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SUMMARY

Use of the stochastic Galerkin finite element methods leads to large systems of linear equations obtained
by the discretization of tensor product solution spaces along their spatial and stochastic dimensions. These
systems are typically solved iteratively by a Krylov subspace method. We propose a preconditioner which
takes an advantage of the recursive hierarchy in the structure of the global matrices. In particular, the matrices
posses a recursive hierarchical two-by-two structure, with one of the submatrices block diagonal. Each
one of the diagonal blocks in this submatrix is closely related to the deterministic mean-value problem,
and the action of its inverse is in the implementation approximated by inner loops of Krylov iterations.
Thus our hierarchical Schur complement preconditioner combines, on each level in the approximation of
the hierarchical structure of the global matrix, the idea of Schur complement with loops for a number of
mutually independent inner Krylov iterations, and several matrix-vector multiplications for the off-diagonal
blocks. Neither the global matrix, nor the matrix of the preconditioner need to be formed explicitly. The
ingredients include only the number of stiffness matrices from the truncated Karhunen-Loève expansion
and a good preconditioned for the mean-value deterministic problem. We provide a condition number bound
for a model elliptic problem and the performance of the method is illustrated by numerical experiments.
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1. INTRODUCTION

A set-up of mathematical models requires information about input data. When using partial
differential equations (PDEs), the exact values of boundary and initial conditions along with
the equation coefficients are often not known exactly and instead they need to be treated
with uncertainty. In this study we consider the coefficients as random parameters. The most
straightforward technique of solution is the famous Monte Carlo method. More advanced
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2 B. SOUSEDÍK ET AL.

techniques, which have became quite popular recently, include stochastic finite element methods.
There are two main variants of stochastic finite elements: collocation methods [1, 2] and stochastic
Galerkin methods [3, 4, 5]. Both methods are defined using tensor product spaces for the spatial and
stochastic discretizations. Collocation methods sample the stochastic PDE at a set of collocation
points, which yields a set of mutually independent deterministic problems. Because one can use
existing software to solve this set of problems, collocation methods are often referred to as non-
intrusive. However, the number of collocation points can be quite prohibitive when high accuracy is
required or when the stochastic problem is described by a large number of random variables.

On the other hand, the stochastic Galerkin method is intrusive. It uses the spectral finite element
approach to transform a stochastic PDE into a coupled set of deterministic PDEs, and because of
this coupling, specialized solvers are required. The design of iterative solvers for systems of linear
algebraic equations obtained from discretizations by stochastic Galerkin finite element methods
has received significant attention recently. It is well known that suitable preconditioning can
significantly improve convergence of Krylov subspace iterative methods. Among the most simple,
yet quite powerful methods, belongs the mean-based preconditioner by Powell and Elman [6], cf.
also [7]. Further improvements include, e.g., the Kronecker product preconditioner by Ullmann [8].
We refer to Rosseel and Vandewalle [9] for a more complete overview and comparison of various
iterative methods and preconditioners, including matrix splitting and multigrid techniques. Also, an
interesting approach to solver parallelization can be found in the work of Keese and Matthies [10].

Schur complements are historically well known from substructuring and, in particular, from the
iterative substructuring class of the domain decomposition methods cf., e.g., monographs [11, 12].
However they have also shown to posses interesting mathematical properties, and they have been
studied independently [13, 14]. The basic idea is to partition the problem and reorder its matrix
representation such that a direct elimination of a part of the problem becomes straightforward.
This reordering can be also performed recursively, which leads to the recursive Schur complement
methods [15, 16, 17]. The multilevel Schur complement preconditioning in multigrid framework can
be, to the best of our knowledge, traced back to Axelsson and Vassilevski [18, 19]. The Algebraic
Recursive Multilevel Solver (ARMS) by Saad and Suchomel [20] and its parallel version (pARMS)
by Li et al. [21] use variants of incomplete LU decompositions, and they are also closely related
to the Hierarchical Iterative Parallel Solver (HIPS) by Gaidamour and Hénon [22]. We also note
that a remarkable idea for preconditioning non-symmetric systems using an approximate Schur
complement has been proposed by Murphy, Golub and Wathen [23].

In this paper, we propose a symmetric preconditioner which takes advantage of the recursive
hierarchy in the structure of the global system matrices. This structure is obtained directly from
the stochastic formulation. In particular, the matrices posses a recursive hierarchical two-by-two
structure, cf. [24, 25], where one of the submatrices is block diagonal and therefore its inverse can
be computed by inverting each of the blocks independently. Moreover, each of the diagonal blocks
is closely related to the deterministic mean-value problem. In fact, the diagonal blocks are obtained
simply by rescaling the mean-value matrix in the case of linear Karhunen-Loève expansion. So,
assuming that we have a good preconditioner for the mean available, each block can be solved
iteratively by an inner loop of Krylov iterations. Doing so, our hierarchical Schur complement
preconditioner becomes variable because it combines, on each level in the approximation of the
hierarchical structure of the global matrix, the idea of the Schur complement with loops for a number
of mutually independent inner Krylov iterations, and several matrix-vector multiplications for the
off-diagonal blocks. Due to variable preconditioning one has to make a careful choice of Krylov
subspace methods, and their variants such as flexible conjugate gradients [26], FGMRES [27], or
GMRESR [28] are preferred. However, in our numerical experiments, we have obtained the same
convergence with the flexible and the standard versions of conjugate gradients. It is important to
note that neither the global matrix, nor the preconditioner need to be formed explicitly, and we can
use the so called MAT-VEC operations from [25] in both matrix-vector multiplications: by a global
system matrix in the loop of outer iterations and in the action of the preconditioner. The ingredients
of our method thus include only the number of stiffness matrices from the truncated Karhunen-
Loève expansion and a good preconditioner for the mean-value deterministic problem. Therefore
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HIERARCHICAL SCHUR COMPLEMENT PRECONDITIONER 3

the method can be regarded as minimally intrusive because it can be built as a wrapper around
an existing solver for the corresponding mean-value problem. Nevertheless in this contribution we
neither address the parallelization nor the choice of the preconditioner for the mean-value problem.
These two topics would not change the convergence in terms of outer iterations, and they will be
studied elsewhere.

The paper is organized as follows. In Section 2 we introduce the model problem, in Section 3
we discuss the structure of the stochastic matrices, in Section 4 we formulate the hierarchical Schur
complement preconditioner and provide a condition number bound under suitable assumptions, in
Section 5 we outline possible variants of the method and provide details of our implementation, and
finally, in Section 6 we illustrate the performance of the algorithm by numerical experiments, and
in Section 7 we provide a short summary and a conclusion of the work presented in this paper.

2. MODEL PROBLEM AND ITS DISCRETIZATION

Let D be a domain in Rd, d = 2, and let (Ω,F , µ) be a complete probability space, where Ω is the
sample space, F is the σ−algebra generated by Ω and µ : F → [0, 1] is the probability measure. We
are interested in a solution of the following elliptic boundary value problem: find a random function
u (x, ω) : D × Ω→ R which almost surely (a.s.) satisfies the equation

−∇ · (k (x, ω) ∇u (x, ω)) = f (x) in D × Ω, (1)
u (x, ω) = 0 on ∂D × Ω, (2)

where f ∈ L2 (D), and k (x, ω) is a random scalar field with a probability density function dµ (ω) .
We note that the gradient symbol ∇ denotes the differentiation with respect to the spatial variables.
Also, we will assume that there exist two constants 0 < kmin ≤ kmax such that

µ
(
ω ∈ Ω : kmin ≤ k (x, ω) ≤ kmax ∀x ∈ D

)
= 1.

In the weak formulation of problem (1)-(2), we would like to solve

u ∈ U : a (u, v) = 〈f, v〉 , ∀v ∈ U. (3)

Here f ∈ U ′ with U ′ denoting the dual of U and 〈·, ·〉 the duality pairing. The space U and its norm
are defined, using a tensor product and expectation E with respect to the measure µ, as

U = H1
0 (D)⊗ L2

µ (Ω) , ‖u‖U =

√
E
[∫

D

|∇u|2 dx
]
.

The bilinear form a and right-hand side are

a (u, v) = E
[∫

D

k (x, ω) ∇u · ∇v dx
]
, 〈f, v〉 = E

[∫
D

f v dx

]
.

Next, let us define the stochastic operator Kω : U → U ′ by

a (u, v) = 〈Kωu, v〉 , ∀u, v ∈ U. (4)

So the problem (3) can be now equivalently written as the stochastic operator equation

〈Kω u, v〉 = 〈f, v〉 , ∀v ∈ U. (5)

The operator Kω is stochastic via the random parameter k (x, ω). Assuming that its covariance
function C (x1, x2) is known, we will further assume that it has the linear Karhunen-Loève (KL)
expansion truncated after N terms as

k (x, ω) =

N∑
i=0

ki (x) ξi (ω) , ξ0 = 1, ξi ∼ U [0, 1] i = 1, . . . , N, (6)
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4 B. SOUSEDÍK ET AL.

such that ξi (ω), i > 0 are identically distributed, independent random variables. Here k0 is the mean
of the random field, and ki (x) =

√
λivi (x) where (λi, vi (x))i≥1 are the solutions of the integral

eigenvalue problem ∫
D

C (x1, x2) vi (x2) dx2 = λivi (x1) , (7)

see [5] for details. For the numerical experiments in this paper, we made a specific choice

C (x1, x2) = σ2 exp (−‖x1 − x2‖1 /L) , (8)

with σ2 denoting the variance, and L the correlation length of the random variables ξi (ω). Efficient
computational methods for solution of the eigenvalue problem (7) are described, e.g., in [29].

Using the KL expansion of k in the definition of the operator Kω in (4), we obtain

〈Kωu, v〉 =

〈
N∑
i=0

ξi (ω) ki (x)u (x, ω) , v (x, ω)

〉
. (9)

Remark 1
More generally than (6), we can consider the generalized polynomial chaos (gPC) expansion of k
as

k (x, ω) =

M ′∑
i=0

ki (x)ψi (ξ(ω)) .

In both cases, we write

k (x, ω) =

L∑
i=0

ki (x)ψi (ξ(ω)) ,

for L = N in the KL case and L = M ′ in the gPC case.

We will consider discrete approximations to the solution to (5) given by finite element
discretizations of H1

0 (D) and generalized polynomial chaos (gPC) discretizations of L2
µ (Ω),

namely

u =

Ndof∑
i=1

M∑
j=0

uijφi(x)ψj (ξ0, . . . , ξN ) , (10)

where {φi(x)}Ndof

i=1 are suitable finite element basis functions, the gPC basis {ψj(ξ)}Mj=0 is obtained
as the the tensor product of Legendre polynomials of total order at most P and ξ = (ξ0, . . . , ξN ). The
choice of Legendre polynomials is motivated by the fact that these are orthogonal with respect to
the probability measure associated with the uniform random variables ξ0, . . . , ξN . The total number
of gPC polynomials is thus M + 1 = (N+P )!

N !P ! , cf. also [5, p. 87].
Substituting the expansions (9) and (10) into (5) yields a deterministic linear system of equations

M∑
j=0

L∑
i=0

cijkKiuj = fk, k = 0, . . . ,M, (11)

where (fk)l = E
[∫
D
f (x)φl (x)ψk dx

]
, (Ki)lm =

∫
D
ki(x)φl(x)φm(x) dx, and the coefficients

cijk = E [ψiψjψk]. Each one of the blocksKi is thus a deterministic stiffness matrix given by ki (x),
cf. (9), of size (Ndof ×Ndof ), where Ndof is the number of spatial degrees of freedom. The
system (11) is then given by a global matrix of size ((M + 1)Ndof × (M + 1)Ndof ), consisting
of Ndof ×Ndof blocks K(j,k), and it can be written as

K(0,0) K(0,1) · · · K(0,M)

. . .
... K(k,k)

...
. . .

K(M,0) K(M,1) · · · K(M,M)




u0
...
uk
...
uM

 =


f0
...
fk
...
fM

 , (12)
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HIERARCHICAL SCHUR COMPLEMENT PRECONDITIONER 5

where each of the blocks K(j,k) is in the KL case obtained as

K(j,k) =

N∑
i=0

cijkKi. (13)

Remark 2
With an iterative solution of (12) in mind, one needs to store only the constants cijk, the blocks Ki

and use the formula (13) for matrix-vector multiplication, see MAT-VEC operations in [25].

It is important to note that the first diagonal block is obtained by the 0−th order polynomial chaos
expansion and therefore it corresponds to the deterministic problem obtained using the mean value
of the coefficient k, in particular

K(0,0) = K0.

The sparsity structure of the matrix in (12) will in general depend on the type of the gPC
polynomial basis, on the number of terms retained in the expansions (9) and (10), and also on the
number of stochastic dimensions. Nevertheless, due to the orthogonality of the gPC basis functions,
the constants cijk will vanish for many combinations of the indices i, j, and k. The block sparsity
structure of the global stochastic Galerkin matrix in (12), with the blocks given by (13), will depend
on a matrix cP with entries c(j,k) =

∑N
i=0 cijk, where j, k = 0, . . . ,M . The typical structure of cP

is illustrated by Figure 1. Looking carefully at the figures, we can observe a block hierarchical
structure of the matrices. In the next section, we will study this structure in somewhat more detail.

(a) N = 4, P = 4 gives 350 blocks (b) N = 4, P = 7 gives 2010 blocks

Figure 1. Hierarchical structure of the matrix cP which determines the block sparsity of the global stochastic
Galerkin matrix with N = 4 stochastic dimensions using (a) P = 4, or (b) P = 7 order of polynomial

expansion. The sub-blocks correspond to the polynomials of order (a) P = 1, 2, 3 and (b) P = 4, 5, 6.

3. STRUCTURE OF THE MODEL MATRICES

Let us begin by an illustration. Figure 1(a) shows the structure of the stochastic Galerkin matrix
based on the fourth order polynomial chaos expansion in four stochastic dimensions. The schematic
matrix in the picture is cP (here P = 4), so in the global stochastic Galerkin matrix as it is written
in eq. (12) each tile corresponds to a block of a stiffness matrix with the same sparsity pattern as
the original finite element problem. Now, let us denote the corresponding global Galerkin matrix
by A4 , and by A3, B4, C4 and D4 its four submatrices, cf. (15). We see that D4 is block diagonal
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6 B. SOUSEDÍK ET AL.

and the structure of A3 resembles the structure of A4 and this hierarchy is repeated all the way to
the 1× 1 block A0 and a block diagonal matrix D1. The number in the subscript indicates that the
entries in the block correspond to the polynomial expansion in the case of (a) A3 of order three or
less, and (b) B3, C3 and D3 of order three. Clearly, the sparsity and hierarchical structure follows
from orthogonality of the polynomials as was pointed out in [25]. More specifically, let us consider
a two-by-two block structure of a (square) coefficient matrix cP with dimensions (N+P )!

N !P ! as

cP =

[
cP−1 bTP
bP dP

]
,

where cP−1 is the first principal submatrix with dimensions (N+P−1)!
N !(P−1)! , and the remaining blocks

are defined accordingly. Generally, let us consider a recursive hierarchy in the spliting of cP as

c` =

[
c`−1 bT`
b` d`

]
, ` = P, . . . , 1,

where the dimensions of c` are given by (N+`)!
N !`! , the dimensions of the first principal

submatrices c`−1 are given by (N+`−1)!
N !(`−1)! , and the remaining blocks are defined accordingly. We note

that even though the matrices c` are symmetric, the stochastic Galerkin matrix will be symmetric
only if each one of the matrices Ki is itself symmetric. We refer, e.g., to [9, 30] for further details
and discussion, and state here only the essential observation for our approach:

Lemma 3 ([9, Corollary 2.6])
The block d` is a diagonal matrix for all ` = 1, . . . , P .

The global problem (12) can be equivalently written as

APuP = fP , (14)

with the matrix AP having a hierarchical structure

A` =

[
A`−1 B`
C` D`

]
, ` = P, . . . , 1, (15)

where the subscript ` stands for the blocks obtained by an approximation by the `−th degree
stochastic polynomial (or lower), and all of the blocks D` are block diagonal. In particular the
smallest case is given by the finite element approximation with the mean values of the coefficients,
and therefore the mean-value problem is

A0u0 = f0, (16)

and in particular A0 = K0. In this paper, we will assume that the inverse of A0 is known, or at least
that we have a good preconditioner M0 readily available.

Remark 4
Clearly, if all of the matrices Ki are symmetric, the global matrix AP and all of its submatrices A`
will be symmetric as well, i.e.,

A` =

[
A`−1 B`
BT` D`

]
, ` = P, . . . , 1.

However, for the sake of generality, we will use the non-symmetric notation (15). We note that a
question under what conditions is the global problem positive definite is far more delicate, in general
depends on the type of the polynomial expansion and also on the choice of the covariance function.

In the next section we introduce our preconditioner, taking advantage of the hierarchical structure
and of the fact that the matrices D`, where ` = P, . . . , 1, are block diagonal.
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HIERARCHICAL SCHUR COMPLEMENT PRECONDITIONER 7

4. SCHUR COMPLEMENT PRECONDITIONER

Let us find an inverse of a general block matrix given as[
A B
C D

]
, (17)

assuming that we can easily compute the inverse of D. By block LU decomposition, we can derive[
A B
C D

]
=

[
IA BD−1

0 ID

] [
S 0
0 D

] [
IA 0

D−1C ID

]
, (18)

where S = A−BD−1C is the Schur complement ofD in (17). Inverting the three blocks, we obtain[
A B
C D

]−1
=

[
IA 0

−D−1C ID

] [
S−1 0

0 D−1

] [
IA −BD−1
0 ID

]
. (19)

The hierarchical Schur complement preconditioner is based on the block inverse (19). In the
action of the preconditioner, application of the three blocks on the right-hand side of (19) will be
called (in the order in which they are performed) as pre-correction, correction and post-correction.

So, in the action of the preconditioner we would like to approximate problem (14) which with
respect to (15) can be written as[

AP−1 BP
CP DP

] [
uP−1P

uPP

]
=

[
fP−1P

fPP

]
. (20)

The matrix inverse can be with respect to (19) written as[
AP−1 BP
CP DP

]−1
=

[
IA 0

−D−1P CP ID

] [
S−1P−1 0

0 D−1P

] [
IA −BPD−1P
0 ID

]
,

where
SP−1 = AP−1 −BPD−1P CP .

Because computing (and inverting) the Schur complement SP−1 explicitly is computationally
prohibitive, we suggest to replace the inverse of SP−1 by the inverse of AP−1. Since AP−1 has
the hierarchical structure as described by (15), i.e.,

AP−1 =

[
AP−2 BP−1
CP−1 DP−1

]
,

we can approximate its inverse again using the idea of (19) and so on. Eventually, we arrive at
the Schur complement of the mean-value problem S0 which we replace by A0. Thus the action of
this hierarchical preconditioner MP consists of a number of pre-correction steps performed on the
levels ` = P, . . . , 1, solving the “mean-value” problem with A0 on the lowest level, and performing
a number of the post-processing steps sweeping up the levels. We now formulate the preconditioner
for the iterative solution of the global problem (14) more concisely as:

Algorithm 5 (Hierarchical Schur complement preconditioner)
The preconditioner MP : rP 7−→ uP is defined as follows:
for ` = P, . . . 1,

split the residual, based on the hierarchical structure of matrices, as

r` =

[
r`−1`

r``

]
,
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8 B. SOUSEDÍK ET AL.

compute the pre-correction as
g`−1 = r`−1` −B`D−1` r``.

If ` > 1, set
r`−1 = g`−1.

Else (if ` = 1), solve the system A0u0 = g0.

end
for ` = 1, . . . P ,

compute the post-correction, i.e., set u`−1` = u`−1, solve

u`` = D−1`
(
r`` − C`u`−1`

)
,

and concatenate

u` =

[
u`−1`

u``

]
.

If ` < P, set u``+1 = u`.

end

We will now restrict our considerations to the case when all of the matrices A`, ` = P, . . . , 1 are
symmetric, positive definite. In this case, the decomposition (18) can be written for all levels ` as

A` =

[
A`−1 B`
BT` D`

]
=

[
IA B`D

−1
`

0 ID

] [
S`−1 0

0 D`

] [
IA 0

D−1` BT` ID

]
.

Because all of the matrices A`, ` = P, . . . , 1 are positive definite, the above becomes a set of
congruence transformations and by the Sylvester law of inertia, all of the Schur complements S`,
` = P − 1, . . . , 0 are also symmetric positive definite. Thus, we can establish for appropriate
vectors u the next set of inequalities,

c`,1 ‖u‖2A`
≤ ‖u‖2S`

≤ c`,2 ‖u‖2A`
, ` = 0, . . . , P − 1, (21)

where ‖u‖2A = uTAu denotes the energy norm, and use it in the following:

Theorem 6
For the symmetric, positive definite matrix AP the preconditioner MP defined by Algorithm 5 is
also positive definite, and the condition number κ of the preconditioned system is bounded by

κ =
λmax (MPAP )

λmin (MPAP )
≤ C, where C = ΠP−1

`=0

c`,2
c`,1

.

Proof
The bound follows directly from the sequential replacement of the Schur complement operators S`
by the hierarchical matrices A` in Algorithm 5, and the bounds in the equivalence (21).

Hence, the convergence rate can be established from the spectral equivalence (21).

Remark 7
Despite the multiplicative growth of the condition number bound as predicted by Theorem 6
from our numerical experiments (Table II) it appears that, at least in the case of uniform random
variables and Legendre polynomials, the ratio of the constants in (21) is close to one and hence the
convergence of conjugate gradients is not as pessimistic as predicted by the bound.

In the next section, we discuss several modifications of the method and the preconditioner.
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HIERARCHICAL SCHUR COMPLEMENT PRECONDITIONER 9

5. VARIANTS AND IMPLEMENTATION REMARKS

Clearly, there are many other ways of setting up a hierarchical preconditioner. These possibilities
follow by considering the block inverse (19) and writing it in a more general form, which can be
subsequently used in the approximation of the preconditioner from Algorithm 5, as

M =

[
IA 0

−M3
DC ID

] [
MS 0
0 M2

D

] [
IA −BM1

D

0 ID

]
, (22)

so that M i
D , i = 1, 2, 3, approximate D−1 and MS approximates S−1. Our main approximation in

Algorithm 5 is in using the hierarchy of matrices A`, ` = P − 1, . . . , 0 in place of MS on each level.
Next, in our case D is block-diagonal. Thus computing its inverse means solving independently
a number of systems, where each one of them has the same size (and sparsity structure) as the
deterministic problem for the mean. In fact, the diagonal blocks are just scalar multiples of the
“mean-value” matrix K0(= A0). In our implementation, we have replaced the exact solves of D
by independent loops of preconditioned Krylov subspace iterations for each diagonal block of D
using the mean-value preconditioner M0. In the numerical experiments we have tested convergence
with the following choices of M0: no preconditioner, simple diagonal preconditioner, and the exact
LU decomposition of the block A0 (which converges in one iteration). So this variant of the
hierarchical Schur complement preconditioner involves multiple loops of inner iterations and thus
possibly changes in every outer iteration. In order to accommodate such variable preconditioner,
it is generally recommended to use a flexible Krylov subspace method such as flexible CG [26],
FGMRES [27], or GMRESR [28]. Nevertheless, we have observed essentially the same convergence
in terms of outer iterations with both variants of the conjugate gradients, the flexible and the
standard one as well. The convergence seems also to be independent of the choice of M0 and in
this contribution we do not advocate any specific choice. Next, one can in general replace the action
of any M i

D, i = 1, 2, 3, by the action of just M0 itself. However it is well-known from iterative
substructuring cf., e.g., [11, Section 4.4], that even if MD is spectrally equivalent to D−1, the
resulting preconditioner might not be spectrally equivalent to the original problem.

It also appears that one can modify not only the preconditioner, but also the set up of the method
itself. Namely, inspired by the iterative substructuring cf., e.g., [12], one can reduce the system given
by AP to the system given by the Schur complement SP−1 used subsequently in the iterations. So,
in the first step, cf. (20), we eliminate uPP and define uP−1 ≡ uP−1P , which yields

SP−1uP−1 = gP−1, (23)

where
SP−1 = AP−1 −BPD−1P CP , and gP−1 = fP−1P −BPD−1P fPP .

After convergence, the variables uPP are recovered from

uPP = D−1P
(
fPP − CPuP−1

)
.

There are two advantages of the a-priori elimination of the second block: first, because the
system (23) will be solved iteratively, the iterations can be performed on a much smaller system
and also, at least for symmetric, positive definite problems, the condition number of the Schur
complement cannot be higher than the one of the original problem [11] even if one uses a
diagonal preconditioning [31]. The preconditioner MP−1 for the system (23) is then the same as in
Algorithm 5 except that the for-loops are performed only for all levels ` = 1, . . . , P − 1. However,
this reduction is theoretically justified only when exact solves for the block diagonal matrix DP

are available. In general, if one uses only approximate solves, e.g., by performing inner/outer
Krylov iterations for DP and SP−1 respectively, the global system matrix becomes variable as well,
this might lead to the loss of orthogonality and poor performance of the method. Our numerical
experiments indicated that the preconditioned iterations for AP and SP−1 perform identically, but
we do not advocate to use a-priori reduction to the Schur complement in general.
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Figure 2. The 15 dominant eigenvalues with the covariance kernel (8) (in this plot σ = 1).

6. NUMERICAL EXAMPLES

We have implemented the stochastic Galerkin finite element method for the model elliptic
problem (1)-(2) on a square domain [0, 1]× [0, 1] uniformly discretized by 10× 10 Lagrangean
bilinear finite elements. The mean value of the coefficient k was set to k0 = 1. The coefficients
in the covariance function C defined by eq. (8) were set to L = 0.5 and σ = 0.5, so the
coefficient of variation is given as CoV = σ/k0 = σ = 50%. The 15 dominant eigenvalues of
the discretized eigenvalue problem (7) are shown in Figure 2. We have studied convergence of
the flexible version of the conjugate gradient method (FCG) without a preconditioner, with a
global mean-based preconditioner Mm by Powell and Elman [6], with the block symmetric Gauss-
Seidel preconditioner MbGS (with zero initial guess) and with the hierarchical Schur complement
preconditioner MHS. The convergence results are summarized in Tables I-IV. We have observed
essentially the same convergence of the standard conjugate gradients compared to the flexible
version, which is reported in the tables. Also, in our experience, the convergence rates were
independent of the choice of the mean-value preconditioner M0 (no preconditioner, diagonal
preconditioner and the LU-decomposition of the “mean-value” block A0) used in inner iterations of
the preconditioner for the diagonal block solves with the same relative residual tolerance as in the
outer iterations. From Tables I and II it appears that the convergence depends only mildly on the
stochastic dimension N and the order of polynomial expansion P , respectively. Table III indicates
a modest dependence on the value of the standard deviation σ, and finally Table IV indicates that
the convergence is independent of the mesh size h. We note that for CoV > 55% the problem is no
longer guaranteed to be elliptic, and the global matrix A is not positive definite.

Table V summarizes the block count in the structure of the global Galerkin matrix A obtained
using the KL expansion, cf. Figure 1, when either of the parameters N or P changes and the other
one is set to be equal to four. The two choices lead to slightly different block sparsity structures ofA,
however the numbers of blocks are the same. Let us denote by nb the total number of blocks inA and
by ndb the number of its diagonal blocks. Note that one application of the mean-based preconditioner
requires ndb solves of the diagonal blocks. The columns three and four in Table V contain the
numbers of block matrix-vector multiplications nm and block diagonal solves nds performed in one
action of the hierarchical Schur preconditioner. From Algorithm 5 we obtain that

nm = nb − ndb,

where half of multiplications is performed in the first for-loop and the other half in the second, and

nds = 2(ndb − 1) + 1,
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Table I. Convergence of (flexible) conjugate gradients for the full system matrix A, for A preconditioned
by the mean-based preconditioner Mm, by the block Gauss-Seidel preconditioner MbGS, and by the
hierarchical Schur complement preconditioner MHS. The coefficient of variation of the uniform random
field is CoV = 50%, polynomial degree is P = 4, and the stochastic dimension N is variable. Here, ndof
is the dimension of A, iter is the number of iterations with the relative residual tolerance 10−8, and κ is the

condition number estimate from the Lánczos sequence in conjugate gradients.

setup A MmA MbGSA MHSA
N ndof iter κ iter κ iter κ iter κ
1 605 173 1965.4 12 2.0127 5 1.0507 5 1.0465
2 1815 531 5333.3 15 2.7340 6 1.1279 6 1.1236
3 4235 745 9876.9 16 2.9995 7 1.1693 6 1.1514
4 8470 902 17,150.2 17 3.3413 7 1.2131 7 1.2028
5 15,246 1033 17,275.8 18 3.5891 7 1.2447 7 1.2434
6 25,410 1037 17,333.5 18 3.6349 7 1.2501 7 1.2559
7 39,930 1040 17,348.9 19 4.0993 8 1.3202 7 1.3146
8 59,895 1081 17,360.6 19 4.0597 8 1.3198 7 1.3182

Table II. Convergence of (flexible) conjugate gradients for the full system matrix A, for A preconditioned
by the mean-based preconditioner Mm, by the block Gauss-Seidel preconditioner MbGS, and by the
hierarchical Schur complement preconditioner MHS. The stochastic dimension is N = 4, CoV = 50%, and

the polynomial degree P is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
P ndof iter κ iter κ iter κ iter κ
1 605 134 625.6 9 1.6391 5 1.0626 5 1.0624
2 1815 315 1903.2 13 2.2379 6 1.1117 6 1.1109
3 4235 586 5721.1 15 2.8122 7 1.1658 6 1.1559
4 8470 902 17,150.2 17 3.3413 7 1.2131 7 1.2028
5 15,246 1402 29,751.0 18 3.7824 7 1.2538 7 1.2426
6 25,410 1943 49,842.4 19 4.1534 8 1.2921 7 1.2798
7 39,930 2568 83,056.6 20 4.4708 8 1.3219 7 1.3125
8 59,895 3267 136,419.0 20 4.7371 8 1.3472 7 1.3398

Table III. Convergence of (flexible) conjugate gradients for the full system matrix A, its first Schur
complement S, for A preconditioned by the global mean-based preconditioner Mm, by the block Gauss-
Seidel preconditioner MbGS, and by the hierarchical Schur complement preconditioner MHS. Here, the size
of A is 8470 ndof , the stochastic dimension is N = 4, the polynomial degree is P = 4, the mean is k0 = 1,

and the coefficient of variation CoV is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
CoV (%) iter κ iter κ iter κ iter κ

5 694 15,556.3 6 1.0960 3 1.0008 3 1.0009
15 739 15,673.2 9 1.3514 4 1.0090 4 1.0089
25 804 15,912.5 11 1.7021 5 1.0314 5 1.0304
35 833 16,286.1 13 2.1808 6 1.0770 5 1.0664
45 877 16,815.9 16 2.8773 6 1.1510 6 1.1414
55 926 17,539.6 19 3.9523 8 1.2948 7 1.2830

which follows from the two for-loops and one solve of the first block A0. Hence one action of
the hierarchical Schur preconditioner requires nearly the same number of computations as one
global Galerkin matrix-vector multiplications, nm ≈ nb, and two applications of the mean-based
preconditioner, nds ≈ 2ndb. It is important to note that whereas the application of the mean-based
preconditioner can be performed fully in parallel, the two for-loops in Algorithm 5 are sequential,
and thus the eventual parallelization can be performed only within each step of these for-loops. The
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Table IV. Convergence of (flexible) conjugate gradients for the full system matrix A, for A preconditioned
by the global mean-based preconditioner Mm, by the block Gauss-Seidel preconditioner MbGS, and by
the hierarchical Schur complement preconditioner MHS. Here, the stochastic dimension is N = 4, the
polynomial degree is P = 4, the mean is k0 = 1, the coefficient of variation is CoV = 50%, and the size of

the finite element mesh h is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
h ndof iter κ iter κ iter κ iter κ

1/5 2520 404 4847.5 16 3.2484 7 1.2022 6 1.1790
1/10 8470 902 17,150.2 17 3.3413 7 1.2131 7 1.2028
1/15 17,920 1386 36,716.6 17 3.3145 7 1.2063 7 1.2047
1/20 30,870 1883 63,535.2 17 3.3463 7 1.2110 7 1.2032
1/25 47,320 2383 97,605.6 17 3.3473 7 1.2112 7 1.2032
1/30 67,270 2872 138,929.0 17 3.3190 7 1.2070 7 1.2054

Table V. Numbers of blocks in the full system matrix and the “work-count” in the application of the
preconditioner M , when one of the parameters N or P is changing and the other one is set to 4, cf. Figure 1.
Here nb is the total number of blocks, ndb is the number of diagonal blocks, which is the same as the number
of solves in the application of the mean-based preconditioner Mm, nm is the number of block matrix-vector

multiplications in the action of the preconditioner M , and nds is the number of its block diagonal solves.

N or P nb ndb nm nds
1 13 5 8 9
2 55 15 40 29
3 155 35 120 69
4 350 70 280 139
5 686 126 560 251
6 1218 210 1008 419
7 2010 330 1680 659
8 3135 495 2640 989

work count of MbGS, which is block sequential, is given by 2ndb diagonal solves, and 1.5 (or 2, if
the initial guess of GS is nonzero) times of block matrix-vector multiplications compared to MHS.

In the second set of experiments, we have tested convergence of the preconditioner with the
same physical domain and parameter setting, except assuming that the random coefficient k has
lognormal distribution with the coefficient of variation being set to CoV = σlog/µlog = 100%. We
note that in order to guarantee existence and uniqueness of the solution, we have used twice the
order of polynomial expansion of the coefficient k than of the solution, cf. [32]. Such discretization
is done within the gPC framework, see Remark 1, using Hermite polynomials [33], and leads
to a fully block dense structure of the global Galerkin matrix A. Therefore the solves involving
submatrices D`, ` = 1, . . . , P , in the pre- and post-correction steps are no longer block diagonal.
Our numerical tests using both, direct and iterative solves with the D`, and using the same tolerance
as for the outer iterations, lead to the same count of outer iterations. The performance results are
summarized in Tables VI-IX. The convergence rate reported in Table VI indicates a mild dependence
on the stochastic dimension N , Table VII indicates a modest dependence on the order of the
polynomial expansion P , and Table VIII indicates also a modest dependence on the coefficient of
variation CoV . From Table IX we see that the convergence is nearly independent of the mesh size h.
The performance of both preconditioners MbGS and MHS is significantlly better compared to the
mean-based preconditioner Mm. Also, we see that MHS performs a bit better than MbGS. However,
we must note that MHS is also more computationally intensive because it requires solves with larger
diagonal submatrices D`, for all levels ` = 1, . . . , P , and a work count comparison with MbGS is
not straightforward. As before, the two for-loops corresponding to Algorithm 5 are sequential, and
thus the eventual paralelisation can be performed only within each step in the for-loop.

The numerical experiments presented here were implemented using a sequential code in Matlab,
version 7.12.0.635 (R2011a), and therefore we do not report on computational times.
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Table VI. Convergence of (flexible) conjugate gradients for the full system matrix A obtained by the
gPC expansion of the lognormal field, for A preconditioned by the mean-based preconditioner Mm, by
the block Gauss-Seidel preconditioner MbGS, and by the hierarchical Schur complement preconditioner
MHS. Polynomial degree is fixed to P = 4, the coefficient of variation of the lognormal random field is
CoV = 100%, and the stochastic dimension N is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
N ndof iter κ iter κ iter κ iter κ
1 605 585 51,376.4 48 28.7589 15 3.4192 15 3.4000
2 1815 1396 58,718.8 61 37.1593 17 3.7490 16 3.6244
3 4235 1770 69,054.8 62 38.0715 17 3.7380 16 3.7632
4 8470 2016 70,143.6 66 43.6525 19 4.2935 16 4.1669

Table VII. Convergence of (flexible) conjugate gradients for the full system matrix A obtained by the
gPC expansion of the lognormal field, for A preconditioned by the mean-based preconditioner Mm, by
the block Gauss-Seidel preconditioner MbGS, and by the hierarchical Schur complement preconditioner
MHS. Stochastic dimension is fixed to N = 4, the coefficient of variation of the lognormal random field is

CoV = 100%, and the polynomial degree P is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
P ndof iter κ iter κ iter κ iter κ
1 605 134 578.2 15 3.4954 8 1.3910 7 1.3856
2 1815 329 2027.3 28 8.9450 12 1.9742 10 1.9289
3 4235 804 10,048.4 44 20.0366 15 2.8670 13 2.7955
4 8470 2016 70,143.6 66 43.6525 19 4.2935 16 4.1669

Table VIII. Convergence of (flexible) conjugate gradients for the full system matrix A obtained by the gPC
expansion of the lognormal field, for A preconditioned by the mean-based preconditioner Mm, by the block
Gauss-Seidel preconditioner MbGS, and by the hierarchical Schur complement preconditioner MHS. Here,
the size of A is 8470 ndof , the stochastic dimension is N = 4, the polynomial degree is P = 4, and the
coefficient of variation of the lognormal field CoV is variable. The other headings are same as in Table I.

setup A MmA MbGSA MHSA
CoV (%) iter κ iter κ iter κ iter κ

25 719 7378.4 16 3.2356 7 1.1761 7 1.1776
50 1039 16,014.8 29 9.3553 11 1.7685 10 1.7836
75 1511 35,317.3 46 22.2147 15 2.8198 13 2.8454
100 2016 70,143.6 66 43.6525 19 4.2935 16 4.1669
125 2591 116,678.0 85 72.7584 23 5.9776 19 5.5362
150 3209 178,890.0 103 107.0670 26 7.7459 21 6.8507

Table IX. Convergence of (flexible) conjugate gradients for the full system matrix A obtained by the gPC
expansion of the lognormal field, for A preconditioned by the mean-based preconditioner Mm, by the block
Gauss-Seidel preconditioner MbGS, and by the hierarchical Schur complement preconditioner MHS. Here,
the stochastic dimension is N = 4, the polynomial degree is P = 4, the coefficient of variation of the
lognormal random field is CoV = 100%, and the size of the finite element mesh h is variable. The other

headings are same as in Table I.

setup A MmA MbGSA MHSA
h ndof iter κ iter κ iter κ iter κ

1/5 2520 831 17,695.3 59 40.6232 18 3.9885 15 3.8361
1/10 8470 2016 70,143.6 66 43.6525 19 4.2935 16 4.1669
1/15 17,920 3377 158,334.0 68 44.4170 19 4.3764 16 4.2394
1/20 30,870 4395 275,686.0 69 44.8882 19 4.3742 17 4.2510
1/25 47,320 5600 429,551.0 69 44.9413 20 4.3986 17 4.2592
1/30 67,270 7180 626,475.0 71 45.1100 19 4.3732 17 4.2630
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7. CONCLUSION

We have presented a hierarchical Schur complement preconditioner for the iterative solution of
the systems of linear algebraic equations obtained from the stochastic Galerkin finite element
discretizations. The preconditioner takes an advantage of the recursive hierarchical two-by-two
structure of the global matrix, with one of the submatrices block diagonal. We have compared its
convergence using (flexible) conjugate gradients without any preconditioner, with the mean-based
preconditioner which requires one block diagonal solve per iteration, and with the block version
of the well-known symmetric Gauss-Seidel method used as a preconditioner. The algorithm of our
preconditioner consists of a loop of diagonal block solves and a multiplication by the upper block
triangle in the pre-correction loop, and of another loop of diagonal block solves and a multiplication
by the lower block triangle in the post-correction loop. The loops are sequential throughout the
hierarchy of the global matrix, but the block solves are independent within each level. We have
also succesfully tested the preconditioner in the case of the random coefficient with lognormal
distribution. However, in this case the algorithm involves solves (either direct or of preconditioned
inner iterations) with larger submatrices than just the diagonal blocks, and a direct comparison to
the symmetric block Gauss-Seidel preconditioner in terms of work count is not straightforward.

In conclusion, our algorithm appears to be more effective in terms of iterations and work count
compared to the block version of the symmetric Gauss-Seidel method. Our method also allows for
the same degree of parallelism as the Gauss-Seidel method, since both involve solving the block
diagonal matrices D`. It is important to note that the discussed preconditioners in general rely only
on (block-by-block) matrix-vector multiplies, and their performance will also depend on the choice
of preconditioner M0 for the solves with the diagonal blocks. Clearly, one can use such solver for
each one of the diagonal blocks that might introduce another level of parallelism, e.g., similarly as
recently proposed in [34, 35, 36]. However such extensions will be studied elsewhere.
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