinear equation systems appears in
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so-called Anderson mixing, see, e.g., [5, 17]. More recent applications of these ideas to
nonlinear equation systems and fixed-point problems are discussed in [5, 17]. In Pa-
per I we formulated a nonlinear GMRES optimization algorithm for canonical tensor
decomposition that uses this type of acceleration as one of its steps, combined with an
ALS preconditioning step and a line search for globalization. The type of nonlinear
iterate acceleration in Step II of Algorithm 1 has thus been considered several times
before in the context of solving nonlinear systems of equations, but we believe that
its combination with a line search to obtain a general preconditioned nonlinear opti-
mization method as in Algorithm 1 (see Paper I) is new in the optimization context.
In the present paper we show how this N-GMRES optimization approach can be ap-
plied to a broad class of sufficiently smooth nonlinear optimization problems by using
steepest descent preconditioning. We establish theoretical convergence properties for
this approach and demonstrate its effectiveness in numerical tests.

Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates u0, . . . ,uw−1.

i = w − 1
repeat

Step I: (generate preliminary iterate by one-step update process M(.))
ūi+1 = M(ui)

Step II: (generate accelerated iterate by nonlinear GMRES step)
ûi+1 =gmres(ui−w+1, . . . ,ui; ūi+1)

Step III: (generate new iterate by line search process)
if ûi+1 − ūi+1 is a descent direction

ui+1 =linesearch(ūi+1 + β(ûi+1 − ūi+1))
else

ui+1 = ūi+1

end

i = i+ 1
until convergence criterion satisfied

(Note that the w initial iterates required in Algorithm 1 can naturally be generated
by applying the algorithm with a window size that gradually increases from one up to
w, starting from a single initial guess. Also, as in [3], we perform a restart and reset
the window size back to 1 whenever ûi+1 − ūi+1 is not a descent direction.)

The rest of this paper is structured as follows. In Section 2 we propose two types of
steepest descent preconditioners for N-GMRES Optimization Algorithm 1. We briefly
recall the details of the nonlinear GMRES optimization step, give a motivation and in-
terpretation for steepest descent preconditioning that relate it to non-preconditioned
GMRES for SPD linear systems, and give a simple proof for global convergence of
the N-GMRES optimization algorithm using steepest descent preconditioning with
line search. In Section 3 we present extensive numerical results for N-GMRES opti-
mization with the two proposed steepest descent preconditioners, applied to a variety
of nonlinear optimization problems, and compare with stand-alone steepest descent,
N-CG and L-BFGS. Finally, Section 4 concludes.

2. Steepest Descent Preconditioning for N-GMRES Optimization. In
this section, we first propose two variants of steepest descent preconditioning. We
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Fig. 1.1. Schematic representation of one iteration of the N-GMRES optimization algorithm
(from [3]). Given previous iterations u0, u1 and u2, new iterate u3 is generated as follows. In Step
I, preliminary iterate ū3 is generated by the one-step update process M(.): ū3 = M(u2). In Step II,
the nonlinear GMRES step, accelerated iterate û3 is obtained by determining the coefficients αj in
û3 = ū3+α0d0+α1d1+α2d2 such that the gradient of the objective function in û3 is approximately
minimized. In Step III, the new iterate, u3, is finally generated by a line search that minimizes the
objective function f(ū3 + β(û3 − ū3)).

then briefly recall the details of the nonlinear GMRES recombination step (Step II
in Algorithm 1), and relate N-GMRES optimization to standard non-preconditioned
GMRES for linear systems in the case of a simple quadratic optimization problem with
SPD operator. Finally, we give a simple global convergence proof for the N-GMRES
optimization algorithm using steepest descent preconditioning with line search.

2.1. Steepest Descent Preconditioning Process. We propose a general steep-
est descent preconditioning process for Step I of N-GMRES Optimization Algorithm
1 with the following two variants:

Steepest Descent Preconditioning Process:

ūi+1 = ui − β
∇f(ui)

‖∇f(ui)‖
with

option A: β = βsdls, (2.1)

option B: β = βsd = min( δ , ‖∇f(ui)‖ ). (2.2)

For Option A, βsdls is the step length obtained by a line search procedure. For
definiteness, we consider a line search procedure that satisfies the Wolfe conditions (see
below). We refer to the steepest descent preconditioning process with line search (2.1)
as the sdls preconditioner. For Option B, we predefine the step βsd as the minimum
of a small positive constant δ, and the norm of the gradient. In the numerical results
to be presented further on in the paper, we use δ = 10−4, except where noted. We
refer to the steepest descent preconditioning process with predefined step βsd (2.2) as
the sd preconditioner. These two Options are quite different, and some discussion is
in order.

Preconditioning process A can be employed as a stand-alone optimization method
(it can converge by itself), and N-GMRES can be considered as a wrapper that accel-
erates this stand-alone process. We will show below that N-GMRES with precondi-
tioning process A has strong convergence properties, but it may be expensive because
the line search may require a significant number of function and gradient (f/g) eval-
uations. However, the situation is very different for preconditioning process B. Here,
no additional f/g evaluations are required, but convergence appears questionable. It
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is clear that preconditioning process B cannot be used as a stand-alone optimization
algorithm; in most cases it would not converge. It can, however, still be used as a pre-
conditioning process for N-GMRES. As is well-known and will be further illustrated
below, preconditioners used by GMRES for linear systems do not need to be conver-
gent by themselves, and this suggests that it may be interesting to consider this for
N-GMRES optimization as well. As will be motivated further below, the role of the
N-GMRES preconditioning process is to provide new ‘useful’ directions for the nonlin-
ear generalization of the Krylov space, and the iteration can be driven to convergence
by the N-GMRES minimization, even if the preconditioner is not convergent by itself.
However, for this to happen in the three-step N-GMRES optimization algorithm with
preconditioning process B, it is required that ūi+1 eventually approaches ui and the
step length βsd approaches 0. For this reason, we select βsd = ‖∇f(ui)‖ as soon as
‖∇f(ui)‖ ≤ δ. The initial step length βsd is chosen to be not larger than a small
constant because the linear case (see below) suggests that a small step is sufficient
to provide a new direction for the Krylov space, and because the minimization of the
residual is based on a linearization argument (see also below), and small steps tend
to lead to small linearization errors.

2.2. N-GMRES Recombination Step. Before relating steepest-descent pre-
conditioned N-GMRES to non-preconditioned GMRES for linear systems, we first re-
call from [3] some details of the N-GMRES recombination step, Step II in Algorithm
1. In this step, we find an accelerated iterate ûi+1 that is obtained by recombining
previous iterates as follows:

ûi+1 = ūi+1 +

i
∑

j=0

αj (ūi+1 − uj). (2.3)

The unknown coefficients αj are determined by the N-GMRES algorithm in such a
way that the two-norm of the gradient of the objective function evaluated at the
accelerated iterate is small. In general, g(.) is a nonlinear function of the αj , and
linearization is used to allow for inexpensive computation of coefficients αj that may
approximately minimize ‖g(ûi+1)‖2. Using the following approximations

g(ûi+1) ≈ g(ūi+1) +

i
∑

j=0

∂g

∂u

∣

∣

∣

∣

ūi+1

αj (ūi+1 − uj)

≈ g(ūi+1) +

i
∑

j=0

αj (g(ūi+1)− g(uj)) (2.4)

one arrives at minimization problem

find coefficients (α0, . . . , αi) that minimize

‖g(ūi+1) +

i
∑

j=0

αj (g(ūi+1)− g(uj))‖2. (2.5)

This is a standard least-squares problem that can be solved, for example, by using the
normal equations, as explained in [18, 3]. (In this paper, we solve the least-squares
problem as described in [3].)

In a windowed implementation with window size w, the memory cost incurred
by N-GMRES acceleration is the storage of w previous approximations and residuals.
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The dominant parts of the CPU cost for each acceleration step are the cost of building
and solving the least-squares system (which can be done in approximately 2nw flops
if the normal equations are used and some previous inner products are stored, see
[18]), and nw flops to compute the accelerated iterate. For problems with expensive
objective functions, this cost is often negligible compared to the cost of the f/g
evaluations in the line searches [3].

2.3. Motivation and Interpretation for Steepest Descent Precondition-

ing. Consider a standard quadratic minimization problem with objective function

f(u) =
1

2
uTAu− bTu, (2.6)

where A is SPD. It is well-known that its unique minimizer satisfies Au = b. Now
consider applying the N-GMRES optimization algorithm with steepest descent precon-
ditioner to the quadratic minimization problem. The gradient of f at approximation
ui is given by

∇f(ui) = Aui − b = −ri with ri = b−Aui, (2.7)

where ri is defined as the residual of the linear system Au = b in ui. N-GMRES
steepest descent preconditioner (2.1)-(2.2) then reduces to the form

ūi+1 = ui + β
ri

‖ri‖
, (2.8)

and it can easily be shown that this corresponds to the stationary iterative method
that generates the Krylov space in non-preconditioned linear GMRES applied to Au =
b. We now briefly show this because it provides further insight (recalling parts of the
discussion in [18, 3]).

We first explain how preconditioned GMRES for Au = b works. Consider so-
called stationary iterative methods for Au = b of the following form:

ui+1 = ui +M−1 ri. (2.9)

Here, matrix M is an approximation of A that has an easily computable inverse, i.e.,
M−1 ≈ A−1. For example, M can be chosen to correspond to Gauss-Seidel or Jacobi
iteration, or to a multigrid cycle [18].

Consider a sequence of iterates u0, . . . ,ui generated by update formula (2.9),
starting from some initial guess u0. Note that the residuals of these iterates are
related as ri = b − Aui = (I − AM−1) ri−1 = (I − AM−1)i r0. This motivates the
definition of the following vector spaces:

V1,i+1 = span{r0, . . . , ri},
V2,i+1 = span{r0, AM−1 r0, (AM

−1)2 r0}, . . . , (AM−1)i r0}
= Ki+1(AM

−1, r0),

V3,i+1 = span{M (ui+1 − u0),M (ui+1 − u1), . . . ,M (ui+1 − ui)}.

Vector space V2,i+1 is the so-called Krylov space Ki+1(AM
−1, r0) of order i + 1,

generated by matrix AM−1 and vector r0. It is easy to show that these vector spaces
are equal (see, e.g., [18, 3]).

Expression (2.9) shows that M (ui+1 − ui) ∈ Ki+1(AM
−1, r0). The GMRES

procedure can be seen as a way to accelerate stationary iterative method (2.9), by
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recombining iterates (or, equivalently, by reusing residuals). In particular, we seek a
better approximation ûi+1, with M (ûi+1 −ui) in the Krylov space Ki+1(AM

−1, r0),
such that r̂i+1 = b−A ûi+1 has minimal two-norm. In other words, we seek optimal
coefficients βj in

M (ûi+1 − ui) =
i

∑

j=0

βj M (ui+1 − uj),

and it is easy to show that this corresponds to seeking optimal coefficients αj in

ûi+1 = ui+1 +

i
∑

j=0

αj (ui+1 − uj), (2.10)

such that ‖r̂i+1‖2 is minimized (which leads to a small least-squares problem equiv-
alent to (2.5)). Note that V1,i+1 and V2,i+1 do not easily generalize to the nonlinear
case, but the image of V1,i+1 under M−1, span{ui+1 − u0,ui+1 − u1, . . . ,ui+1 − ui},
does generalize naturally and is taken as the ‘generalized Krylov space’ that is used
to seek the approximation in the nonlinear case.

Up to this point, we have presented GMRES as a way to accelerate one-step
stationary iterative method (2.9). A more customary way, however, to see GM-
RES is in terms of preconditioning. The approach described above reduces to ‘non-
preconditioned’ GMRES when one sets M = I. Applying non-preconditioned GM-
RES to the preconditioned linear equation system AM−1(Mu) = b also results in the
expressions for preconditioned GMRES derived above. In this viewpoint, the matrix
M−1 is called the preconditioner matrix, because its role is viewed as to pre-condition
the spectrum of the linear system operator such that the (non-preconditioned) GM-
RES method applied to (AM−1)y = b becomes more effective. It is also customary to
say that the stationary iterative process preconditions GMRES (for example, Gauss-
Seidel or Jacobi can precondition GMRES). We can summarize that the role of the
stationary iterative method is to generate preconditioned residuals that build the
Krylov space.

In the presentation above, all iterates uj for j = 0, . . . , i (for instance, in the
right-hand side of (2.10)) refer to the unaccelerated iterates generated by stationary
iterative method (2.9). However, the formulas remain valid when accelerated iterates
are used instead; this does change the values of the coefficients αj , but leads to the
same accelerated iterates [18]. This is so because the Krylov spaces generated in the
two cases are identical due to linearity, and consequently GMRES selects the same
optimal improved iterate.

This brings us to the point where we can compare steepest-descent preconditioned
N-GMRES applied to quadratic objective function (2.6) with SPD operator A, to
non-preconditioned linear GMRES applied to Au = b. Assume we have w previous
iterates ui and residuals ri. Stationary iterative process (2.9) without preconditioner
(M = I) would add a vector to the Krylov space which has the same direction as
the vector that would be added to it by the steepest descent preconditioning process
(2.8). This means that the accelerated iterate ûi+1 produced by N-GMRES with
steepest descent preconditioner applied to quadratic objective function (2.6) with SPD
operator A is the same as the accelerated iterate ûi+1 produced by linear GMRES
with identity preconditioner applied to Au = b. This motivates our proposal to use
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steepest descent preconditioning as the natural and most basic preconditioning process
for the N-GMRES optimization algorithm applied to general nonlinear optimization
problems.

Note that, in the case of linear systems, the efficiency of GMRES as an acceleration
technique for stationary iterative methods can be understood in terms of how optimal
polynomials can damp modes that are slow to converge [18, 14]. In the case of
N-GMRES for nonlinear optimization, if the approximation is close to a stationary
point and the nonlinear residual vector function g(.) can be approximated well by
linearization, then it can be expected that the use of the subspace span{ui+1 −
u0,ui+1 −u1, . . . ,ui+1 −ui} for acceleration may give efficiency similar to the linear
case [18]. Note finally that the above also explains why a small step is allowed in the
sd preconditioner of (2.2) (basically, in the linear case, the size of the coefficient does
not matter for the Krylov space), and the linearization argument of (2.4) indicates
that a small step may be beneficial.

2.4. Convergence Theory for N-GMRES Optimization with Steepest

Descent Preconditioning. We now formulate and prove a convergence theorem
for N-GMRES Optimization Algorithm 1 using steepest descent preconditioning with
line search (2.1). We assume that all line searches provide step lengths that satisfy
the Wolfe conditions [10]:

sufficient decrease condition:

f(ui + βipi) ≤ f(ui) + c1 βi ∇f(ui)
Tpi, (2.11)

curvature condition:

∇f(ui + βipi)
T pi ≥ c2 ∇f(ui)

Tpi, (2.12)

with 0 < c1 < c2 < 1. Condition (2.11) ensures that large steps are taken only if they
lead to a proportionally large decrease in f . Condition (2.12) ensures that a step is
taken that is large enough to sufficiently increase the gradient of f in the line search
direction (make it less negative). Global convergence (in the sense of convergence to
a stationary point from any initial guess) can then be proved easily using standard
approaches [6, 10].

Theorem 2.1 (Global convergence of N-GMRES optimization algorithm with
steepest descent line search preconditioning). Consider N-GMRES Optimization
Algorithm 1 with steepest descent line search preconditioning (2.1) for Optimiza-
tion Problem I, and assume that all line search solutions satisfy the Wolfe condi-
tions, (2.11) and (2.12). Assume that objective function f is bounded below in R

n

and that f is continuously differentiable in an open set N containing the level set
L = {u : f(u) ≤ f(u0)}, where u0 is the starting point of the iteration. Assume also
that the gradient ∇f is Lipschitz continuous on N , that is, there exists a constant L
such that ‖∇f(u) − ∇f(û)‖ ≤ L‖u− û‖ for all u, û ∈ N . Then the sequence of N-
GMRES iterates {u0,u1, . . .} is convergent to a fixed point of Optimization Problem
I in the sense that

lim
i→∞

‖∇f(ui)‖ = 0. (2.13)

Proof. Consider the sequence {v0,v1, . . .} formed by the iterates u0, ū1, u1, ū2,
u2, . . . of Algorithm I, but with ūi removed if ûi − ūi is not a descent direction in
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Step III of the algorithm. Then all iterates vi are of the form vi = vi−1 + βi−1pi−1,
with pi−1 a descent direction and βi−1 such that the Wolfe conditions are satisfied.
According to Theorem 3.2 of [10] (p. 38, Zoutendijk’s Theorem), we have that

∞
∑

i=0

cos2 θi ‖∇f(vi)‖2 < ∞, (2.14)

with

cos θi =
−∇f(vi)

Tpi

‖∇f(vi)‖ ‖pi‖
, (2.15)

which implies that

lim
i→∞

cos2 θi ‖∇f(vi)‖2 = 0. (2.16)

Consider the subsequence {‖∇f(ui)‖} of {‖∇f(vi)‖}. Since all the ui are followed
by a steepest descent step in the algorithm, the θi corresponding to all the el-
ements of {‖∇f(ui)‖} satisfy cos θi = 1. Therefore, it follows from (2.16) that
limi→∞ ‖∇f(ui)‖ = 0, which concludes the proof.

Note that the notion of convergence (2.13) we prove in Theorem 2.1 for N-GMRES
optimization with steepest descent line search preconditioning is stronger than the
type of convergence that can be proved for some N-CG methods [6, 10], namely,

lim
i→∞

inf ‖∇f(ui)‖ = 0. (2.17)

Also, it appears that, in the proof of Theorem 2.1, we cannot guarantee that sequence
{‖∇f(ūi)‖} converges to 0. We know that sequence {f(vi)} converges to a value
f∗ since it is nonincreasing and bounded below, but it appears that the properties
of the line searches do not guarantee that the sequence {‖∇f(vi)‖} converges to 0.
They do guarantee that the subsequence {‖∇f(ui)‖} converges to 0, but it cannot be
ruled out that, as the f(ui) approach f∗ and the ‖∇f(ui)‖ approach 0, large steps
with very small decrease in f may still be made from each ui to the next ūi+1 (large
steps with small decrease are allowed in this case since the ui approach a stationary
point), while, at the same time, large steps with very small decrease in f may be
made from the ūi+1 to the next ui+1 (large steps with small decrease are allowed in
this case if the search direction p from ūi+1 is such that ∇f(ūi+1)

Tp is very close to
0). These large steps may in principle preclude {‖∇f(ūi)‖} from converging to 0 (but
we do not observe such pathological cases in our numerical tests). Nevertheless, we
are able to prove the strong convergence result (2.13) for the iterates ui of N-GMRES
optimization with steepest descent line search preconditioning: sequence {‖∇f(ui)‖}
converges to 0.

3. Numerical Results. We now present extensive numerical results for the N-
GMRES optimization algorithm with steepest descent preconditioners (2.1) and (2.2),
compared with stand-alone steepest descent optimization, N-CG and L-BFGS.

In all tests, we utilize the Moré-Thuente line search method [8] and the N-CG and
L-BFGS optimization methods as implemented in the Poblano toolbox for Matlab [4].
For all experiments, the Moré-Thuente line search parameters used were as follows:
function value tolerance c1 = 10−4 for (2.11), gradient norm tolerance c2 = 10−2 for
(2.12), starting search step length β = 1, and a maximum of 20 f/g evaluations are
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used. These values were also used for the N-CG and L-BFGS comparison runs. We
use the N-CG variant with Polak-Ribière update formula, and the two-loop recursion
version of L-BFGS [10]. We normally choose the N-GMRES window size w equal to
20, which is confirmed to be a good choice in numerical tests described below. The
L-BFGS window size is chosen equal to 5 (we found that larger window sizes tend
to harm L-BFGS performance for the tests we considered). All initial guesses are
determined uniformly randomly with components in the interval [0, 1], and when we
compare different methods they are given the same random initial guess. All numerical
tests were run on a laptop with a dual-core 2.53 GHz Intel Core i5 processor and 4GB
of 1067 MHz DDR3 memory. Matlab version 7.11.0.584 (R2010b) 64-bit (maci64)
was used for all tests.

3.1. Test Problem Description. We first describe the seven test problems we
consider. In what follows, all vectors are chosen in R

n, and all matrices in R
n×n.

Problem A. (Quadratic objective function with spd diagonal matrix.)

f(u) =
1

2
(u− u∗)TD (u− u∗) + 1, (3.1)

with D = diag(1, 2, . . . , n).

This problem has a unique minimizer u∗ in which f∗ = f(u∗) = 1. We choose
u∗ = (1, . . . , 1). Note that g(u) = D(u−u∗), and the condition number of D is given
by κ = n. It is well-known that for problems of this type large condition numbers tend
to lead to slow convergence of the steepest descent method due to a zig-zag effect.
Problem A can be used to show how methods like N-CG and N-GMRES improve over
steepest descent and mitigate this zig-zag effect.

Problem B. (Problem A with paraboloid coordinate transformation.)

f(u) =
1

2
y(u − u∗)TD y(u − u∗) + 1, (3.2)

with D = diag(1, 2, . . . , n) and y(x) given by

y1(x) = x1 and yi(x) = xi − 10 x2
1 (i = 2, . . . , n).

This modification of Problem A still has a unique minimizer u∗ in which f∗ =
f(u∗) = 1. We choose u∗ = (1, . . . , 1). The gradient of f(u) is given by g(u) =
D y(u − u∗) − 20 (u1 − u∗

1) (
∑n

j=2
(D y(u − u∗))j) [1, 0, . . . , 0]

T . This modification
of Problem A increases nonlinearity (the objective function is now quartic in u) and
changes the level surfaces from ellipsoids into parabolically skewed ellipsoids. As such,
the problem is more difficult for nonlinear optimization methods. For n = 2, the level
curves are modified from elliptic to ‘banana-shaped’. In fact, the objective function
of Problem B is a multi-dimensional generalization of Rosenbrock’s ‘banana’ function.

Problem C. (Problem B with a random non-diagonal matrix with condi-
tion number κ = n.)

f(u) =
1

2
y(u − u∗)TT y(u − u∗) + 1, (3.3)

with T = Q diag(1, 2, . . . , n)QT , where Q is a

random orthogonal matrix and y(x) is given by

y1(x) = x1 and yi(x) = xi − 10 x2
1 (i = 2, . . . , n).
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This modification of Problem B still has a unique minimizer u∗ in which f∗ =
f(u∗) = 1. We choose u∗ = (1, . . . , 1). The gradient of f(u) is given by g(u) =
T y(u−u∗)− 20 (u1− u∗

1) (
∑n

j=2
(T y(u−u∗))j) [1, 0, . . . , 0]

T . The random matrix Q
is the Q factor obtained from a QR-factorization of a random matrix with elements
uniformly drawn from the interval [0, 1]. This modification of Problem B introduces
nonlinear ‘mixing’ of the coordinates (cross-terms) and further increases the difficulty
of the problem.
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Fig. 3.1. Problem A (n = 100). Convergence histories of the 10-logarithms of |f(ui) − f∗|
and ‖g(ui)‖ as a function of iterations and f/g evaluations. N-GMRES-sdls is the N-GMRES
optimization algorithm using steepest descent preconditioning with line search, N-GMRES-sd is the
N-GMRES optimization algorithm using steepest descent preconditioning with predefined step, N-CG
is the Polak-Ribière nonlinear conjugate gradient method, L-BFGS is the limited-memory Broyden-
Fletcher-Goldfarb-Shanno method, and sdls is the stand-alone steepest descent method with line
search.

Problem D. (Extended Rosenbrock function, problem (21) from [9].)

f(u) =
1

2

n
∑

j=1

t2j (u), with n even and

tj = 10 (uj+1 − u2
j) (j odd),

tj = 1− uj−1 (j even).

Note that g(u) can easily be computed using gk(u) =
∑n

j=1
tj ∂tj/∂uk (k = 1, . . . , n).
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Fig. 3.2. Problem A (n = 100). Effect of varying window size w on |f(ui) − f∗| and ‖g(ui)‖
convergence for N-GMRES-sdls and N-GMRES-sd optimization as a function of f/g evaluations.
Window size w = 20 emerges as a suitable choice, leading to rapid convergence. These results
give some general indication that, if sufficient memory is available, w = 20 may be a good choice.
However, if memory is scarce, w = 3 already provides good results, especially for N-GMRES-sd.

Problem E. (Brown almost-linear function, problem (27) from [9].)

f(u) =
1

2

n
∑

j=1

t2j (u), with

tj = uj + (
n
∑

i=1

ui)− (n+ 1) (j < n),

tn = (

n
∏

i=1

ui)− 1.

Problem F. (Trigonometric function, problem (26) from [9].)

f(u) =
1

2

n
∑

j=1

t2j (u), with

tj = n− (

n
∑

i=1

cosui)− j (1 − cosuj)− sinuj.
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Problem G. (Penalty function I, problem (23) from [9].)

f(u) =
1

2
((

n
∑

j=1

t2j(u)) + t2n+1(u)), with

tj =
√
10−5 (uj − 1) (j = 1, . . . , n),

tn+1 = (

n
∑

i=1

u2
i )− 0.25.
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Fig. 3.3. Problem B (n = 100). Convergence comparison.

3.2. Numerical Results for Problems A–C. We first present some conver-
gence plots for instances of Problems A–C. Fig. 3.1 shows results for an instance of
Problem A. We see that stand-alone steepest descent with line search (sdls) converges
slowly, which is expected because the condition number of matrix D is κ = 100. Both
N-GMRES optimization using steepest descent preconditioning with line search (2.1)
(N-GMRES-sdls) and N-GMRES optimization using steepest descent preconditioning
with predefined step (2.2) (N-GMRES-sd) are significantly faster than stand-alone
sdls, in terms of iterations and f/g evaluations, confirming that the N-GMRES accel-
eration mechanism is effective, and steepest descent is an effective preconditioner for
it. As could be expected, the preconditioning line searches of N-GMRES-sdls add sig-
nificantly to its f/g evaluation cost, and N-GMRES-sd is more effective. N-GMRES
accelerates steepest descent up to a point where performance becomes competitive
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Fig. 3.4. Problem C (n = 100). Convergence comparison.

with N-CG and L-BFGS. It is important to note that convergence profiles like the
ones presented in Fig. 3.1 tend to show significant variation depending on the random
initial guess. The instances presented are arbitrary and not hand-picked with a spe-
cial purpose in mind (they simply correspond to seed 0 in our matlab code) and we
show them because they do provide interesting illustrations and show patterns that
we have verified to be quite general over many random instances. However, they can-
not reliably be used to conclude on detailed relative performance of various methods.
For this purpose, we provide tables below that compare performance averaged over a
set of random trials.

Fig. 3.2 shows the effect of varying the window size w on |f(ui)−f∗| and ‖g(ui)‖
convergence for N-GMRES-sdls and N-GMRES-sd optimization as a function of f/g
evaluations, for an instance of Problem A. Window size w = 20 emerges as a suitable
choice if sufficient memory is available, leading to rapid convergence. However, win-
dow sizes as small as w = 3 already provide good results, especially for N-GMRES-sd.
This indicates that satisfactory results can be obtained with small windows, which
may be useful if memory is scarce. We use window size w = 20 for all numerical
results in this paper.

Fig. 3.3 shows results for an instance of Problem B, which is a modification of
Problem A introducing more nonlinearity, and Fig. 3.4 shows results for the even more
difficult Problem C, with random nonlinear mixing of the coordinate directions. Both
figures show that stand-alone sdls is very slow, and confirm that N-GMRES-sdls and
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N-GMRES-sd significantly speed up steepest descent. For Problem B, N-GMRES-
sdls, N-GMRES-sd, N-CG and L-BFGS perform similarly, but for the more difficult
Problem C N-GMRES-sdls, N-GMRES-sd and L-BFGS perform much better than
N-CG.

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS
A n=100 242 111 84 73
A n=200 406 171 127 104
B n=100 1200 395 198 170
B n=200 1338 752 606 321
C n=100 926(1) 443 13156(7) 151
C n=200 1447 461 26861(9) 204

Table 3.1
Average number of f/g evaluations needed to reach |f(ui) − f∗| < 10−6 for 10 instances of

Problems A–C with random initial guess and with different sizes. Numbers in brackets give the
number of random trials (out of 10) that did not converge to the required tolerance within 1500
iterations (if any).
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Fig. 3.5. Problem D (n = 1000). Convergence comparison.

Table 3.1 confirms the trends that were already present in the specific instances
of test problems A–C that were shown in Figures 3.1, 3.3 and 3.4. The table gives
the average number of f/g evaluations that were needed to reach |f(ui)− f∗| < 10−6
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for 10 random instances of Problems A–C with different sizes. For Problems A and
B, N-GMRES-sdls and N-GMRES-sd consistently give f/g evaluation counts that
are of the same order of magnitude as N-CG. N-GMRES-sd comes close to being
competitive with N-CG. L-BFGS is the fastest method for all problems in Table 3.1.
For the more difficult Problem C, both N-GMRES-sdls, N-GMRES-sd and L-BFGS
are significantly faster than N-CG, which appears to have convergence difficulties for
this problem. N-GMRES-sd is clearly faster than N-GMRES-sdls for all tests.

3.3. Numerical Results for Problems D–G. Figure 3.5 gives convergence
plots for a single instance of Problem D. It confirms the observations from Figures
3.1, 3.3 and 3.4: for this standard test problem from [9], stand-alone sdls again is very
slow, and N-GMRES-sdls and N-GMRES-sd significantly speed up steepest descent
convergence. N-GMRES-sdls and N-GMRES-sd have iteration and f/g counts that
are of the same order of magnitude as N-CG and L-BFGS, and in particular N-
GMRES-sd is competitive with N-CG and L-BFGS. Convergence plots for instances
of Problems E–G show similar behaviour and are not presented.

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS
D n=500 525 172 222 166
D n=1000 445 211 223 170
E n=100 294 259 243 358
E n=200 317 243 240 394
F n=200 140 102(1) 102 92
F n=500 206(1) 175(1) 135 118
G n=100 1008(2) 152 181 358
G n=200 629(1) 181 137 240

Table 3.2
Average number of f/g evaluations needed to reach |f(ui) − f∗| < 10−6 for 10 instances of

Problems D–G with random initial guess and with different sizes. Numbers in brackets give the
number of random trials (out of 10) that did not converge to the required tolerance within 500
iterations (if any).

Table 3.2 on f/g evaluation counts for Problems E–G again confirms the trends
that were observed before. N-GMRES-sdls and N-GMRES-sd give f/g evaluation
counts that are of the same order of magnitude as N-CG and L-BFGS, and N-GMRES-
sd in particular is competitive with N-CG and L-BFGS.

4. Conclusion. In this paper, we have proposed and studied steepest descent
preconditioning as a universal preconditioning approach for the N-GMRES optimiza-
tion algorithm that we recently introduced in the context of a canonical tensor ap-
proximation problem and ALS preconditioning [3] (Paper I). We have considered two
steepest descent preconditioning process variants, one with a line search, and the other
one with a predefined step length. The first variant is significant because we showed
that it leads to a globally convergent optimization method, but the second variant
proved more efficient in numerical tests, with no apparent degradation in convergence
robustness. Numerical tests showed that the two steepest-descent preconditioned
N-GMRES methods both speed up stand-alone steepest descent optimization very
significantly, and are competitive with standard N-CG and L-BFGS methods, for
a variety of test problems. These results serve to theoretically and numerically es-
tablish steepest-descent preconditioned N-GMRES as a general optimization method
for unconstrained nonlinear optimization, with performance that appears promising
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Fig. 4.1. Convergence histories of the 10-logarithm of |f(ui) − f∗| as a function of f/g eval-
uations, for the canonical tensor approximation problem of Figures 1.2 and 1.3 in [3]. Panel (a)
shows that stand-alone sdls is very slow for this problem, and N-GMRES-sdls and N-GMRES-sd
significantly speed up steepest descent. However, for this difficult problem, it is beneficial to use
a more powerful nonlinear preconditioner. Using the ALS preconditioner in stand-alone fashion
already provides faster convergence than N-GMRES-sdls and N-GMRES-sd. The zoomed view in
Panel (b) shows that N-CG and L-BFGS are faster than stand-alone ALS when high accuracy is
required, but N-GMRES preconditioned with the powerful ALS preconditioner is the fastest method
by far, beating N-CG and L-BFGS by a factor of 2 to 3. This illustrates that the real power of
the N-GMRES optimization algorithm may lie in its ability to employ powerful problem-dependent
nonlinear preconditioners (ALS in this case).
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compared to established techniques.

However, we would like to argue that the real potential of the N-GMRES op-
timization framework lies in the fact that it can use problem-dependent nonlinear
preconditioners that are more powerful than steepest descent. Preconditioning of N-
CG in the form of (linear) variable transformations is an area of active research [7].
However, it is interesting to note that our N-GMRES optimization framework natu-
rally allows for a more general type of preconditioning: any nonlinear optimization
process M(.) can potentially be used as a nonlinear preconditioner in the frame-
work, or, equivalently, N-GMRES can be used as a simple wrapper around any other
iterative optimization process M(.) to seek acceleration of that process. This can
be illustrated with the following example, in which we first apply N-GMRES with
the steepest descent preconditioners proposed in this paper, to a canonical tensor
approximation problem from [3]. (In particular, we consider the canonical tensor ap-
proximation problem of Figures 1.2 and 1.3 in [3], in which a rank-three canonical
tensor approximation (with 450 variables) is sought for a three-way data tensor of
size 50× 50× 50.) Panel (a) of Fig. 4.1 shows how stand-alone steepest descent (sdls)
is very slow for this problem: it requires more than 30,000 f/g evaluations. (The
tensor calculations are performed in matlab using the Tensor Toolbox [2]. For this
problem, we use δ = 10−3 in (2.2).) The GMRES-sdls and N-GMRES-sd convergence
profiles confirm once more one of the main messages of this paper: steepest-descent
preconditioned N-GMRES speeds up stand-alone steepest descent very significantly.
However, steepest descent preconditioning (which we have argued is in some sense
equivalent to non-preconditioned GMRES for linear systems) is not powerful enough
for this difficult problem, and a more advanced preconditioner is required. Indeed,
Panel (a) of Fig. 4.1 shows that the stand-alone ALS process is already more efficient
than steepest-descent preconditioned N-GMRES. Panel (b) indicates, however, that
N-GMRES preconditioned by ALS is a very effective method for this problem: it
speeds up ALS very signficantly, and is much faster than N-CG and L-BFGS, by a
factor of 2 to 3. (Panel (b) of Fig. 4.1 illustrates the findings from extensive tests com-
paring ALS, N-CG and ALS-preconditioned N-GMRES that were reported in Paper
I and [1].)

In the case of GMRES for linear systems, non-preconditioned GMRES (or: GM-
RES with the identity preconditioner) is often just a starting point. For many difficult
problems it converges too slowly, and there is a very extensive and ever expanding
research literature on developing advanced problem-dependent preconditioners that
in many cases speed up convergence very significantly. In the same way, the present
paper is likely not more than a starting point in theoretically and numerically estab-
lishing the N-GMRES optimization method with general steepest descent precondi-
tioning process. As the results shown in Fig. 4.1 already indicate, we expect that
the real power of the N-GMRES optimization framework will turn out to lie in its
ability to use powerful problem-dependent nonlinear preconditioners. This suggests
that further exploring N-GMRES optimization with advanced preconditioners may
lead to efficient numerical methods for a variety of nonlinear optimization problems.
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