
Pseudospectra of Isospectrally Reduced
Matrices and Systems

Fernando Guevara Vasqueza, Benjamin Z. Webbb,1,∗

aMathematics Dept., JWB 233, University of Utah, Salt Lake City, UT 84112, USA
bDept. of Mathematics, 308 TMCB, Brigham Young University, Provo, UT 84602, USA

Abstract

The isospectral reduction of matrix, which is closely related to its Schur com-
plement, allows to reduce the size of a matrix while maintaining its eigenvalues
up to a known set. Here we generalize this procedure by increasing the number
of possible ways a matrix can be isospectrally reduced. The reduced matrix has
rational functions as entries. We show that the notion of pseudospectrum can
be extended to this class of matrices and that the pseudospectrum of a matrix
shrinks as the matrix is reduced. Hence the eigenvalues of a reduced matrix
are more robust to entry-wise perturbations than the eigenvalues of the original
matrix. We also introduce the notion of inverse pseudospectrum (or pseudoreso-
nances), which indicates how stable the poles of a matrix with rational function
entries are to certain matrix perturbations. A mass spring system is used to
illustrate and give a physical interpretation to both pseudospectra and inverse
pseudospectra.
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1. Introduction

The process of isospectrally reducing a matrix was first considered in [6],
where it was shown that a weighted digraph could be reduced while maintaining
the eigenvalues of the graph’s weighted adjacency matrix, up to a known set.
The motivation in this setting was to allow one to simplify the structure of a
complicated network (graph) while preserving its spectral information. One of
the main results of this paper is that any weighted digraph can be uniquely
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reduced to a graph on any subset of its nodes via some sequence of isospectral
reductions.

Later it was shown in [4] that such matrix reductions could be used to im-
prove the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and
Varga [8, 2, 3, 11]. Specifically, the eigenvalue estimates associated with Gersh-
gorin and Brauer both improve for any matrix reduction and can be successively
improved by further matrix reductions. The eigenvalue estimates of Brualdi and
Varga are more complicated but can be shown to improve for specific types of
matrix reductions.

In this paper we generalize this previous work by first showing that a matrix
can be isospectrally reduced over any of its principal submatrices, under mild
conditions. This is an improvement over the isospectral reduction method pre-
sented in [4, 6, 5], since in these three papers a submatrix is required to have
a particular form in order for the reduction to be defined. This fundamental
improvement allows us to avoid the sequence of reductions that were previously
necessary for certain matrix reductions. We prove in a more general setting that
a sequence of reductions still leads to a uniquely defined matrix that depends
only on the final reduction (see theorem 2).

As defined in [4] a matrix with rational function entries has both a spectrum
and an inverse spectrum. When a square matrix is isospectrally reduced, the
result is a smaller matrix that again has a spectrum and an inverse spectrum.
The relation between the spectrum and inverse spectrum of the reduced and
unreduced matrices is dictated by the specific submatrix over which the matrix
is reduced (see theorem 1).

Expanding on the work done in [4], we show that it is possible to not only use
the eigenvalue estimates associated with Gershgorin to estimate the eigenvalues
of a matrix, but to estimate its inverse eigenvalues. This is done by introducing
the concept of the spectral inverse of a matrix, i.e. the matrix in which the
eigenvalues are the inverse eigenvalues of the original matrix and vice versa.
Therefore, the results found in [4] allow us to give estimates of the inverse
eigenvalues of a matrix and use matrix reductions to improve them (see theorem
4).

Another reason we care about isospectral reductions is that they naturally
arise in network models when we do not have access to all the network nodes. We
use a mass spring network to illustrate this: the isospectral reduction amounts
to the response of the network where we only have access to some terminal nodes
(see example 4). In the case where all nodes are accessible (i.e. all nodes are
terminal nodes), the eigenvalues correspond to frequencies for which there is a
non-zero node displacement that results in zero forces. For the reduced matrix,
the eigenvalues indicate frequencies for which a non-zero displacement of the
terminal nodes generates zero forces at the terminals. The inverse eigenvalues
of the reduced matrix correspond to resonance frequencies, i.e. frequencies for
which there is an extremely large force generated by a finite displacement of the
terminals.

The pseudospectrum of a matrix gives us the scalars that behave like eigen-
values to within a certain tolerance. This concept is particularly useful in an-
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alyzing the properties of matrices that are non-normal, i.e. do not have an
orthogonal eigenbasis. The pseudospectrum of a complex valued matrix has
been introduced independently many times (see [10] for details). It has also
been studied in the case of matrix polynomials [9, 1]. Here, we extend the defi-
nition of pseudospectrum to matrices with rational function entries. By use of
the spectral inverse we also define the inverse pseudospectrum of a matrix in
Section 3.2.

As with complex valued matrices, the pseudospectra we define for a matrix
with rational function entries is a subset of the complex plane whose elements
behave, within some tolerance, as eigenvalues. Similarly, the inverse pseudospec-
tra of a matrix is the set of scalars that act as inverse eigenvalues for a given
tolerance. For the mass spring network we consider, the pseudospectra of the
stiffness matrix are the values for which there are node displacements that gen-
erate forces that are small relative to the displacement. The same is true of
inverse pseudospectra, except these give way to forces that are large relative to
the displacement. A given tolerance determines how “large” and “small” these
forces are.

We show that the pseudospectra of a reduced matrix are always contained
in the pseudospectra of the original matrix for a given tolerance. This implies
that the eigenvalues of a reduced matrix are less susceptible to perturbations
than the original one.

The paper is organized as follows. Section 2 introduces and extends the
theory of isospectral matrix reductions. This section also includes the spec-
tral inverse of a matrix along with the Gershgorin type estimates of a matrix’
inverse eigenvalues. In Section 3 we define the pseudospectrum and inverse
pseudospectrum of a matrix with rational function entries and show that the
pseudospectrum of a matrix shrinks in size as the matrix is reduced. Throughout
the paper we consider numerous examples, including the mass spring network
mentioned above, which is used to give a physical interpretation to the concepts
introduced in this paper.

2. Isospectral Matrix Reductions

In the first part of this paper we introduce the class of matrices we wish
to consider; namely those matrices which have rational function entries. The
reason we consider this class of matrices, as mentioned in the introduction, is
that such matrices arise naturally if we wish or need to reduce the size of a
matrix (or system) we are considering while maintaining its spectral properties.
This procedure of isospectrally reducing a matrix and describing the spectrum
of such matrices is the main focus of this section.

2.1. Matrices with Rational Function Entries

The class of matrices we consider are those square matrices whose entries
are rational functions of λ. Specifically, let C[λ] be the set of polynomials in
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the complex variable λ with complex coefficients. We denote by W the set of
rational functions of the form

w(λ) = p(λ)/q(λ)

where p(λ), q(λ) ∈ C[λ] are polynomials having no common linear factors and
where q(λ) is not identically zero.

More generally, each rational function w(λ) ∈W is expressible in the form

w(λ) =
aiλ

i + ai−1λ
i−1 + · · ·+ a0

bjλj + bj−1λj−1 + · · ·+ b0

where, without loss in generality, we can take bj = 1. The domain of w(λ)
consists of all but a finite number of complex numbers for which q(λ) = bjλ

j +
bj−1λ

j−1 + · · ·+ b0 is zero.
Addition and multiplication on the set W are defined as follows. For p(λ)/q(λ)

and r(λ)/s(λ) in W let(
p

q
+
r

s

)
(λ) =

p(λ)s(λ) + q(λ)r(λ)

q(λ)s(λ)
; and (1)(

p

q
· r
s

)
(λ) =

p(λ)r(λ)

q(λ)s(λ)
(2)

where the common linear factors in the right hand side of equations (1) and (2)
are canceled. The set W is then a field under addition and multiplication.

Because we are primarily concerned with the eigenvalues of a matrix, which
is a set that includes multiplicities, we note the following. The element α of the
set A that includes multiplicities has multiplicity m if there are m elements of
A equal to α. If α ∈ A with multiplicity m and α ∈ B with multiplicity n then

(i) the union A ∪B is the set in which α has multiplicity m+ n; and
(ii) the difference A − B is the set in which α has multiplicity m − n if

m− n > 0 and where α /∈ A−B otherwise.

Definition 1. Let Wn×n denote the set of n × n matrices with entries in W.
For a matrix M(λ) ∈Wn×n the determinant

det
(
M(λ)− λI

)
= p(λ)/q(λ)

for some p(λ)/q(λ) ∈W. The spectrum (or eigenvalues) of M(λ) is defined as

σ (M) = {λ ∈ C : p(λ) = 0}.
The inverse spectrum (or resonances) of M(λ) is defined as

σ−1 (M) = {λ ∈ C : q(λ) = 0}.
Both σ(M) and σ−1(M) are understood to be sets that include multiplicities.

For example, if the polynomial p(λ) ∈ C[λ] factors as

p(λ) =

m∏
i=1

(λ− αi)ni for αi ∈ C and ni ∈ N

then {λ ∈ C : p(λ) = 0} is the set in which αi has multiplicity ni.
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Remark 1. Since C ⊂ W, definition 1 is an extension of the standard defi-
nition of the eigenvalues of a matrix to the larger class of matrices Wn×n. In
particular, if M ∈ Cn×n then σ(M) are the standard eigenvalues of M .

In what follows we may, for convenience, suppress the dependence of the
matrix M(λ) ∈Wn×n on λ and simply write M . One reason for this is that for
much of what we do in this paper we do not evaluate M(λ) at any particular
point λ ∈ C. Rather, we consider M formally as a matrix with rational function
entries.

However, when we do consider the matrix M(λ) ∈ Wn×n to be a function
of λ we mean M is the function

M : dom (M)→ Cn×n,

where dom (M) are the complex numbers λ for which every entry of M(λ) is
defined. Surprisingly, it may be the case that σ(M) * dom (M) as the following
example shows.

Example 1. Consider the matrix M(λ) ∈W2×2 given by

M(λ) =

[
0 1

λ
0 0

]
.

As one can compute, det(M(λ)− λI) = λ2 implying σ(M) = {0, 0}. Therefore,
σ(M) * dom (M).

2.2. Isospectral Matrix Reductions

We can now describe an isospectral reduction of a matrix M ∈ Wn×n. We
then compare the spectrum of M to the spectrum of its isospectral reduction.

Let M ∈ Wn×n and N = {1, . . . , n}. If the sets R, C ⊆ N are non-empty
we denote by MRC the |R| × |C| submatrix of M with rows indexed by R and
columns by C. Suppose the non-empty sets B and I form a partition of N . The
Schur complement of MII in M is the matrix

M/MII = MBB −MBIM−1
IIMIB, (3)

assuming MII is invertible.
The Schur complement arises in many applications. For example, if the

matrix M is the Kirchhoff matrix of a network of resistors with n nodes then its
Schur complement is the Dirichlet to Neumann (or voltage to currents) map of
the network given by considering the nodes in B as terminal or boundary nodes
and the nodes in I as interior nodes (see e.g. [7]). A physical interpretation of
an isospectral reduction is given in example 4.

We are now ready to define the isospectral reduction of a matrix M ∈Wn×n.

Definition 2. For M(λ) ∈ Wn×n let B and I form a non-empty partition of
N . The isospectral reduction of M over the set B is the matrix

Rλ(M ;B) = MBB −MBI(MII − λI)−1MIB ∈W|B|×|B|. (4)

if the matrix MII − λI is invertible.
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Note that the reduced matrix Rλ(M ;B) is a Schur complement plus a mul-
tiple of the identity:

Rλ(M ;B) = (M − λI)/(MII − λI) + λI. (5)

More often than not we suppress the dependence of Rλ(M ;B) on λ and instead
write it as R(M ;B).

Example 2. Consider the matrix M ∈W6×6 with (0, 1)-entries given by

M =


0 0 1 1 0 0
0 1 0 0 1 1
1 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 .

For B = {1, 2} and I = {3, 4, 5, 6} we have

(MII − λI)−1 =


1

1−λ 0 0 0

0 1
1−λ 0 0

0 0 − 1
λ 0

0 0 0 − 1
λ

 .
The isospectral reduction of M over B = {1, 2} is then defined as

R(M ;B) =

[
0 0
0 1

]
−
[

1 1 0 0
0 0 1 1

]
1

1−λ 0 0 0

0 1
1−λ 0 0

0 0 − 1
λ 0

0 0 0 − 1
λ




1 0
0 1
1 0
0 1

 .
=

[
1

λ−1
1

λ−1
1
λ

λ+1
λ

]
∈W2×2.

If a matrix has an isospectral reduction the spectrum and inverse spectrum
of the isospectral reduction and the original matrix are related as follows.

Theorem 1. (Spectrum and Inverse Spectrum of Isospectral Reduc-
tions)
For M(λ) ∈Wn×n let B and I form a non-empty partition of N . If Rλ(M ;B)
exists then its spectrum and inverse spectrum are given by

σ
(
R(M ;B)

)
=
(
σ(M) ∪ σ−1(MII)

)
−
(
σ(MII) ∪ σ−1(M)

)
; and

σ−1
(
R(M ;B)

)
=
(
σ(MII) ∪ σ−1(M)

)
−
(
σ(M) ∪ σ−1(MII)

)
.

Proof. For M ∈ Wn×n, we may assume without loss of generality that M has
the block matrix form

M =

[
MII MIB
MBI MBB

]
(6)
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where MII − λI is invertible.
Note that the determinant of a matrix and that of its Schur complement are

related by the identity

det

[
A B
C D

]
= det(A) · det(D − CA−1B), (7)

provided the submatrix A is invertible. Using this identity on the matrix M−λI
yields

det(M − λI) = det(MII − λI) · det
(
(MBB − λI)−MBI(MII − λI)−1MIB

)
.

Therefore,

det
(
R(M ;B)− λI

)
=

det(M − λI)

det(MII − λI)
.

To compare the eigenvalues of R(M ;B), M , and MII write

det(M − λI) =
p(λ)

q(λ)
and det(MII − λI) =

t(λ)

u(λ)
,

for some p/q, t/u ∈W. Hence,

det
(
R(M ;B)− λI

)
=
p(λ)u(λ)

q(λ)t(λ)
.

Let P = {λ ∈ C : p(λ) = 0}, Q = {λ ∈ C : q(λ) = 0}, T = {λ ∈ C : t(λ) = 0},
and U = {λ ∈ C : u(λ) = 0}, with multiplicities. By canceling common linear
factors, definition 1 implies

σ
(
R(M ;B)

)
={λ ∈ C : p(λ)u(λ) = 0} − {λ ∈ C : q(λ)t(λ) = 0}
=(P ∪ U)− (Q ∪ T ); and

σ−1
(
R(M ;B)

)
={λ ∈ C : q(λ)t(λ) = 0} − {λ ∈ C : p(λ)u(λ) = 0}
=(Q ∪ T )− (P ∪ U).

Since P = σ(M), Q = σ−1(M), T = σ−1(MII), and R = σ(MII) the result
follows.

Since a matrix M ∈ Cn×n has no inverse spectrum (i.e. σ−1(M) = ∅),
theorem 1 applied to complex valued matrices has the following corollary.

Corollary 1. For M(λ) ∈ Cn×n let B and I form a non-empty partition of N .
Then

σ
(
R(M ;B)

)
= σ(M)− σ(MII) and σ−1

(
R(M ;B)

)
= σ(MII)− σ(M).

Example 3. Let M , B and I be as in example 2. As one can compute σ(M) =
{2,−1, 1, 1, 0, 0} and σ(MII) = {1, 1, 0, 0}. By corollary 1 we then have

σ
(
R(M ;B)

)
= {2,−1, 1, 1, 0, 0} − {1, 1, 0, 0} = {2,−1}; and

σ−1
(
R(M ;B)

)
= {1, 1, 0, 0} − {2,−1, 1, 1, 0, 0} = ∅.
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Observe that, by reducing M over B we lose the eigenvalues corresponding to
the “interior” degrees of freedom σ(MII) = {1, 1, 0, 0}. That is, if we knew
both σ(MII) and σ(R(M ;B)) but not σ(M), then corollary 1 states that the set
σ(MII) is the most by which σ(R(M ;B)) and σ(M) can differ.

Theorem 1 therefore describes exactly which eigenvalues we may gain from
an isospectral reduction and which we may lose. In this way an isospectral
reduction of a matrix preserves the spectral information of the original matrix.
However, it may not always be possible to find an isospectral reduction of a
matrix M ∈Wn×n.

For instance, consider the matrix M ∈W2×2 given by

M =

[
1 1
1 λ

]
. (8)

For B = {1} and I = {2} note that MII − λI = [0], which is not invertible.
Therefore, M cannot be isospectrally reduced over B.

In general there is no way to know beforehand if the isospectral reduction
R(M ;B) exists without computing (MII−λI)−1. However, the following subset
of Wn×n can always be reduced over any nonempty subset B ⊂ N .

For any polynomial p(λ) ∈ C[λ], let deg(p) denote its degree. If w(λ) =
p(λ)/q(λ) where both p(λ), q(λ) ∈ C[λ] are not identically zero we define the
degree of the rational function w(λ) by

π(w) = deg(p)− deg(q).

In the case where p(λ) = 0 we let π(w) = 0.

Definition 3. We denote by Wπ the set of rational functions

Wπ = {w ∈W : π(w) ≤ 0}

and let Wn×n
π be the set of n× n matrices with entries in Wπ.

Lemma 1. If M(λ) ∈ Wn×n
π and B ⊂ N is non-empty then Rλ(M ;B) ∈

W|B|×|B|π .

Proof. Let M ∈Wn×n
π . The inverse of the matrix M − λI is given by

(M − λI)−1 =
1

det(M − λI)
adj(M − λI) (9)

where adj(M−λI) is the adjugate matrix of M−λI, i.e. the matrix with entries

adj(M − λI)ij = (−1)i+j det(Mji), 1 ≤ i, j ≤ n, (10)

where Mij ∈ W(n−1)×(n−1) is obtained by deleting the i−th row and j−th
column of M − λI.
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Note that

det(M − λI) =
∑
ρ∈Pn

(
sgn(ρ)

n∏
i=1

(M − λI)i,ρ(i)

)
(11)

where the sum is taken over the set Pn of permutations on N . The sign sgn(ρ)
of the permutation ρ ∈ Pn is 1 (resp. −1) if ρ is the composition of an even
(resp. odd) number of permutations of two elements.

Using equations (A.2) and (A.4) in Appendix A, the term in (11) corre-
sponding to the identity permutation ρ = id ∈ Pn has degree n while for ρ 6= id
the other terms have degree strictly smaller than n. Equation (A.1) then implies

π
(

det(M − λI)
)

= n. (12)

Therefore det(M − λI) is not identically zero, implying via equation (9) that
the inverse (M − λI)−1 exists. Similarly, for i ∈ N the matrix Mii is equal to

M̃ii − λI for some M̃ ∈W(n−1)×(n−1)
π . Hence,

π
(

det(Mii)
)

= n− 1, for i ∈ N. (13)

For i 6= j the matricesMij ∈W(n−1)×(n−1) contain n−2 entries of the form
Mk` − λ where all other entries ofMij belong to the set Wπ. Hence, equations
(A.2) and (A.4) imply that for i 6= j

π
(

det(Mij)
)
≤ n− 2, for i, j ∈ N (14)

since for ρ ∈ Pn−1 at most n − 2 terms in the product
∏n−1
k=1(Mij)k,ρ(k) have

the form Mk` − λ.
Given that the degree of det(Mij) in (14) may be zero, equations (12)–(14)

together with (A.3) imply that π((M − λI)−1
ij ) ≤ 0 for all 1 ≤ i, j ≤ n. Hence,

(M − λI)−1 ∈ Wn×n
π . Therefore, if B and I form a nonempty partition of N

then [
(M − λI)−1

]
II ∈W|I|×|I|π .

Definition 2 along with equations (A.2) and (A.4) then imply that R(M ;B) has
entries in Wπ.

Note that lemma 1 implies the existence of any isospectral reductionR(M ;B)
if M ∈ Wn×n

π and B ⊂ N . In particular, any complex valued matrix can be
reduced over any index set. Since the matrix M given in (8) does not belong to
W2×2
π lemma 1 does not apply in this particular case.

Remark 2. Because a matrix M ∈ Wn×n
π can be reduced over any nonempty

index set B ⊂ N , the isospectral reductions presented here are more general than
those given in [4, 6, 5]. In these three papers, for M to be reduced over the index
set B the matrix MII was required to be similar to an upper triangular matrix.
Here, we have no such restriction.
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In the following example we demonstrate how one can use an isospectral
reduction to study the dynamics of a mass-spring network in which access is
limited.

Example 4. Consider the mass-spring network illustrated in figure 1, with
nodes at locations xi, i = 1, 2, 3, 4 lying on a line and edges representing springs
between nodes. For simplicity we assume that all the springs have the same
spring constant (k = 1) and that all the nodes have unit mass. (The precise
position of the nodes on the line does not matter for this discussion.)

Suppose each node xi is subject to a time harmonic displacement ui(ω)ejωt

with frequency ω in the direction of the line and j =
√
−1. Then the resulting

force at node xi is also time harmonic in the direction of the line and is of the
form fi(ω)ejωt. Writing the balance of forces acting on each node with the laws
of motion, one can show that the vector of forces f(ω) = [f1(ω), . . . , f4(ω)]T is
linearly related to the vector of displacements u(ω) = [u1(ω), . . . , u4(ω)]T by the
equation

f(ω) = (K − ω2I)u(ω). (15)

Here the matrix K is the stiffness matrix

K =


1 −1
−1 2 −1

−1 2 −1
−1 1

 .
If we let λ ≡ ω2, we see that the eigenmodes of the stiffness matrix K correspond
to non-zero displacements that do not generate forces. For instance, the eigen-
mode corresponding to the zero frequency is u = [1, 1, 1, 1]T , i.e. by displacing
all nodes by the same amount, there are no net forces at the nodes.

Suppose we only have access to certain terminal (or boundary) nodes of this
network, say B = {1, 4}. Then we can write the equilibrium of forces at the
interior nodes I = {2, 3} and conclude that the net forces fB at the terminal
nodes depend linearly on the displacements uB at the terminal nodes according
to the equation

fB(ω) = (Rω2(K;B)− ω2I)uB(ω). (16)

The spectrum and inverse spectrum of the response are

σ(Rω2(K;B)) = {2±
√

2, 2, 0}andσ−1(Rω2(K;B)) = {3, 1}.

The eigenvalues of Rω2(K;B) correspond to frequencies for which there is a
displacement of the boundary nodes B that generate no forces at these nodes.
Conversely, the resonances (or inverse eigenvalues) of Rω2(K;B) correspond to
frequencies at which there is a displacement of the boundary nodes for which the
resulting forces are infinitely large.

10



x1 x2 x3 x4

Figure 1: The mass spring network of example 4 with boundary nodes B = {1, 4} and interior
nodes I = {2, 3}.

2.3. Sequential Reductions

In the previous section we observed that the isospectral reduction R(M ;B)
of M ∈ Wn×n

π is again a matrix in Wm×m
π . It is therefore possible to reduce

the matrix R(M ;B) again over some subset of B. That is, we may sequentially
reduce the matrix M . However, a natural question is to what extent does a
sequentially reduced matrix depends on the particular sequence of index sets
over which it has been reduced.

As it turns out, if a matrix has been reduced over the index set B1 then B2

up to the index set Bm then the resulting matrix depends only on the index
set Bm. To formalize this, let M ∈ Wn×n

π and suppose there are non-empty
sets B1, . . . ,Bm such that N ⊃ B1 ⊃, . . . ,⊃ Bm. Then M can be sequentially
reduced over the sets B1, . . . ,Bm where we write

Rλ(M ;B1, . . . ,Bm) = Rλ
(
. . . Rλ(Rλ(M ;B1);B2) . . . ;Bm

)
.

If M is sequentially reduced over the index sets B1, . . . ,Bm we call Bm the final
index set of this sequence of reductions.

Theorem 2. (Uniqueness of Sequential Reductions) For M(λ) ∈ Wn×n
π

suppose N ⊃ B1 ⊃, . . . ,⊃ Bm where Bm is non-empty. Then

Rλ(M ;B1, . . . ,Bm) = Rλ(M ;Bm).

That is, in a sequence of reductions the resulting matrix is completely spec-
ified by the final index set. To prove theorem 2 we first require the following
lemma.

Lemma 2. Let the non-empty sets B, I, and J partition N . If M(λ) ∈Wn×n
π

then Rλ(M ;B ∪ I,B) = Rλ(M ;B).

Proof. Assume without loss of generality that M ∈Wn×n
π can be written as

M(λ) =

MBB MBI MBJ
MIB MII MIJ
MJB MJI MJJ

 .
Using the definition of isospectral reduction we have

Rλ(M ;B) = MBB −
[
MBI MBJ

] [MII − λI MIJ
MJI MJJ − λI

]−1 [
MIB
MJB

]
and

(17)

11



Rλ(M ;B ∪ I) =

[
MBB MBI
MIB MII

]
−
[
MBJ
MIJ

]
(MJJ − λI)−1

[
MJB MJI

]
. (18)

Taking the isospectral reduction of Rλ(M ;B ∪ I) over B in (18) we have

Rλ(M ;B ∪ I,B) = MBB −MBJK(λ)−1MJB

−
[
(MBI −MBJK(λ)−1MJI)T (λ)−1(MIB −MIJK(λ)−1MJB)

]
, (19)

where K(λ) ≡MJJ −λI and T (λ) ≡MII −λI−MIJK(λ)−1MJI . Note that
both K(λ)−1 and T (λ)−1 exist following the proof of lemma 1. To show the
desired result we need to verify that expressions (17) and (19) are equal.

Recall the following identity for the inverse of a square matrix M with 2× 2
blocks:

M−1 =

[
A B
C D

]−1

=

[
E−1 −E−1BD−1

−D−1CE−1 D−1 +D−1CE−1BD−1

]
, (20)

where E = A−BD−1C is the Schur complement of D in M . The determinantal
identity (7) implies that M is invertible if and only if D and E are invertible.
Using (20) to find the inverse of the 2×2 block matrix appearing in (17) we get[

MII − λI MIJ
MJI MJJ − λI

]−1

= (21)

[
T (λ)−1 −T (λ)−1MIJK(λ)−1

−K(λ)−1MJIT (λ)−1 K(λ)−1 +K(λ)−1MJIT (λ)−1MIJK(λ)−1

]
.

Using (21) in (17) we get (19) completing the proof.

We now give a proof of theorem 2.

Proof. For M ∈ Wn×n
π suppose N ⊂ B1 ⊃ · · · ⊃ Bm where Bm 6= ∅. If m = 2

then lemma 2 directly implies that Rλ(M ;B1,B2) = Rλ(M ;B2). For 2 ≤ k < m
suppose Rλ(M ;B1, . . . ,Bk) = Rλ(M ;Bk). Then

Rλ(M ;B1, . . . ,Bk,Bk+1) = Rλ(M ;Bk,Bk+1) = Rλ(M ;Bk+1)

where the second equality follows from lemma 2. By induction it then follows
that Rλ(M ;B1, . . . ,Bm) = Rλ(M ;Bm).

Example 5. Let M ∈ C4×4 be the matrix given by

M =


1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1



12



and let B = {1, 2}. Our goal in this example is to illustrate that

Rλ(M ;B) = Rλ(M ;B ∪ {3},B) = Rλ(M ;B ∪ {4},B).

As one can compute

Rλ(M ;B∪{3}) =

 1 0 1
1

λ−1 1 1
λ−1

1
λ−1 1 λ

λ−1

 and Rλ(M ;B∪{4}) =

 1 1
λ−1

1
λ−1

0 1 1
1 1

λ−1
λ
λ−1

 .
Although Rλ(M ;B∪{3}) 6= Rλ(M ;B∪{4}), note that by reducing both of these
matrices over B = {1, 2} one has

Rλ(M ;B) = Rλ(M ;B ∪ {3},B) = Rλ(M ;B ∪ {4},B) =

[
λ2−2λ+1
λ2−2λ

λ−1
λ2−2λ

λ−1
λ2−2λ

λ2−2λ+1
λ2−2λ

]
.

As a final observation, we note that σ(M) = { 1
2 (3 ±

√
5), 1

2 (1 ±
√
−3)} and

σ(MII) = {0, 2} for I = {3, 4}. Hence the matrix M and the reduced matrix
R(M,B) have the same eigenvalues by corollary 1. That is, an isospectral re-
duction need not have any effect on the spectrum of a matrix. (In this example
the inverse spectrum does change with the reduction).

2.4. Spectral Inverse

Although a matrix M ∈W(λ)n×n has both a spectrum and an inverse spec-
trum, the techniques that have been developed to analyze its spectral properties
have been restricted to its spectrum [4, 6, 5]. The goal in this section is to in-
troduce a new matrix transformation that exchanges a matrix’ spectrum and
inverse spectrum. This transformation allows us to investigate the inverse spec-
trum of these matrices with tools meant to study its spectrum. Additionally,
we use this transformation to define the inverse pseudospectrum (or pseudores-
onances) of a matrix from the pseudospectrum of a matrix (Section 3).

Definition 4. For M(λ) ∈Wn×n let Sλ(M) ∈Wn×n be the matrix

Sλ(M) = (M(λ)− λI)−1 + λI ∈Wn×n,

if the inverse (M(λ) − λI)−1 exists. The matrix Sλ(M) is called the spectral
inverse of the matrix M(λ).

We typically write the spectral inverse of M ∈Wn×n as S(M) unless other-
wise needed. We also observe that not every matrix M ∈Wn×n has a spectral
inverse. For instance, the matrix

M =

[
λ 0
0 λ

]
cannot be spectrally inverted. However, if M has a spectral inverse then the
following holds.

13



Theorem 3. Suppose M(λ) ∈Wn×n has a spectral inverse S(M). Then

σ
(
S(M)

)
= σ−1(M) and σ−1

(
S(M)

)
= σ(M).

Proof. Let M(λ) ∈Wn×n with spectral inverse S(M). Note that

det
(
(S(M)− λI)(M − λI)

)
= det

(
(M − λI)−1(M − λI)

)
= det(I) = 1.

As the determinant is multiplicative then

det(S(M)− λI) = det(M − λI)−1,

and the result follows.

A matrix M ∈ Wn×n may or may not have a spectral inverse. However,
if M ∈ Wn×n

π then the proof of lemma 1 implies that M − λI is invertible.
Therefore, S(M) exists. This result is stated in the following lemma.

Lemma 3. If M(λ) ∈Wn×n
π , then M(λ) has a spectral inverse.

Example 6. Let M ∈W4×4
π be the matrix given by

M =


1
λ

1
λ 0 0

0 1
λ 1 0

0 0 1
λ 0

0 0 0 1
λ


for which we have

det
(
M(λ)− λI

)
=
λ8 − 4λ6 + 6λ4 − 4λ2 + 1

λ4
.

As one can calculate, the spectral inverse S(M) is the matrix

S(M) =


−λ
λ2−1

−λ
(λ2−1)2

−λ2

(λ2−1)3
−λ3

(λ2−1)4

0 −λ
λ2−1

−λ2

(λ2−1)2
−λ3

(λ2−1)3

0 0 −λ
λ2−1

−λ2

(λ2−1)2

0 0 0 −λ
λ2−1

+ λI.

Taking the determinant of S(M)− λI one has

det
(
S(M)− λI

)
=

λ4

λ8 − 4λ6 + 6λ4 − 4λ2 + 1
.

That is, det
(
S(M)− λI

)
= det(M(λ)− λI)−1.

Observe, that for anyM ∈Wn×n
π the spectral inverse S(M) /∈Wn×n

π . There-
fore, we have no guarantee that S(M) can be isospectrally reduced. However,
the following holds.

14



Theorem 4. (Reductions of the Spectral Inverse) For M(λ) ∈ Wn×n
π

suppose N ⊃ B1 ⊃, . . . ,⊃ Bm where Bm is non-empty. Then

(i) Rλ
(
S(M);Bm

)
exists;

(ii) Rλ(S(M);B1, . . . ,Bm) = Rλ(S(M);Bm); and

(iii) Rλ(S(M);B) = (M − λI)−1/
[
(M − λI)−1

]
II + λI where I = N − Bm.

Proof. For M ∈Wn×n
π suppose B and I form a non-empty partition of N . By

lemmas 1 and 3, the matrix S(M) exists and

S(M)− λI = (M − λI)−1 ∈Wn×n
π .

Equating blocks in the previous equation gives that the matrices [S(M)]BB−λI,
[S(M)]BI , [S(M)]IB and [S(M)]II − λI all have entries in Wπ. Moreover
[S(M)]II − λI is not identically zero so its inverse exists. We deduce that the
reduction of S(M) exists and is

Rλ(S(M);B)− λI = ([S(M)]BB − λI)− [S(M)]BI ([S(M)]II − λI)
−1

[S(M)]IB

∈W|B|×|B|π .

To prove (iii), simply notice that [S(M)]BB−λI =
[
(M − λI)−1

]
BB, [S(M)]IB =

[S(M)−λI]IB =
[
(M − λI)−1

]
IB, [S(M)]BI =

[
(M − λI)−1

]
BI and [S(M)]II−

λI =
[
(M − λI)−1

]
II . These relations imply (iii).

Substituting each submatrix MRC in the proof of lemma 2 by the matrix

S(M)RC =

{
(M − λI)−1

RC + λI if R = C,
(M − λI)−1

RC otherwise

and then following the proof of theorem 2 using S(M) instead of M yields a
proof of part (ii).

Theorem 4 states that any matrix M ∈Wn×n
π has a spectral inverse and that

this inverse can be reduced over any index set. Observe the similarity between
equations (5) and part (iii) of theorem 4.

2.5. Gershgorin-Type Estimates

If M ∈ Wn×n then its inverse spectrum σ−1(M) are the complex numbers
at which the determinant det(M −λI) is undefined. Since the determinant of a
matrix is composed of various products and sums of its entries then equations
(1) and (2) imply the following proposition. Hereinafter for A ⊂ C, the set A is
the complement of A in C.

Proposition 1. If M(λ) ∈Wn×n then σ−1(M) ⊆ dom (M).

Phrased another way, the inverse eigenvalues of a matrix M ∈ Wn×n are
complex numbers at which the matrix M is undefined, i.e. in the complement
of dom (M). However, it is not always the case that the converse holds as the
following example demonstrates.
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Example 7. Consider the reduced matrix

R(M ;B) =

[
1

λ−1
1

λ−1
1
λ

λ+1
λ

]
∈W2×2

found in example 2. As computed in example 3, we have σ−1(R(M ;B)) = ∅ and
yet dom (R(M ;B)) = {0, 1}.

To improve upon proposition 1 we look for methods of estimating the inverse
spectrum of a matrix. The following well-known theorem due to Gershgorin
gives a simple method for approximating the eigenvalues of a square matrix
with complex valued entries.

Theorem 5. (Gershgorin [8]) Let M ∈ Cn×n. Then all eigenvalues of M
are contained in the set

Γ(M) =

n⋃
i=1

{
λ ∈ C : |λ−Mii| ≤

n∑
j=1,j 6=i

|Mij |
}
.

In [4] it was shown that Gershgorin’s theorem can be extended to matrices
M ∈ Wn×n. Our goal in this Section is to further extend this result by using
the spectral inverse introduced in Section 2.4 to estimate the inverse spectrum
(or resonances) of matrix M ∈ Wn×n. To do so we first define the notion of a
polynomial extension of the matrix M .

Definition 5. For M(λ) ∈Wn×n with entries Mij = pij/qij let Li(M)=
∏n
j=1 qij

for 1 ≤ i ≤ n. We call the matrix M given by

M ij =

{
LiMij i 6= j

Li
(
Mij − λ

)
+ λ i = j

, 1 ≤ i, j ≤ n

the polynomial extension of M .

Note that for any M ∈Wn×n the matrix M ∈ C[λ]n×n. The following the-
orem extends Gershgorin’s original theorem to matrices in Wn×n (see theorem
3.4 in [4]).

Theorem 6. Let M(λ) ∈Wn×n. Then σ(M) is contained in the set

Γ(M) =

n⋃
i=1

{
λ ∈ C : |λ−M ii| ≤

n∑
j=1,j 6=i

|M ij |
}
.

We call the set Γ(M) the Gershgorin-type region of the matrix M or simply
its Gershgorin region. (The notation in [4] is BWΓ(M)).

An immediate corollary to theorem 3 and theorem 6 is the following.

Corollary 2. Let M(λ) ∈Wn×n. Then σ−1(M) is contained in the set

Γ
(
S(M)

)
=

n⋃
i=1

{
λ ∈ C : |λ− S(M)ii| ≤

n∑
j=1,j 6=i

|S(M)ij |
}
.
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−2 −1 0 1 2
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−1
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×

Figure 2: Left: Γ(S(M)). Right: Γ(R(S(M);B)) where the inverse spectrum σ−1(M) =
{0, 0, 0, 0} is indicated by a “×”.

Example 8. Let M ∈W4×4 be the matrix considered in example 6. Then

S(M) =


−λ(λ2 − 1)9 −λ(λ2 − 1)8 −λ2(λ2 − 1)7 −λ3(λ2 − 1)6

0 −λ(λ2 − 1)5 −λ2(λ2 − 1)4 −λ3(λ2 − 1)3

0 0 −λ(λ2 − 1)2 −λ2(λ2 − 1)1

0 0 0 −λ

+ λI.

The region Γ
(
S(M)

)
is shown in figure 2 (left).

We note that the Gershgorin-type region Γ(S(M)) is the union of the sets

Γ(S(M))i =
{
λ ∈ C : |λ− S(M)ii| ≤

n∑
j=1,j 6=i

|S(M)ij |
}
,

for i = 1, 2, 3, 4. The regions Γ(S(M))1, Γ(S(M))2, and Γ(S(M))3 in figure 2
are shown in blue, green, and red respectively. Transparency is used to highlight
the intersections. The same strategy is used in Section 3 to display pseudospectra
(or inverse pseudospectra) of a matrix.The set Γ(S(M))4 = {0} is contained in
the inverse spectrum σ−1(M) = {0, 0, 0, 0}, which is indicated in the figure.

One of the main results of [4] is that the Gershgorin region of a reduced
matrix R(M ;B) is a subset of the Gershgorin region of the unreduced matrix
M ∈ Wn×n (see theorem 5.1 [4]). In the same way the inverse eigenvalue
estimates given in corollary 2 can be improved via the process of isospectral
matrix reduction.

Theorem 7. (Improved Inverse Eigenvalue Estimates) Let M(λ) ∈Wn×n
π

where B is any nonempty subset of N . Then

Γ
(
R(S(M);B)

)
⊆ Γ

(
S(M)

)
.

A proof of theorem 7 can be obtained by following the proof of theorem 5.1
in [4] and by using theorem 4(ii).
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Example 9. Let M ∈ W4×4 be the matrix given in example 6. For the index
set B = {1, 2, 3}, the reduction of the spectral inverse of M is

R(S(M);B) =


−λ
λ2−1

−λ
(λ2−1)2

−λ2

(λ2−1)3

0 −λ
λ2−1

−λ2

(λ2−1)2

0 0 −λ
λ2−1 .

+ λI

Its polynomial extension follows:

R(S(M);B) =

 −λ(λ2 − 1)9 −λ(λ2 − 1)8 −λ2(λ2 − 1)7

0 −λ(λ2 − 1)5 −λ2(λ2 − 1)4

0 0 −λ(λ2 − 1)2

+ λI.

The Gershgorin-type region of the reduced matrix R(S(M);B) is shown in figure
2 (right) where one can see that σ−1(M) ⊂ Γ

(
R(S(M);B)

)
⊂ Γ

(
S(M)

)
. The

regions Γ(R(S(M);B))1 and Γ(R(S(M);B))2 are in blue and red, respectively.

Remark 3. In this section we have considered how Gershgorin-type estimates
can be used to estimate the inverse spectrum of a matrix M ∈ Wn×n. We
note that the same is true of the eigenvalue estimates associated with Brauer,
Brualdi, and Varga (see [4] for details).

3. Pseudospectra and pseudoresonances

A pseudospectrum of a matrix M ∈ Cn×n is essentially the collection of
scalars that behave, to within a given tolerance, as an eigenvalue of M . These
values indicate to what extent the eigenvalues of the matrix M are stable under
perturbation of the matrix entries. See e.g. [10] for a review of pseudospectra
including their history and applications.

We first extend the notion of pseudospectra to matrices in Wn×n
π . Then

we show that the spectral inverse of a matrix can be used to define inverse
pseudospectra for matrices in Wn×n

π . The inverse pseudospectra or pseudoreso-
nances of M are the scalars that behave, to within a certain tolerance, as inverse
eigenvalues or resonances of M .

We study pseudoresonances and their relation to pseudospectra in Section 3.2.
In Section 3.3 we show that an isospectral reduction shrinks the pseudospec-
trum of matrix for a given tolerance. Throughout this discussion we consider
the simple mass-spring network introduced in Section 2.2 to give a physical
interpretation to these concepts.

Before formally extending the notion of pseudospectra to matrices in Wn×n

we note that pseudospectra has been previously generalized to matrix polyno-
mials in [9, 1].

3.1. Pseudospectra

For a matrix A ∈ Cn×n, if λ ∈ σ(A) then there is always at least one
eigenvector v ∈ Cn of A associated with λ. However, recall from Section 2.1
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that a matrix M(λ) ∈ Wn×n
π may have an eigenvalue λ0 for which M(λ0) is

undefined. This may seem problematic especially if we would like to find an
eigenvector associated with λ0. In fact, it is still possible to do so.

Assuming λ0 is a solution to the equation det(M(λ)−λI) = 0, the standard
theory of linear algebra implies that there is a vector v such that when the
product (M(λ) − λI)v is evaluated at λ = λ0, the result is the zero vector.
Keeping this sequence in mind, we define the product of a matrix and vector as
follows. For any M(λ) ∈Wn×n

π and v ∈ Cn we let the product

(M(λ)− λI)v ≡ (M(s)− sI)v|s=λ.

This definition allows us to associate an eigenvectors to each eigenvalue of a
matrix M(λ) ∈Wn×n

π . To demonstrate this idea we give the following example.

Example 10. Consider the matrix M(λ) ∈W2×2 given by

M(λ) =

[
1 1

λ−1

0 1

]
.

Here, one can readily see that σ(M) = {1, 1}. Although M(1) is undefined, the
vector v = [1 0]T has the property

(M(1)− 1I)v =

[
1− s 1

s−1

0 1− s

] [
1
0

] ∣∣∣
s=1

=

[
0
0

]
.

By definition the vector v is an eigenvector associated with the eigenvalue 1
despite the fact that M(λ) is not defined for λ = 1.

Importantly, for the vector norm || · || we have

||(M(λ)− λI)v|| =
∥∥∥∥[ 1− λ

0

]∥∥∥∥ .
Hence, the size of (M(λ)−λI)v varies continuously with respect to λ even where
M(λ) is undefined. This is useful since we study values of λ that act almost like
eigenvalues of M(λ).

Suppose that for a given tolerance ε > 0, there is a scalar λ ∈ C and a
unit vector v ∈ Cn for which ‖(M(λ) − λI)v‖ < ε. If this is the case then the
vector v is said to be an ε-pseudoeigenvector of the matrix M(λ) corresponding
to the ε-pseudoeigenvalue λ. The ε−pseudospectrum of M(λ) is defined as the
set of all such λ. We state this and two other equivalent definitions of the
ε−pseudospectrum below. For Ω ⊂ C, let cl(Ω) be the closure of Ω in C.

Definition 6. Let ε > 0. The ε-pseudospectrum of M(λ) ∈ Wn×n
π is defined

equivalently by:

(a) Eigenvalue perturbation:

σε(M) = cl
(
{λ ∈ C : ‖(M(λ)−λI)v‖ < ε for some v ∈ Cn with ‖v‖ = 1}

)
.
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Figure 3: Pseudospectra of the matrices given in example 2 for ε = 1 (blue), ε = 10−1/2

(green) and ε = 10−1 (red), obtained with the matrix 2-norm. The respective spectra are
indicated by “×”.

(b) The resolvent:

σε(M) = cl
(
{λ ∈ C : ||(M(λ)− λI)−1|| > ε−1}

)
.

(c) Perturbation of the matrix:

σε(M) = cl
(
{λ ∈ C : λ ∈ σ(M(λ)+E) for some E ∈ Cn×n with ||E|| < ε}

)
.

As a consequence of definition 6, the eigenvalues of a matrix M ∈ Wn×n
π

belong to all its pseudospectra:

σ(M) ⊂ σε(M) for each ε > 0.

The proof that definitions 6(a)–(c) are equivalent (provided the vector norm in
(a) and the operator norm in (b)–(c) are consistent) relies on the proof that
definitions 6(a)–(c) are equivalent for scalar valued matrices. For completeness,
the proofs are included in Appendix B.

We now compare the pseudospectra of a matrix and its reduction.

Example 11. Consider the matrices M and R(M ;B) given in example 2 where
B = {1, 2}. The pseudospectra of both matrices are displayed in figure 3 for
ε = 1, 10−1/2, 10−1 using the matrix 2-norm. Notice that although 0, 1 ∈ σ(M)
these values do not belong to σ(R(M ;B)) because of cancellations resulting from
the matrix reduction, i.e. MII = {0, 0, 1, 1}. However, for the ε we consider
0, 1 ∈ σε(R(M ;B)) meaning that these eigenvalues remain as pseudoeigenvalues
of the reduced matrix.

To give a possible physical interpretation of pseudospectra we again consider
a mass-spring network.
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Figure 4: Pseudospectra of the stiffness matrix K for the mass spring system in example 4
and of its reduction Rλ(K, {1, 4}). The latter corresponds to the effective stiffness of the
mass-spring system when we only have access to nodes {1, 4}. The tolerances shown are ε = 1
(blue), ε = 10−1/2 (green) and ε = 10−1 (red), using the matrix 2-norm. The “×” correspond
to spectra of the respective matrices.

Example 12. For the mass-spring network considered in example 4 recall that
the eigenvalues of K correspond to frequencies for which there exists a non-zero
displacement that generates no forces on these nodes. The pseudoeigenvalues of
this system have a similar physical interpretation. Namely, the pseudospectra
indicate the frequencies for which there is a displacement that generates “small”
forces relative to the (norm of the) displacement.

For example, as the frequency ω2 = 2.1 in figure 4(right) is within the green
tolerance region there is a non-zero vector of displacements such that the forces
generated from this displacement have norm ε = 10−1/2 times less than the norm
of this displacement vector. That is, if we only have access to the boundary nodes
B = {1, 4} then the pseudoeigenvalues of Rω2(K;B) correspond to frequencies
for which there is a displacement at the boundary nodes B that generates very
small forces on these nodes. The pseudospectra regions of Rλ(K;B) are shown
in figure 4(b) for ε = 1, 10−1/2, 10−1.

Observe that the pseudospectra of Rλ(K;B) are included in the pseudospectra
of K for a given tolerance ε. That is, less access to network nodes means there
are less frequencies for which displacements generate relatively small forces.
Phrased less formally, the more a network is reduced, the less susceptible to
perturbations its eigenvalues are.

Note that in both examples 11 and 12 we have σ(M) ⊂ σε(R(M ;B)) for
the ε we consider. It seems that even under reduction, the ε-pseudospectrum
remembers where the eigenvalues of the original matrix are. However, this is
not always the case, as the following example shows.

Example 13. Consider the matrix M ∈ C3×3 given by

M =

 0 1 0
1 0 0
0 1 0

 ,
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with σ(M) = {0,±1}. By reducing M over B = {1} we obtain the matrix
R(M ;B) = [1/λ] for which

‖(R(M ;B)− λI)−1‖ =
∣∣∣ λ

1− λ2

∣∣∣.
Hence, 0 /∈ σε(R(M ;B)) for any ε. Moreover, as σ(MII) = {0, 0} for I =
{2, 3} it is not always the case that either σ(M) or σ(MII) is contained in
σε(R(M ;B)).

3.2. Pseudoresonances

Recall that the resonances of a matrix M(λ) ∈ Wn×n
π are the eigenvalues

of its spectral inverse. Thus we may think of “almost resonances” or pseu-
doresonances of M(λ) as pseudoeigenvalues of S(M). The precise definition is
below, together with other equivalent definitions. These are analogous to the
pseudospectra definitions 6(a)–(c).

Definition 7. Let ε > 0. The set of ε−pseudoresonances of a matrix M(λ) ∈
Wn×n
π is defined equivalently by:

(a) Resonance perturbation:

σ−1
ε (M) = cl

(
{λ ∈ C : ‖(M(λ)−λI)−1v‖ < ε for some v ∈ Cn with ‖v‖ = 1}

)
.

(b) The inverse resolvent:

σ−1
ε (M) = cl

(
{λ ∈ C : ||M(λ)− λI|| > ε−1}

)
.

(c) Perturbation of the spectral inverse:

σ−1
ε (M) = cl

(
{λ ∈ C : λ ∈ σ(S(M)+E) for some E ∈ Cn×n with ||E|| < ε}

)
.

Note that definition 7 is simply definition 6 in which M(λ) is replaced by the
matrix S(M) on the right hand side of parts (a)–(c). Hence, the equivalence
of definitions 7(a)–(c) follow from arguments similar those in Appendix B.
Moreover, if M(λ) ∈Wn×n

π then

σ−1(M) ⊂ σ−1
ε (M) for each ε > 0.

Observe that if w(λ) = p(λ)/q(λ) ∈ Wπ then by definition π(p) ≤ π(q).
Hence we have the limit,

lim
|λ|→∞

|w(λ)| = c,

for some constant c ≥ 0. Therefore ||M(λ)−λI|| = O(λ) for large λ, for matrices
M ∈Wn×n

π . This leads to the following remark.

Remark 4. If M ∈Wn×n
π then the value λ =∞ is always a pseudoresonance.

This means that for each ε > 0 the set σ−1
ε (M) contains the complement of a ball

centered at the origin with sufficiently large radius. (See figure 5 for example.)
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Figure 5: Pseudoresonance regions for the matrix R(M ; {1, 2}) given in example 2, with
ε = 10−1/2 (red), and ε = 10−1 (blue). All the points in the display region belong to the
pseudoresonance region for ε = 1.

Example 14. In figure 5 we show the pseudoresonance regions of the matrix
R(M ; {1, 2}) from example 2 for ε = 1, 10−1/2, 10−1. As is shown in example 3,
the inverse spectrum of R(M ; {1, 2}) is empty. However, the pseudoresonance
regions reveal that the eigenvalues σ(MII) = {0, 1} act as resonances. Specifi-
cally, σ(MII) ⊂ σ−1

ε (R(M ; {1, 2})).
In figure 3 (left) and figure 5 note that for the ε we consider

σε(R(M ; {1, 2})) ∩ σ−1
ε (R(M ; {1, 2})) 6= ∅.

That is, values near the set σ(MII) = {0, 1} are both ε-pseudoeigenvalues and
ε-pseudoresonances of R(M ; {1, 2}).

As it turns out, the situation in example 14 does not hold for every matrix
reduction. Similar to example 13, if

M =

[
1 1
0 0

]
,

and we consider the sets B = {1} and I = {2}, then one can show the set
σ(MII) = {0} is not contained in σ−1

ε (R(M ;B)) for small ε > 0. That is, the
eigenvalues σ(MII) do not always act as resonances of R(M ;B).

As with the pseudospectra studied in Section 3.1 we give a physical inter-
pretation of pseudoresonances using a mass spring system.

Example 15. The mass spring system considered in example 4 has resonances
when restricted to a set of boundary nodes B ⊂ {1, 4}. The pseudoresonances of
the reduced system correspond to frequencies for which there is a displacement
on the boundary that generates relatively large forces at these nodes. In figure 6
we display some pseudoresonance regions of the mass-spring system restricted
to the set B = {1, 4}.
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As we allow ε to be any positive value there is nothing preventing an eigen-
value of a matrix M from also being an ε-pseudoresonance of M (or a resonance
from being a ε-pseudoeigenvalue). In other words, we could have an ε > 0 for
which

σ−1(M) ∩ σε(M) 6= ∅ or σ(M) ∩ σ−1
ε (M) 6= ∅

as the following example shows.

Example 16. Consider the following matrix M(λ) ∈W2×2
π given by

M(λ) =

[
1

λ−1 0

0 0

]
.

The spectrum and inverse spectrum of M(λ) are respectively

σ(M) = {0, (1±
√

5)/2} and σ−1(M) = {1}.

Now notice that for 0 ∈ σ(M) we have

‖M(0)− 0I‖ = 1,

which implies that 0 ∈ σ−1
ε (M) for all ε ≥ 1. The resolvent of M is

(M(λ)− λI)−1 =

[
λ−1

−λ2+λ+1 0

0 − 1
λ

]
.

Hence, for λ = 1 we have

‖(M(1)− I)−1‖ = 1,

which means that 1 ∈ σε(A) for all ε ≥ 1.

As the pseudoresonances of a matrix M ∈Wn×n
π can be defined in terms of

the pseudoeigenvalues of the spectral inverse S(M), we can generalize theorem 3
as follows.

Theorem 8. Suppose M(λ) ∈Wn×n
π and ε > 0. Then

σ−1
ε (M) = σε(S(M)) and σε(M) = σ−1

ε (S(M)).

Proof. Let M(λ) ∈Wn×n
π and ε > 0. Observe that,

σε(M) = cl
(
{λ ∈ C : ||(M(λ)− λI)−1|| > ε−1}

)
; and

σ−1
ε (S(M)) = cl

(
{λ ∈ C : ||S(M)− λI|| > ε−1})

from definitions 6(b) and 7(b) respectively. Since S(M)− λI = (M(λ)− λI)−1

then σε(M) = σ−1
ε (S(M)). The equality σ−1

ε (M) = σε(S(M)) follows similarly.
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Figure 6: Pseudoresonance regions of the matrix Rλ(K; {1, 4}) given in example 4, for ε = 1
(blue), ε = 10−1/2 (green) and ε = 10−1 (red). Resonances are shown with ×. All the points
in the display region, the white region excepted, belong to the pseudoresonance region for
ε = 1.

Because of the seemingly invertible relationship between pseudospectra and
inverse pseudospectra in theorem 8, it is tempting to think the ε−pseudoresonances
of a matrix is the complement of its ε−1−pseudoeigenvalues. In general, how-
ever, the two are not equal as can be seen in the next proposition.

Theorem 9. For M(λ) ∈ Wn×n
π let ε > 0. Then cl

(
σ1/ε(M)

)
⊆ σ−1

ε (M).
However, the reverse inclusion does not hold in general.

This theorem means that, in general, there is not enough information in the
pseudospectra of a matrix to reconstruct its pseudoresonances. We now proceed
with the proof of the proposition.

Proof. For M(λ) ∈Wn×n
π and a matrix norm || · ||, the inequality

||M(λ)− λI||−1 ≤ ||(M(λ)− λI)−1|| (22)

holds for any λ ∈ dom (M) − σ(M). Let int(Ω) denote the interior of the set
Ω ⊆ C, i.e. the largest open subset of Ω. For ε > 0, using definition 6(b)

cl
(
σ1/ε(M)

)
= cl

(
cl({λ ∈ C : ||(M(λ)− λI)−1|| > ε})

)
= cl

(
int({λ ∈ C : ||(M(λ)− λI)−1|| ≤ ε})

)
= cl

(
{λ ∈ C : ||(M(λ)− λI)−1|| ≤ ε}

)
Similarly, it follows from definition 7(b) that

σ−1
ε (M) = cl

(
{λ ∈ C : ||M(λ)− λI|| > ε−1}

)
= cl

(
{λ ∈ C : ||M(λ)− λI||−1 ≤ ε}

)
.

By inequality (22) the set

{λ ∈ C : ||(M(λ)− λI)||−1 ≤ ε} ⊆ {λ ∈ C : ||(M(λ)− λI)−1|| ≤ ε}
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implying the first half of the result.
To show that the reverse inclusion does not hold in general, take for instance

the matrix M(λ) from example 16. It is easy to compute ‖M(2) − 2I‖ = 2
and ‖(M(2) − 2I)−1‖ = 1. Taking ε = 2/3, we clearly have 2 ∈ σ−1

2/3(M) ∩
σ3/2(M).

3.3. Pseudospectra Under Isospectral Reduction

One of the major goals of this paper is to understand how the pseudospectra
of a matrix M ∈Wn×n

π is affected by an isospectral reduction. In order to study
this change in pseudospectra, we need to consider two vector norms. Specifically,
we need one norm ‖ · ‖ defined on Cn for the pseudospectrum of M and another
norm ‖ · ‖′ defined on Cm (m < n) for the pseudospectrum of R(M ;B). Our
comparison of the pseudospectra of the original and reduced matrices assumes
that for v = (vTB ,v

T
I )T ∈ Cn these two norms are related by

‖v‖ =

∥∥∥∥[vBvI
]∥∥∥∥ ≥ ∥∥∥∥[vB0

]∥∥∥∥ = ‖vB‖′ . (23)

Examples of norms satisfying property (23) are the p−norms for 1 ≤ p ≤ ∞.
For the sake of simplicity, we use the same notation for both of these Cn and
Cm norms.

The following theorem describes how the ε-pseudospectrum of a matrix
M(λ) is related to the ε-pseudospectrum of the isospectral reduction Rλ(M ;B).
It says that the ε-pseudospectra of the reduced matrix is contained in the ε-
pseudospectra of the original matrix for each ε > 0.

Theorem 10. For M(λ) ∈ Wn×n
π let B ⊂ N . Then σε(R(M ;B)) ⊆ σε(M)

for any ε > 0 provided the Cn and C|B| norms in the pseudospectra definitions
satisfy (23).

Proof. For M(λ) ∈ Wn×n
π let B and I form a non-empty partition of N . We

assume, without loss of generality, that for a vector v ∈ Cn we have v =
(vTB ,v

T
I )T .

For λ̃0 ∈ C and ε > 0 suppose there is a unit vector vB ∈ C|B| such that

||(R(M ;B)− λ̃0I)vB|| < ε. (24)

As σ(MII) and dom (M) are finite sets, then by continuity there is a neighbor-

hood U of λ̃0 such that

(i) M(λ) ∈ Cn×n for λ ∈ U − {λ̃0};
(ii) σ(MII) ∩ (U − {λ̃0}) = ∅; and

(iii) ||(R(M ;B)− λI)vB|| < ε for λ ∈ U − {λ̃0}.
Observe that, for each λ0 ∈ U − {λ̃0} it follows that the vector

vI = −(M(λ0)II − λ0I)−1M(λ0)IBvB
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is defined. Let v = (vTB ,v
T
I )T and note that

(M(λ0)− λ0I)v =

[
(M − λI)BBvB + (M − λI)BIvI
(M − λI)IBvB + (M − λI)IIvI

] ∣∣∣
λ=λ0

=

[
MBBvB −MBI(MII − λI)−1MIBvB

MIBvB − (MII − λI)(MII − λI)−1MIBvB

] ∣∣∣
λ=λ0

=

[
(R(M ;B)− λI)vB

0

] ∣∣∣
λ=λ0

.

By the property (23) of the norms in Cn and C|B| we must have

‖(M(λ0)− λ0I)v‖ = ‖(R(M(λ0);B)− λ0I)vB‖ < ε. (25)

As vB 6= 0, consider the unit vector u = v/‖v‖ ∈ Cn. Again by (23) we have
‖v‖ ≥ ‖vB‖ = 1. Hence, we get the bound

‖(M(λ0)− λ0I)u‖ =
‖(M(λ0)− λ0I)v‖

‖v‖ ≤ ‖(M(λ0)− λ0I)v‖ < ε,

where the last inequality comes from (25). This implies λ0 ∈ σε(M).

As this holds for any λ0 ∈ U − {λ̃0} then λ̃0 ∈ cl(σε(M)). Since σε(M)

is a closed set then in fact λ̃0 ∈ σε(M). Since λ̃0 is an arbitrary point in
σε(R(M ;B)), the result follows by inequality (24).

Remark 5. Theorem 10 states that the ε-pseudospectrum of a matrix becomes a
subset of this region as the matrix is reduced. However, for ε-pseudoresonances
of a matrix there is no such inclusion result.

Example 17. In the mass-spring system of example 4, we consider four dif-
ferent sets of boundary nodes {1, 2, 3, 4} ⊃ {1, 2, 4} ⊃ {1, 4} ⊃ {1}. Note that
theorem 10 implies that the corresponding pseudospectra for a given ε obey the
same inclusions. This is shown in figure 7 for ε = 1, 10−1/2, and ε = 10−1.

In physical terms, this means that as we increase the number of internal
degrees of freedom (or decrease the number of boundary nodes), it becomes harder
to find frequencies for which there is a displacement that generates forces of
magnitude below a certain fixed level. Hence the less boundary nodes we have,
the more robust are the frequencies that generate small forces.

Notice that the inclusion given in theorem 10 is not a strict inclusion. In
fact, it may be the case that a matrix M and its reduction R(M ;B) have the
same pseudospectra as the following example demonstrates.

Example 18. Consider the matrix M ∈ C4×4 given by

M =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 and its reduction R(M ;B) =

 λ
λ−1 0 0

0 1 1
0 1 1

 ,
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Figure 7: Pseudospectra of the matrix K from the mass-spring system of example 4 (blue)
together the pseudospectra for the reduced matrices where the terminal nodes are B = {1, 2, 4}
(cyan), B = {1, 4} (green) and B = {1} (red). Note how the pseudospectra shrink as the
number of boundary nodes decreases.
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where B = {2, 3, 4}. Computing the Euclidean induced matrix norm of the
resolvents we get

‖(M − λI)−1‖ = max(|λ|−1, |λ− 2|−1) and

‖(R(M ;B)− λI)−1‖ = max(|λ|−1, |λ− 2|−1, |λ− 1||λ|−1|λ− 2|−1).

To show that the pseudospectra of M and R(M ;B) are the same, we only
need to demonstrate that the norms above are equal. This happens if we can
show the inequality

|λ− 1||λ|−1|λ− 2|−1 ≤ max(|λ|−1, |λ− 2|−1). (26)

Notice that the triangle inequality implies

|λ− 1| ≤ 1

2
|λ− 2|+ 1

2
|λ| ≤ max(|λ|, |λ− 2|). (27)

Inequality (26) follows for λ /∈ {0, 2} by dividing (27) by |λ||λ− 2|. As {0, 2} ⊂
σ(M), σ(R(M ;B)), then both 0 and 2 are included in the pseudospectra of these
matrices. We conclude that σε(M) = σε(R(M ;B)) for all ε > 0.

4. Conclusion

Isospectral graph reductions allow one to reduce the size of a matrix while
maintaining its set of eigenvalues up to a known set. Prior to this paper it
was known that a matrix could be isospectrally reduced over any principal
submatrix of a particular form. One of our main results removes this restriction.
This new, more general method of isospectral reduction allows one to reduce a
matrix over any principal submatrix without any other consideration (other than
existence). Consequently, we are able to study matrix reduction in a simpler
and computationally more efficient way compared with those used in [4, 6, 5].

An additional improvement to previous work is the introduction of a spectral
inverse. The spectral inverse of a matrix, which interchanges a matrix’ spectrum
and inverse spectrum, allows one to use the previous results found in [4, 6, 5]
to analyze the inverse spectrum of a matrix. In particular, we show that the
Gershgorin-type estimates in [4] can also be used to estimate a matrix’ inverse
spectrum.

One of our main goals here is determining whether the notion of pseudospec-
tra can be extended to the class of matrices we consider. In fact, because a
matrix with rational function entries has both a spectrum and inverse spectrum
we are able to extend the notion of pseudospectrum to such matrices and also
introduce the notion of inverse pseudospectrum. Moreover, we are able to show
that the pseudospectrum of a matrix shrinks under reduction. Therefore, the
eigenvalues of a reduced matrix are less susceptible to perturbations. This fact
has implications to systems modeled by reduced matrices.

For instance, the mass spring network we consider throughout this paper is
modeled using a matrix with integer entries. However, if we have access to only
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some terminal nodes, the frequency response at the terminals is a matrix with
rational function entries which can be obtained by reducing the stiffness matrix
where all nodes are terminal nodes. Our result shows that having less terminal
nodes, means the eigenvalues of the frequency response are less susceptible to
perturbations than the eigenvalues of the matrix where all the nodes are terminal
nodes.
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Appendix A. Properties of the Degree of a Rational Function

Suppose wi = pi(λ)/qi(λ) where pi(λ), qi(λ) ∈ C[λ] and qi(λ) is nonzero for
1 ≤ i ≤ n. Then for 1 ≤ i, j ≤ n it is easy to show the following properties hold:

π
( n∑
i=1

wi
)

= max
1≤i≤n

{
π(wi) : wi 6= 0

}
; (A.1)

π
( n∏
i=1

wi
)

=


n∑
i=1

π(wi) if ∀i ∈ {1, · · · , n} wi 6= 0

0 otherwise;

(A.2)

π
(
wi/wj

)
=

{
π(wi)− π(wj) if wi 6= 0

0 otherwise
for wj 6= 0; and (A.3)

π(wi − λ) = 1 for wi ∈Wπ. (A.4)

Appendix B. Eigenvalue Inclusions & Equivalence of Definitions 6–7

Here we first show that the three pseudoeigenvalue regions in definition 6(a)–
(c) are equivalent and include the eigenvalues of the matrix. The proof relies
on the fact that the sets

(a) σε(M) = {λ ∈ C : ||(M − λI)v|| < ε for some v ∈ Cn with ||v|| = 1};
(b) σε(M) = {λ ∈ C : ||(M − λI)−1|| > ε−1} ∪ σ(M); and

(c) σε(M) = {λ ∈ C : λ ∈ σ(M + E) for some E ∈ Cn×n with ||E|| < ε}.
are equivalent for any M ∈ Cn×n and ε > 0. This result can be obtained by
following the proof at http://www.cs.ox.ac.uk/pseudospectra/thms/thm1.

pdf.

Theorem 11. Let M(λ) ∈ Wn×n
π and ε > 0. Then definitions 6(a)–(c) are

equivalent. Moreover, σ(M) ⊂ σε(M).

Proof. For M(λ) ∈Wn×n
π and ε > 0 let
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(a) σε,a(M) = {λ ∈ C : ||(M(λ)− λI)v|| < ε for some v ∈ Cn with ||v|| = 1};
(b) σε,b(M) = {λ ∈ C : ||(M(λ)− λI)−1|| > ε−1} ∪ σ(M); and

(c) σε,c(M) = {λ ∈ C : λ ∈ σ(M + E) for some E ∈ Cn×n with ||E|| < ε}.
Suppose λ0 ∈ σ(M). Then there is a unit vector v ∈ Cn such that

(M(λ)− λI)v = w(λ) ∈Wn
π

where w(λ0) = 0. Since σ(M) and dom (M) are finite then there is a neighbor-

hood U 3 λ0 such that for Ũ = U − {λ0}:
(i) Ũ ⊂ dom (M);

(ii) ||w(λ)|| < ε for λ ∈ Ũ ; and

(iii) (σ(M)− {λ0}) ∩ Ũ = ∅.
In particular, (ii) implies the set Ũ ⊂ σε,a(M).

For λ ∈ dom (M) observe that the matrix M(λ) ∈ Cn×n. Since (a)–(c) are
equivalent for any complex valued matrix then

Ũ ⊂ σε,a(M)− {λ0}, σε,b(M)− {λ0}, σε,c(M)− {λ0}.

This in turn implies

σ(M) ⊂ cl
(
σε,a(M)

)
, cl
(
σε,b(M)− σ(M)

)
, cl
(
σε,c(M)

)
. (B.1)

In particular, if σε,b(M)− σ(M) is open then σε,b(M) is open.
Note that the norm of a vector or matrix is continuous with respect to its

entries. Also, the eigenvalues of a matrix depend continuously on the matrix en-
tries. Thus, the sets σε,a(M), σε,b(M)−σ(M), and σε,c(M) are open. Therefore,
the set σε,b(M) is also open.

Since the sets (a)–(c) are equivalent on dom (M) and dom (M) is finite then

σε,a(M) ∩ dom (M) = σε,b(M) ∩ dom (M) = σε,c(M) ∩ dom (M)

is an open set. Taking the closure it follows that

cl
(
σε,a(M)

)
= cl

(
σε,b(M)− σ(M)

)
= cl

(
σε,c(M)

)
implying that definitions 6(a)–(c) are equivalent. Moreover, equation B.1 im-
plies σ(M) ⊂ σε(M).

The proof that definitions 7(a)–(c) are equivalent is very similar to the proof
of theorem 11 and is therefore omitted.
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