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SUMMARY

Optimal control problems with partial differential equations as constraints play an important role in many
applications. The inclusion of bound constraints for the state variable poses a significant challenge for
optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida
regularization technique. This method has been studied recently and has proven to be advantageous
compared to other approaches. In this paper we develop robust preconditioners for the efficient solution
of the Newton steps associated with solving the Moreau-Yosida regularized problem. Numerical results
illustrate the efficiency of our approach. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimization problems with constraints given by partial differential equations (PDEs) arise in a
variety of applications (see [24]). Comprehensive introductions to this field can be found in [48, 24].
Throughout this paper, we consider the minimization of a functional J(y, u) defined as

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

β

2
‖u‖2L2(Ω) , (1)

with Ω ⊂ Rd̄, d̄ ∈ {2, 3}. In (1) β ∈ R+ represents a regularization parameter and yd is a given
function that represents the desired state. The state y and the control u are linked via the Poisson
equation

−4y = u in Ω (2)

with boundary conditions y = g on ∂Ω or

−4y + y = u in Ω (3)

with boundary conditions ∂y
∂n = 0 on ∂Ω. We decide to consider both (2) and (3) as both play a

significant role in the literature. The choice of g will typically be 0 or the projection of yd onto the
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box defined by constraints. The introduction of box constraints on the control and the state, i.e.,

u ≤ u ≤ u (4)

and

y ≤ y ≤ y (5)

is of practical interest. In this paper we will focus on the numerical solution of the optimization
problem given above when state constraints are present. Effective preconditioning strategies for the
control constrained case can be found in [46, 23]. We will later show that a semi-smooth Newton
method applied to the Moreau-Yosida regularization of (1) leads to a linear system of saddle point
form. The saddle point matrix is symmetric and indefinite, and a variety of methods exists to solve
problems of this type efficiently (see [2] for a survey). In practice the linear system is usually of
sufficiently high dimension that iterative solution methods are needed, and it is never solved without
the application of a preconditioner P which is chosen to enhance the convergence behaviour of the
iterative method. A variety of preconditioners exists to tackle saddle point problems. The aim of this
paper is to present preconditioners that are tailored towards the efficient solution of the linear system
arising from the discretization of an optimal control problem involving a partial differential equation
and state constraints. In general, the state constrained problem is a considerably harder problem (see
Section 2) than the control constrained problem. In this paper, we will introduce preconditioning
strategies that allow for a robust solution of the linear system with respect to both the regularization
parameter β and the parameter coming from the Moreau-Yosida penalty term.

The paper is organized as follows. The problem we are interested in will be presented in detail
in Section 2. Our focus in this paper is to derive efficient preconditioners for the optimal control
problems and hence our focus is to introduce all methods from a linear algebra perspective. We
show how for each method the saddle point system can be preconditioned and efficiently solved
using a Krylov subspace technique. We successively introduce three preconditioners, where the first
is derived from previous results for PDE-constrained optimization and the second follows a recent
techniques focusing on robustness with respect to the regularization parameters. The numerical
results presented in Section 4 illustrate the performance of the presented method.

2. THE MOREAU-YOSIDA FORMULATION

We consider the case when state constraints are introduced and assume that the functional J(y, u)
(1) has to be minimized for functions y and u defined over a domain Ω ⊂ Rd̄. The problem of
minimizing (1) when bound constraints on the state are given is more complicated than the control
constrained case [8, 24, 26] as in general the Lagrange multiplier is only a measure. Several remedies
have been proposed for this problem. In [30] Meyer et al. consider regularized state constraints , i.e.,

y ≤ εu+ y ≤ y. (6)

An alternative approach is given by changing the objective function (1) using the Moreau-Yosida
penalty function [25] to give

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

β

2
‖u‖2L2(Ω) +

1

2ε
‖max {0, y − y}‖2L2(Ω)

+
1

2ε

∥∥min
{

0, y − y
}∥∥2

L2(Ω)
,

(7)

subject to the above state equations with appropriate boundary conditions. For the remainder of this
manuscript we will assume that the state equations and hence J(y, u) are considered in discretized
form using an appropriate finite element discretization [23].
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The discretized version of state equation (2) and (1) is given by

Minimize
1

2
(y − yd)T M (y − yd) +

β

2
uTMu

+
1

2ε
max {0, y − y}T M max {0, y − y}

+
1

2ε
min {0, y − y}T M min {0, y − y}

subject to Ky = Mu− f.

(8)

Here K represents the stiffness matrix and M the mass matrix. We will only consider the lumped
mass matrix here but comment later on how to precondition for the consistent mass matrix. Note
that y, u, yd, y, and y now represent vectors. The optimality system of (8) looks as follows:

−KTλ = −M(y − yd)− ε−1χA+
M max {0, y − y} − ε−1χA−M min

{
0, y − y

}
(9)

βMu+Mλ = 0 (10)
−Ky +Mu = f (11)

with χA+
being the characteristic function for the indices where y − y > 0 and χA− the

characteristic function for the region where y − y < 0. Note that A+ = {i : yi > yi} and A− ={
i : yi < y

i

}
are the active sets associated with the bound constraints on the state y at step k. If we

now wish to apply a semi-smooth Newton method to (9)–(11) we must solve the following system
at every step:  M + ε−1GAMGA 0 −KT

0 βM M
−K M 0

 y(k+1)

u(k+1)

λ(k+1)

 =

 cA
0
f

 , (12)

where cA = Myd + ε−1
(
GA+

MGA+
y +GA−MGA−y

)
defines part of the right hand side, A =

A− ∪ A+ and the G matrices are projections onto the active sets defined by A. The application of
the semi-smooth Newton method to these problems has been studied (see [23, 25, 5]). Our task is
the efficient solution of the linear system in (12) which is of saddle point form. Note that we do not
focus on the discussion of the the inexact semi-smooth Newton method here but rather refer to [27]
where it was observed that with suitable preconditioning this method performed just as well as the
exact semi-smooth Newton method.

In the case of the state equation being defined by (3) we define K := KN +M, where KN is the
stiffness matrix for a pure Neumann problem, and obtain the same formulation as shown above.

The Moreau-Yosida regularization has also recently been analyzed for semilinear elliptic
problems (see [28]).

3. SOLUTION OF THE LINEAR SYSTEM AND EIGENVALUE ANALYSIS

The system matrix

K :=

 L 0 −KT

0 βM M
−K M 0

 (13)

is symmetric and indefinite; we define L = M + ε−1GAMGA for the remainder of this paper. Note
that the block blkdiag(L, βM) is symmetric and positive definite, as we have a mass matrix as
the first term and a mass matrix plus a submatrix of a mass matrix as the other. The matrix K
is the stiffness matrix associated with the weak formulation of (2) or (3) – it is symmetric and
positive definite. Benzi et al. [2] discuss properties and numerical methods to solve matrices of
saddle point form. As K is a large and sparse, symmetric and indefinite matrix, a Krylov subspace
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solver [39, 20, 13] will be our method of choice. For smaller (and typically 2D) examples direct
methods [9, 11] will prove very efficient but for large and/or 3D problems these methods are likely
to run out of memory.

The choice of preconditioners that we mention in this section is motivated by an observation
about the eigenvalues of the preconditioned system P−1K for certain preconditioners P . Murphy et
al. show in [31] that for some idealized preconditioners the matrix P−1K has only a small number
of eigenvalues (3 for block-diagonal and 2 for block-triangular).

One method that is a standard choice for symmetric and indefinite systems is the minimal residual
method (MINRES) introduced in [32] as a method for minimizing the residual ‖rk‖2 = ‖Kxk − b‖2
over the current Krylov subspace

span
{
r0,Kr0,K2r0, . . . ,Kk−1r0

}
.

In order to be able to use MINRES, we need the preconditioner to be symmetric and positive definite,
and hence block-diagonal preconditioners would present a natural choice [13, 15]. A preconditioner
for MINRES and the above problem could look like the following:

P =

 A0 0 0
0 A1 0

0 0 Ŝ

 , (14)

with A0, A1, and Ŝ being approximations to the (1, 1)-block, the (2, 2)-block and the Schur
complement, respectively. The use of MINRES for optimal control problems has been recently
investigated in [36, 35, 6, 45, 42]. Note that MINRES is also applicable in the case of a semi-definite
(1, 1)-block, which is the case if we were to consider the minimization of J(y, u) as in (1), but with
the ‖y − yd‖2 term given on some subdomain Ω1 ⊂ Ω (as opposed to Ω itself). This problem was
investigated in [44]. We believe that the results presented here can be applied to the subdomain case
when MINRES is employed with a block-diagonal preconditioner.

Another class of methods that has proven to be of interest is based on the fact that for some
preconditioners the preconditioned saddle point matrix P−1K is symmetric and positive definite in
an inner product defined by a matrixH, i.e., 〈P−1Ax, y〉H = 〈x,P−1Ay〉H where 〈x, y〉H = xTHy.
There exists a variety of such methods [7, 40, 16, 3, 29, 10], which can also be combined to give
rise to new methods [43, 41]. Herzog and Sachs [23] analyzed the method of Schöberl and Zulehner
[40] for state and control constrained optimal control problems.

We wish to focus our attention on the so-called Bramble-Pasciak CG method introduced in [7], a
method that uses a block-triangular preconditioner

P =

 A0 0 0
0 A1 0

−K M −Ŝ

 , (15)

with A0, A1, and Ŝ being approximations just as above. Once the preconditioner is applied to K,
the resulting preconditioned matrix K̂ = P−1K is not symmetric anymore but self adjoint in a non-
standard inner product defined by

H =

 L−A0 0 0
0 βM −A1 0

0 0 Ŝ

 . (16)

It is clear that forH to define an inner product the diagonal blocks have to be symmetric and positive
definite. While this is in general a rather tricky issue requiring an eigenvalue estimation problem,
in the case of (lumped) mass matrices scaling is straightforward [46]. Further, for the case of a
consistent mass matrix, Rees and Stoll showed that the scaling issues can be easily removed [36].
For more details on the implementation and properties of the non-standard inner product solver we
refer to [7, 12, 23, 41, 37, 36, 40] and Algorithm 1 below.
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1: Given x0 = 0, set r0 = P−1 (b−Kx0) and p0 = r0

2: for k = 0, 1, . . . do
3: α = 〈rk,rk〉H

〈P−1Kpk,pk〉H
4: xk+1 = xk + αpk
5: rk+1 = rk − αP−1Kpk
6: β =

〈rk+1,rk+1〉H
〈rk,rk〉H

7: pk+1 = rk+1 + βpk
8: end for

Algorithm 1: Non-standard inner product CG

3.1. First preconditioner

The Schur complement of K is given by

S = KL−1KT + β−1M. (17)

For the case L = M it was proposed [35] to neglect the term β−1M, which would in our case
result in an approximation Ŝ0 = KL−1KT to S. For a symmetric system the clustering of the
eigenvalues will govern the convergence of the iterative scheme and we want to analyze the
eigenvalue distribution of K̂ = P−1K for an idealized case. We consider now the block-triangular
preconditioner with the choice A0 = L, A1 = βM and Ŝ0 = KL−1KT , then the eigenvalues of the
preconditioned matrix P−1K can be read off the diagonal blocks, i.e.,

P−1K =

 I 0 −L−1KT

0 I β−1I
0 0 I + β−1K−TLK−1M

 (18)

which shows that there are 2n eigenvalues equal to 1, and n eigenvalues are given by the eigenvalues
of I + β−1K−TLK−1M. Thus, we wish to find eigenvalue bounds for I + β−1K−TLK−1M .
The eigenvalue bounds may be obtained from a field of value analysis†. Note that the matrix
I + β−1K−TLK−1M is similar to the symmetric matrix M1/2

(
I + β−1K−TLK−1M

)
M−1/2 =

I + β−1M1/2K−TLK−1M1/2 and

xTx+ β−1xTM1/2K−TLK−1M1/2x

xTx
= 1 +

β−1
(
zTLz

) (
xTMx

) (
yTK−TK−1y

)
(xTx) (yT y) (zT z)

(19)

with y = M1/2x and z = K−1y. The second term on the right hand side of (19) can be bounded
using the results of Proposition 1.29 and Theorem 1.32 in [13], which provide bounds for the
eigenvalues of the consistent mass matrix and the stiffness matrix. Namely, with h being the mesh-
size of our finite element we have that

ch2 ≤ xTMx

xTx
≤ Ch2 and dh2 ≤ xTKx

xTx
≤ D

with c, C, d, and D being mesh-independent constants. Note that these are the bounds for a two-
dimensional problem. For three-dimensional bounds we also refer to [13] but do not discuss them
here. This directly gives bounds for almost all the terms in (19) and the only term that we need to
analyze further is zTLz/zT z. Using the definition of L we get

(
zTMz + ε−1zTGAMGAz

)
/zT z,

which obviously can be bounded above by (1 + ε−1)Ch2. Hence, the overall bound is given by

λ(I+β−1K−TLK−1M)
max ≤ 1 +

C2

βd2
+

C2

βεd2
. (20)

†The field of values of a matrix A ∈ Rn,n is a set given by xTAx
xT x

∀x 6= 0, x ∈ Rn.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
Prepared using nlaauth.cls DOI: 10.1002/nla



6 PEARSON, STOLL, WATHEN

Similarly the minimum eigenvalues are given by

1 ≤ 1 +
c2h4

βD2
+

c2h4

βεD2
≤ λ(I+β−1K−TLK−1M)

min . (21)

Theorem 3.1. For the consistent mass matrix M and the stiffness matrix K of a Q1 finite element
space, the eigenvalues of the matrix

I + β−1K−TLK−1M

lie in the interval
[
1, 1 + C2

βd2 + C2

βεd2

]
.

We remark that the eigenvalue distribution depends on the regularization parameter β as was
previously observed for other cases (see [35, 46]). It also depends on the values of the penalty
parameter ε: with decreasing value of ε the upper bound for the eigenvalues in Theorem 20 will
increase.

We used the block Ŝ0 = KM−1K as an approximation for the Schur complement of the system
matrix K. This choice results in good clustering of the eigenvalues, but is too expensive for
practical purposes as Ŝ−1

0 involves the term K−1 (the discretized PDE) twice. One now has to
approximate the matrix K as best as possible. For this it is very important to take the structure of
the infinite-dimensional problem into account. For both PDEs (2) and (3) the underlying operators
are elliptic PDEs and hence multigrid provides a suitable and optimal preconditioner. The most
efficient method would certainly be a geometric multigrid method as described in [21, 50]. It is well
known that algebraic multigrid method provide very good approximations to the above operators
while allowing greater flexibility than their geometric counterparts [38, 14]. As we implemented
our method within the deal.II framework [1] we use the available interface to Trilinos [22] and the
smoothed aggregation AMG implemented there [17]. Our choice will be to approximate K by a
small number of V-cycles and a fixed number of steps of a Chebyshev smoother. The mass matrix
M can be efficiently approximated using a variety of methods. In our case, as we only work with
lumped mass matrices, we can effortlessly solve forM . For consistent mass matrices the Chebyshev
semi-iteration [18, 19] provides a powerful preconditioner [49, 36].

3.2. Two improved preconditioners

As we have seen in Theorem 3.1 the regularization parameters β and ε enter into the eigenvalue
bounds of the preconditioned matrix. Based on recent efforts [34, 33, 47] we wish to reduce the
dependence on the regularization parameters within the preconditioned matrix. For this we motivate
a new preconditioner. It is based on the observation that all the mass matrices are lumped and hence
the matrix L can be split up in the following way

L =

[
MI 0
0 (1 + ε−1)MA

]
where MI is the part of the mass matrix that corresponds to the free variables and MA analogously
to the active sets. Our aim is to propose a preconditioner of the form

Ŝ1 = (K + M̂)L−1(K + M̂) (22)

where Ŝ1 now approximates the Schur complement S = KL−1K + β−1M better than Ŝ0. Hence,
we examine Ŝ1 in more detail

Ŝ1 = KL−1K + M̂L−1M̂ +KL−1M̂ + M̂L−1K, (23)

and look for a way for M̂L−1M̂ to approximate the term β−1M in the best possible manner. Writing

M̂ =

[
αMI 0

0 γMA

]
,
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for some parameters α and γ, gives that if M̂L−1M̂ = β−1M , then[
α2MI 0

0 γ2(1 + ε−1)−1MA

]
= M̂L−1M̂ = β−1M =

[
β−1MI 0

0 β−1MA

]
. (24)

This yields that

α =
1√
β

and γ =

√
1 + ε−1

√
β

, (25)

which we then use for M̂ in our approximation to Ŝ1 in (22). The question now is whether this
results in better bounds for the eigenvalues of the preconditioned matrix. For this we are interested
in the eigenvalues of the matrix Ŝ−1

1 S – a bound for the eigenvalues of this matrix in the 2D case is
presented in Lemma 3.1 below. The 3D case is similar.

Lemma 3.1. For values χ ∈ [dh2, D], which correspond to eigenvalues of K, the eigenvalues λ of
Ŝ−1

1 S satisfy

λ(Ŝ−1
1 S) ∈

[
1

2
,

(
1− 2

ω + ω−1

)−1
]
,

where ω = β1/2χη−1/2h−2 > 0 up to a multiplicative constant of O(1), with η equal to either 1 or
1 + ε−1.

Proof. The eigenvalues of the matrix Ŝ−1
1 S are bounded by the extreme values of the Rayleigh

quotient

vTSv

vT Ŝ1v
=

vTKL−1Kv + β−1vTMv

vTKL−1Kv + β−1vTMv + vT M̂L−1Kv + vTKL−1M̂v
(26)

=

(
1 +

vT M̂L−1Kv + vTKL−1M̂v

vTKL−1Kv + β−1vTMv

)−1

=: R. (27)

The term of interest here is

vT M̂L−1Kv + vTKL−1M̂v

vTKL−1Kv + β−1vTMv
=
bTa+ aT b

aTa+ bT b
,

with a = L−1/2Kv and b = L−1/2M̂v. We note first that we may write

(a− b)T (a− b) ≥ 0⇔ aT b+ bTa

aTa+ bT b
≤ 1

for any a, b. Using this along with the fact that aTa+ bT b > 0 gives immediately that R ≥ 1
2 for all

v.
For the upper bound of R, we first note that, excluding multiplicative constants of

O(1), λ(K) ∈ [h2, 1], λ(M) = h2, λ(L) = {1, 1 + ε−1}. Further, as M̂L−1 = L−1M̂ =

1√
β

[
I 0
0 (1 + ε−1)−1/2I

]
, we have that λ(M̂L−1) = λ(L−1M̂) ∈ {β−1/2, β−1/2(1 +

ε−1)−1/2}. We are now in a position to consider the upper bound of R, which corresponds
to the largest negative value of b

T a+aT b
aT a+bT b

. We write (using the eigenvalue bounds stated)

bTa+ aT b

aTa+ bT b
≥ − 2β−1/2χη−1/2

χ2η−1h−2 + β−1h2
= − 2

ω + ω−1
, where ω = β1/2χη−1/2h−2 > 0,

again excluding multiplicative constants. Therefore

R ≤
(

1− 2

ω + ω−1

)−1

,
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and the result is proved. 2

We observe that we cannot prove a universal, clean upper bound for λ(Ŝ−1
1 S), due to the non-

symmetry of the matrices M̂L−1K and its transpose. However, we note that if ω is not too close to
1, the upper bound of Lemma 3.1 will be close to 1. We observe that in many practical cases, it is
the case that ω is much smaller than 1, and therefore our Schur complement approximation is robust
in these cases (as well as those where ω is much greater than 1).‡ In Figure 1, we present graphs of
eigenvalues of Ŝ−1

1 S for a variety of values of h, β and ε to demonstrate that in almost all cases of
practical interest, our Schur complement approximation is highly effective. The figures consist of
parameter regimes which are close to the worst case in terms of the largest eigenvalue of Ŝ−1

1 S.

(a) Different cardinalities of the active set for β =
1e− 2 and ε = 1e− 6.
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(b) Only one free variable, β = 1e− 2, and ε = 1e−
6 for varying matrix dimensions.
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(c) For n− 1 degrees of freedom in the active sets,
varying regularization and penalty parameter.
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varying regularization parameter.
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Figure 1. Eigenvalues of the preconditioned Schur-complement.

Another potentially potent Schur complement approximation is identified in the following lemma.

Lemma 3.2. If we approximate the Schur complement S as follows:

Ŝ2 =

[
K +

1√
β
M

(
I +

1√
ε
GA

)]
M−1

G

[
K +

1√
β
M

(
I +

1√
ε
GA

)]T
,

whereMG =
(
I + 1√

ε
GA

)
M
(
I + 1√

ε
GA

)
, then the eigenvalues of Ŝ−1

2 S satisfy

λ(Ŝ−1
1 S) ∈

[
1

2
, 2

(
1− 2

ν + ν−1

)−1
]
,

where ν = β1/2χζ−1h−2 > 0 up to a multiplicative constant of O(1). Here, χ is as defined in
Lemma 3.1, and ζ is either 1 or 1 + ε−1/2.

‡We note that in the worst case, when ω is equal to 1, making a slight adjustment to β (say multiplying or dividing it by
4) will ensure that ω is moved away from 1, therefore guaranteeing good clustering of the eigenvalues without altering
the formulation of the problem in a major way.
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Proof. We seek to prove that

S ≈ K
[(
I +

1√
ε
GA

)
M

(
I +

1√
ε
GA

)]−1

KT +
1

β
M := S̃ ≈ Ŝ2,

which we do by considering the eigenvalues of S̃−1S and Ŝ−1
2 S̃, using Rayleigh quotients.

We first examine the Rayleigh quotient

R1 :=
vT (M + ε−1GAMGA)v

vT (I + ε−1/2GA)M(I + ε−1/2GA)v
=

aT1 a1 + bT1 b1
(a1 + b1)T (a1 + b1)

,

where a1 = M1/2v and b1 = ε−1/2M1/2GAv. We can see by straightforward algebra (using that
aT1 a1 > 0 by positive definiteness of M ) that R1 ≥ 1

2 . Further, using the fact that aT1 b1 = bT1 a1 ≥ 0
(by virtue of the diagonal and positive definite structure of the lumped mass matrix M , and the
diagonal and positive semi-definite structure of the projection matrixGA), we can show thatR1 ≤ 1.
From these bounds, it is a simple matter to show that the Rayleigh quotient v

TSv

vT S̃v
∈ [1, 2].

Looking now at the eigenvalues of Ŝ−1
2 S̃, we examine the Rayleigh quotient vT S̃v

vT Ŝ2v
, writing

R2 :=
vT S̃v

vT Ŝ2v
=

aT2 a2 + bT2 b2
(a2 + b2)T (a2 + b2)

=

(
1 +

aT2 b2 + bT2 a2

aT2 a2 + bT2 b2

)−1

,

where a2 = M−1/2(I + ε−1/2GA)−1KT v and b2 = β−1/2M1/2v. By algebraic manipulation
(using that bT2 b2 > 0), it is clear that a

T
2 b2+bT2 a2
aT2 a2+bT2 b2

≤ 1, and hence that R2 ≥ 1
2 . For the upper bound

of R2, we consider the maximum negative value of a
T
2 b2+bT2 a2
aT2 a2+bT2 b2

. Using that (excluding multiplicative

constants of O(1)) λ(K) ∈ [h2, 1], λ(M) = h2 and λ(I + ε−1/2GA) ∈ {1, 1 + ε−1/2}, we may use
a very similar approach as in Lemma 3.1 to write that

aT2 b2 + bT2 a2

aT2 a2 + bT2 b2
≥ − 2β−1/2χζ−1

χ2ζ−2h−2 + β−1h2
= − 2

ν + ν−1
, where ν = β1/2χζ−1h−2 > 0,

and therefore that R2 ≤
(
1− 2

ν+ν−1

)−1
.

Finally, using the above results, we have that the Rayleigh quotient

vTSv

vT Ŝ2v
=
vTSv

vT S̃v
· v

T S̃v

vT Ŝ2v
∈

[
1

2
, 2

(
1− 2

ν + ν−1

)−1
]
,

and so the result is proved. 2

It is clear that the bound proved in Lemma 3.2 is tight if ν is far from 1. We again find that this is
frequently the case in practical situations, and provide numerical evidence to demonstrate that the
eigenvalue bound proved in Lemma 3.2 is indeed a useful one in the vast majority of such cases.
Figure 2 shows the eigenvalues for a small example using the Schur complement approximation Ŝ2.
We believe that both Ŝ1 and Ŝ2 are viable and effective Schur complement approximations for the
problem we are considering.

As we only focus on lumped mass matrices in this paper we refrain from showing results for the
non-lumped case in Section 4, though some results still hold for consistent mass matrices.

We note that the analytical results of this section were obtained for an idealized case where we
use approximations of the form

Ŝ = (K + M̂)L−1(K + M̂) with Ŝ−1 = (K + M̂)−1L(K + M̂)−1.

However in practice we always use

Ŝ−1 =
̂

(K + M̂)
−1

L
̂

(K + M̂)
−1

,
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Figure 2. Eigenvalues for n/2 variables in the active sets and varying values of β

where

̂
(K + M̂)

−1

denotes the application of an algebraic or geometric multigrid method to the matrix K + M̂ . Note
that as M̂ changes with every Newton iteration, we must recompute it at the beginning of each
Newton step. Nevertheless, the reduction in iteration numbers is so significant that this is clearly the
preferred approach, especially for small values of the regularization parameters.

3.3. Nested approach

A strategy that will prove useful in the context of solving state constrained problems is the so-
called nested approach [23]. This technique starts by computing the solution to the state constrained
problem on a very coarse grid. In the next step a uniform refinement is performed for the mesh, and
the solution from the coarse level is prolonged onto the fine mesh. This solution is then used as an
initial guess for the Newton method on the fine level. Once the solution is computed to a desired
accuracy we can proceed in the same way onto the next finer grid. It is hoped (and will be shown in
the next section) that this strategy reduces the number of Newton steps significantly.

4. NUMERICAL EXPERIMENTS

All results shown in this section were computed using the deal.II [1] framework with an
implementation of the Bramble-Pasciak CG method that uses the 2-norm of the relative
preconditioned residual (10−6) as the stopping criterion. The Newton method is stopped whenever
the active sets stay unchanged [4]. For the approximation via algebraic multigrid (AMG) we use
10 steps of a Chebyshev smoother and 4 V-cycles of the smoothed aggregation algebraic multigrid
implemented in Trilinos [17]. As the domain Ω we consider the unit square or cube. All results are
performed on a Centos Linux machine with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and
48GB of RAM.
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4.1. Results for Dirichlet problems

2D results The first example we compute is a Dirichlet problem with boundary condition y =
P[y,y] (yd) on ∂Ω defined by

P[y,y]yi =


ydi if y

i
< yi < yi

yi if yi ≥ yi
y
i

if yi ≤ yi.

Figure 3 shows the desired state yd, computed control u and state y for the case without bound
constraints. In Figure 4 we show the computed state and control for a bound constrained problem.
The problem is unconstrained from below and the upper bound is given by y = 0.1. It can be seen
that there is a small active set where yd is attained which results in the ‘hole’ in the control (see
Figure 4b and the active set (black contour) in 4a). Here the desired state is given by

yd = sin(2πx1x2).

Table I shows results for β = 1e− 2, ε = 1e− 6 and the upper bound y = 0.1. It can be seen
that for this setup the preconditioner as well as the Newton method are almost independent of
the mesh parameter. In our experience the performance of the algebraic multigrid preconditioner
deteriorates for meshes with smaller mesh size h. The increase in iteration numbers could not be
observed if a factorization of K + M̂ was used, which for large problems is not feasible. Hence, we
chose a rather large number of V-cycles, namely 4, to approximate the matrix well. A parameter
independent approximation of K + M̂ should be investigated in future research. Note that the
timings shown also include the setup of the preconditioner for each Newton step in the improved
preconditioner. As we can see from Table II where we show results for the same setup but with the
non-robust preconditioner presented in Section 3.1, the improvement is substantial as for the setup
with β = 1e− 2, ε = 1e− 6, however the Newton method did not converge within 50 iterations.
For β = 1e− 2, ε = 1e− 4 we show the results with 4 multigrid cycles in Table III and observe
good convergence for this setup of parameters. As for the non-robust preconditioner, the algebraic
multigrid only has to approximate K – a smaller number of V-cycles produces the results shown in
Table IV. Note that as observed in [27] the quality of the preconditioner determines the convergence
of the semi-smooth Newton method with inexact solves.

DoF Newton steps Total CG CG per Newton Time for Newton
1089 14 259 18 11.27
4225 8 138 17 12.63
16641 7 108 15 30.3
66049 7 118 16 123.54

263169 6 103 17 462.78
1050625 7 183 26 3267.28

Table I. 2D-Results for non-zero Dirichlet boundary, β = 1e− 2, ε = 1e− 6 and y = 0.1.

The next comparison we wish to make is that of the quality of the preconditioner for different
values of the parameters. As we mentioned earlier some dependence of the AMG on the parameters
could be observed. Hence, our choice is on a factorization of K + M̂ for a smaller mesh with
16641 degrees of freedom. The results shown in Table V show that having no deterioration in the
approximation of K + M̂ results in almost constant low iteration numbers for the CG steps per
iteration. In practice one should of course use approximations to K + M̂ .

3D results We now wish to show results for the 3D example with the desired state given by

yd = sin(2πx1x2x3)
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DoF Newton steps Total CG CG per Newton Time for Newton
1089 14 780 55 29.31
4225 2 14 7 1.25
16641 5 59 11 13.63
66049 10 170 17 131.98

263169 No convergence after 50 Newton steps
Table II. 2D-Results for non-zero Dirichlet boundary, β = 1e− 2, ε = 1e− 6 and y = 0.1.

DoF Newton steps Total CG CG per Newton Time for Newton
1089 9 145 16 5.55
4225 3 21 7 1.87
16641 4 34 8 7.75
66049 4 39 9 31.26

263169 9 172 19 530.38
Table III. 2D-Results for non-zero Dirichlet boundary, β = 1e− 2, ε = 1e− 4 and y = 0.1 with 4 V-cycles.

DoF Newton steps Total CG CG per Newton Time for Newton
1089 9 150 16 5.64
4225 3 24 8 1.76
16641 7 124 17 22.63
66049 8 307 38 191.54

263169 10 1059 105 2507.48
Table IV. 2D-Results for non-zero Dirichlet boundary, β = 1e− 2, ε = 1e− 4 and y = 0.1 with 2 V-cycles.

ε ↓ β → 1e-2 1e-4 1e-6
1e-4 19 27 26
1e-6 26 34 28
1e-8 32 36 28

Table V. Number of CG iterations per Newton step for different values of β and ε, using a direct factorization
of K + M̂ . The example was again the 2D-results for non-zero Dirichlet boundary and y = 0.1.

and a zero Dirichlet boundary condition. In this case we again consider the upper bound y = 0.1,
and the parameters β = 1e− 2 and ε = 1e− 4. The results shown in Table VI show that the iteration
numbers per Newton step as well as the number of Newton steps stays constant.

DoF Newton steps Total CG CG per Newton Time for Newton
729 4 48 12 1.05
4913 4 53 13 6.17
35937 4 53 13 37.78

274625 3 41 13 228.05
Table VI. 3D-Results for zero Dirichlet boundary and y = 0.1.
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(a) Desired state (b) State (c) Control

Figure 3. Desired state, state and control for unconstrained problem

(a) Computed state (b) Computed control

Figure 4. Computed state and control for constrained problem

4.2. Results for Neumann boundary

In this section we only consider three-dimensional results for the problem with the state equation
given by (3). We start with the desired state given by

yd = sin(2πx1x2x3)

and the lower bound y = 0 – the results are shown in Table VII. Here we take β = 1e− 3 and
ε = 1e− 5. An illustration of the desired state and the constrained state is shown in Figure 5.

DoF Newton steps Total CG CG per Newton Time for Newton
729 6 78 13 1.95
4913 4 63 15 7.49
35937 4 72 18 51.61

274625 4 75 18 413.21
2146689 5 104 20 4458.58

Table VII. 3D-Results for Neumann boundary and y = 0.2.
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(a) Desired state (b) State

Figure 5. Desired state and state with lower bound y = 0 for problem in 3D

We next compute an example presented in [23] where the desired state is given by

yd =

{
1 if x0 < 0.5

−2 otherwise.
(28)

The upper bound is given by y = 0 and β = 1e− 2 and ε = 1e− 4. The results are shown in Table
VIII where, in contrast to [23], we observe parameter robust convergence.

DoF Newton steps Total CG CG per Newton Time for Newton
729 5 52 10 1.32
4913 1 13 13 1.67
35937 2 30 15 22.19

274625 2 32 16 181.56
2146689 1 16 16 758.11

Table VIII. 3D-Results for Neumann boundary and y from Herzog and Sachs.

5. CONCLUSIONS AND OUTLOOK

In this paper we introduced preconditioners for a state constrained PDE-constrained optimization
problem when solved using the Moreau-Yosida penalization. The Krylov subspace solvers we used
showed very promising performance as we could theoretically and practically obtain parameter
robust convergence of the preconditioned Krylov solver.

In the future, it would be useful to investigate the problem where the L2 norm of y − yd
is measured on a subdomain of Ω, as opposed to Ω itself, as previously discussed. This, like
the problem considered in this manuscript, could be solved using the preconditioned MINRES
algorithm. Also, the choice of multilevel method for the parameter dependent matrixK + M̂ should
be re-considered, as we could observe dependence on the parameters for smaller meshes within the
AMG preconditioner. Geometric multigrid and more advanced algebraic multigrid preconditioners
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should be investigated, and incorporation of a more sophisticated scheme for the parameter ε would
also be desirable for future implementations. Finally, a significant piece of future work would be to
extend the results presented here to time-dependent problems, as well as to more difficult PDEs.
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