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Abstract We present a comparison of different multigrid approaches for the so-
lution of systems arising from high-order continuous finite element discretizations
of elliptic partial differential equations on complex geometries. We consider the
pointwise Jacobi, the Chebyshev-accelerated Jacobi and the symmetric successive
over-relaxation (SSOR) smoothers, as well as elementwise block Jacobi smooth-
ing. Three approaches for the multigrid hierarchy are compared: (1) high-order
h-multigrid, which uses high-order interpolation and restriction between geomet-
rically coarsened meshes; (2) p-multigrid, in which the polynomial order is reduced
while the mesh remains unchanged, and the interpolation and restriction incorpo-
rate the different-order basis functions; and (3), a first-order approximation multi-
grid preconditioner constructed using the nodes of the high-order discretization.
This latter approach is often combined with algebraic multigrid for the low-order
operator and is attractive for high-order discretizations on unstructured meshes,
where geometric coarsening is difficult. Based on a simple performance model,
we compare the computational cost of the different approaches. Using scalar test
problems in two and three dimensions with constant and varying coefficients, we
compare the performance of the different multigrid approaches for polynomial
orders up to 16. Overall, both h- and p-multigrid work well; the first-order ap-
proximation is less efficient. For constant coefficients, all smoothers work well. For
variable coefficients, Chebyshev and SSOR smoothing outperform Jacobi smooth-
ing. While all of the tested methods converge in a mesh-independent number of
iterations, none of them behaves completely independent of the polynomial or-
der. When multigrid is used as a preconditioner in a Krylov method, the iteration
number decreases significantly compared to using multigrid as a solver.
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1 Introduction

This paper presents a comparison of geometric multigrid methods for the solu-
tion of systems arising from high-order (we target polynomial orders up to 16)
continuous finite element discretizations of elliptic partial differential equations.
Our particular interest is to compare the efficiency of different multigrid methods
for elliptic problems with varying coefficients on complex geometries. High-order
spatial discretizations for these problems can have significant advantages over low-
order methods since they reduce the problem size for given accuracy, and allow
for better performance on modern hardware. The main challenges in high-order
discretizations are that matrices are denser compared to low-order methods, and
that they lose structural properties such as the M-matrix property, which often
allows to prove convergence of iterative solvers.

As illustrated in Figure 1, there are several possibilities for constructing a multi-
grid hierarchy for high-order discretizations: (1) high-order geometric h-multigrid,
where the mesh is coarsened geometrically and high-order interpolation and pro-
longation operators are used; (2) p-multigrid, in which the problem is coarsened by
reducing the polynomial order, and the interpolation and prolongation take into
account the different order basis functions; and (3) a first-order approximation as
preconditioner, constructed from the nodes of the high-order discretization. For
the polynomial orders 1 ≤ p ≤ 16, we compare these multigrid approaches, com-
bined with different smoothers. We also compare the use of multigrid as a solver
as well as a preconditioner in a Krylov subspace method. While we use moderate
size model problems (up to about 2 million unknowns in 3D), we also discuss our
findings with regard to parallel implementations on high performance comput-
ing platforms. We also discuss parallelization aspects relevant for implementations
on shared or distributed memory architectures. For instance, the implementation
of Gauss-Seidel smoothers can be challenging in parallel [1, 2]; for this reason, we
include a Chebyshev-accelerated Jacobi smoother in our comparisons. This Cheby-
shev smoother is easy to implement in parallel, and often is as effective a smoother
as Gauss-Seidel.

We use high-order discretizations based on Legende-Gauss-Lobotto (LGL) nodal
basis functions on quadrilateral or hexahedral meshes. Tensorized basis functions
allow for a fast, matrix-free application of element matrices. This is particularly
important for high polynomial degrees in three dimensions, as element matrices
can become large. For instance, for a three-dimensional hexahedral mesh and finite
element discretizations with polynomial degree p, the dense element matrices are
of size (p+1)3×(p+1)3. Thus, for p = 8, this amounts to more than half a million
entries per element. For tensorized nodal basis functions on hexahedral meshes,
the application of elemental matrices to vectors can be implemented efficiently by
exploiting the tensor structure of the basis functions, as is common for spectral
elements [3].

Related work: Multigrid for high-order/spectral finite elements has been stud-
ied as early as in the 1980s. In [4], the authors observe that point smoothers such
as the simple Jacobi method result in resolution-independent convergence rates
for high-order elements on simple one and two-dimensional geometries. Initial the-
oretical evidence for this behavior is given in [5], where multigrid convergence is
studied for one-dimensional spectral methods and spectral element problems. The
use of p-multigrid is rather common in the context of high-order discontinuous
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Fig. 1 Illustration of different multigrid hierarchies for high-order finite element discretiza-
tions: (a) high-order h-multigrid, (b) p-multigrid and (c) low-order approximation precondi-
tioner based on the nodes of the high-order discretization .

Galerkin discretizations [6, 7], but p-multigrid has also been used for continuous
finite element discretizations [8]. A popular strategy for high-order discretizations
on unstructured meshes, for which geometric mesh coarsening is challenging, is to
assemble a low-order approximation of the high-order system and use an algebraic
multigrid method to invert the low-order (and thus much sparser) operator [9–13].
In [14], this approach is compared with the direct application of algebraic multigrid
to the high-order operator and the authors find that one of the main difficulties is
the assembly of the high-order matrices required by algebraic multigrid methods.

Contributions: There has been a lot of work on high-order discretization meth-
ods and on the efficient application of the resulting operators. However, efficient
solvers for such discretization schemes have received much less attention. In par-
ticular, theoretical and experimental studies are scattered regarding the actual
performance (say the number of v-cycles or matrix-vector products to solve a sys-
tem) of the different schemes under different scenarios. A systematic analysis of
such performance is not available. In this paper, we address this gap in the existing
literature. In particular we (1) consider high-order continuous Galerkin discretiza-
tions up to 16th order, (2) examine three different multigrid hierarchies (h, p, and
first-order), (3) examine several different smoothers: Jacobi, polynomial, SSOR,
and block Jacobi, (4) consider different settings (constant, mildly variable, and
highly variable) of coefficients and (5) consider problems in 2D and 3D. To our
knowledge, this is the first study of this kind. Our results demonstrate significant
variability in the performance of the different schemes for higher-order elements,
highlighting the need for further research on the smoothers. Although the overall
runtime will depend on several factors—including the implementation and the tar-
get architecture—in this work we limit ourselves to characterizing performance as
the number of fine-grid matrix-vector products needed for convergence. This is the
most dominant cost and is also independent of the implementaion and architec-
ture, allowing for easier interpretation and systematic comparison with other ap-
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proaches. Finally, we provide an easily extendable Matlab implementation,1 which
allows a systematic comparison of the different methods in the same framework.

Limitations: While this work is partly driven by our interest in scalable parallel
simulations on nonconforming meshes derived from adaptive octrees (e.g., [15]),
for the comparisons presented in this paper we restrict ourselves to moderate size
problems on conforming meshes. We do not fully address time-to-solution, as we
do not use a high-performance implementation. However, recent results using a
scalable parallel implementation indicate that many of our observations general-
ize to non-conforming meshes and that the methods are scalable to large parallel
computers [16]. While we experiment with problems with strongly varying coef-
ficients, we do not study problems with discontinuous or anisotropic coefficients,
nor consider ill-shaped elements.

Organization of this paper: In §2 we describe the test problem, as well as dis-
cretization approach for the different multigrid schemes. In §3, we describe in
detail the different multilevel approaches for solving the resulting high-order sys-
tems. In §4, we present a comprehensive comparison of different approaches using
test problems in 2D and 3D. Finally, in §5 we draw conclusions and discuss our
findings.

2 Problem statement and preliminaries

We wish to solve the Poisson problem with homogeneous Dirichlet boundary con-
ditions on an open bounded domain Ω ⊂ Rd (d = 2 or d = 3) with boundary ∂Ω,
i.e., we search the solution u(x) of:

−∇ · (µ(x)∇u(x)) = f(x) for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω.

(1)

Here, µ(x) ≥ µ0 > 0 is a spatially varying coefficient that is bounded away from
zero, and f(x) is a given right hand side. We discretize (1) using finite elements
with basis functions of polynomial order p and solve the resulting discrete system
using different multigrid variants. Next, in §2.1 and §2.2, we discuss the Galerkin
approximation to (1) and the setup of the inter-grid transfer operators to establish
a multilevel hierarchy. In §2.3, we discuss details of the meshes and implementation
used for our comparisons.

2.1 Galerkin approximation

Given a bounded, symmetric bilinear form2 a(u, v) that is coercive on H1
0 (Ω), and

f ∈ L2(Ω), we want to find u ∈ H1
0 (Ω) such that u satisfies

a(u, v) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω), (2)

where (f, v)L2(Ω) =
∫
Ω
fv dx and H1

0 (Ω) ⊂ L2(Ω) denotes the subspace of func-
tions with square integrable derivatives that vanish on the boundary. This problem

1 http://hsundar.github.io/homg/
2 In our case, a(u, v) =

∫
Ω µ∇u · ∇v.

http://hsundar.github.io/homg/
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is known to have a unique solution u∗ [17]. We now derive discrete equations whose
solutions approximate the solution of (2). First, we define a sequence of m nested
conforming finite-dimensional spaces, V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ H1

0 (Ω). Here, Vk is
the finite element space that corresponds to a finite element mesh at a specified
polynomial order, and Vk−1 corresponds to the next coarser problem, as illustrated
in Figure 1-(a,b) for different coarsenings. Then, the discretized problem on Vk is
to find uk ∈ Vk such that

a(uk, vk) = (f, vk)L2(Ω), ∀vk ∈ Vk. (3)

This problem has a unique solution, and the sequence {uk} converges to u∗ [17].
The L2-projection of the linear operator corresponding to the bilinear form a(· , ·)
onto Vk is defined as the linear operator Ak : Vk → Vk such that

(Akvk, wk)L2(Ω) = a(vk, wk), ∀vk, wk ∈ Vk. (4)

The operator Ak is self-adjoint with respect to the L2-inner product and positive
definite. Let {φk1 , φk2 , . . . , φkNk

} be a basis for Vk and denote by Ak the represen-
tation of Ak in that basis. Then, (4) becomes the linear matrix equation for the
coefficient vector uk ∈ RNk

Akuk = fk, (5)

where, for i, j = 1, 2, . . . , Nk, the components of Ak, uk and fk are given by

(Ak)ij =a(φki , φ
k
j ),

(fk)j =(f, φkj )L2(Ω),

(Mk)ij =(φki , φ
k
j )L2(Ω),

where the integrals on the right hand sides are often approximated using numerical
quadrature. Here, Mk is the mass matrix, which appears in the approximation of
the L2-inner product in Vk since (uk, vk)L2(Ω) = uTkMkvk for all uk, vk ∈ Vk with

corresponding coefficient vectors uk,vk ∈ RNk .

2.2 Restriction and prolongation

Since the coarse-grid space is a subspace of the fine-grid space, any coarse-grid
function vk−1 can be expanded in terms of the fine-grid basis functions,

vk−1 =

Nk−1∑
i=1

vi,k−1φ
k−1
i =

Nk∑
j=1

vj,kφ
k
j , (6)

where, vi,k and vi,k−1 are the coefficients in the basis expansion for vk−1 on the
fine and coarse grids, respectively.

The application of the prolongation operator can be represented as a matrix-
vector product with the input vector as the coarse grid nodal values and the output
as the fine grid nodal values [18]. The matrix entries of this operator are thus the
coarse grid shape functions evaluated at the fine-grid vertices, pi, i.e.,

Pij = φk−1
j (pi) for 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk−1. (7)
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This gives rise to two different operators depending on whether the coarse grid is
obtained via h-coarsening or whether it is obtained via p-coarsening; see Figure 1
for an illustration of the two cases. The restriction operator is the adjoint of the
prolongation operator with respect to the mass-weighted inner products. This only
requires the application of the transpose of the prolongation operator to vectors.

2.3 Meshing and implementation

For the numerical comparisons in this work we consider domains that are the im-
age of a square or a cube under a diffeomorphism, i.e., a smooth mapping from
the reference domain S := [0, 1]d to the physical domain Ω. Hexahedral finite ele-
ment meshes and tensorized nodal basis function based on Legende-Gauss-Lobotto
(LGL) points are used. We use isoparametric elements to approximate the geome-
try of Ω, i.e., on each element the geometry diffeomorphism is approximated using
the same basis functions as the finite element approximation. The Jacobians for
this transformation are computed at every quadrature point, and Gauss quadra-
ture is used to numerically approximate integrals. We assume that the coefficient
µ is a given function, which, at each level, can be evaluated at the respective
quadrature points. We restrict our comparisons to uniformly refined conforming
meshes and our implementation, written in Matlab, is publicly available. It al-
lows comparisons of different smoothing and coarsening methods for high-order
discretized problems in two and three dimensions, and can easily be modified or
extended. It does not support distributed memory parallelism, and is restricted
to conforming meshes that can be mapped to a square (in 2D) or a cube (in 3D).
While, in practice, matrix assembly for high-order discretizations is discouraged,
we use sparse assembled operators in this prototype implementation.

Note that for hexahedral elements in combination with a tensorial finite ele-
ment basis, the effect of matrix-free operations for higher-order elements can be
quite significant3 in terms of floating point operations, memory requirements, and
actual run time:

– Memory requirements for assembled matrices: For an order p, assembled ele-
ment matrices are dense and of the size (p + 1)3 × (p + 1)3. For p = 9, for
instance, (p + 1)3 = 1000 and thus each element contributes 106 entries to
the assembled stiffness matrix, and each row in the matrix contains, on aver-
age, several 1000 nonzero entries. Thus, for high orders, memory becomes a
significant issue.

– Floating point operations for matrix-free versus assembled MatVec: For hex-
ahedral elements, the operation count for a tensorized matrix-free matvec is
O(p4) as opposed to O(p6) for a fully assembled matrix [3, 19].

Detailed theoretical and experimental arguments in favor of matrix-free ap-
proaches, especially for high-order discretizations can be found in [3, 20,21]

3 For tetrahedral elements, this difference might be less pronounced.
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3 Multigrid approaches for high-order finite element discretizations

In this section, we summarize different multigrid approaches for high-order/spectral
finite element discretizations, which can either be used as a solver or can serve as
a preconditioner within a Krylov method. We summarize different approaches for
the construction of multilevel hierarchies in §3.1 and discuss smoothers in §3.2.

3.1 Hierarchy construction, restriction and prolongation operators

There are several possibilities to build a multilevel hierarchy for high-order dis-
cretized problems; see Figure 1. One option is the construction of a geometric
mesh hierarchy while keeping the polynomial order unchanged; we refer to this
approach as high-order h-multigrid. An alternative is to construct coarse problems
by reducing the polynomial degree of the finite element basis functions, possi-
bly followed by standard geometric multigrid; this is commonly referred to as
p-multigrid. For unstructured high-order element discretizations, where geometric
coarsening is challenging, using an algebraic multigrid hierarchy of a low-order
approximation to the high-order operator as a preconditioner has proven efficient.
Some details of these different approaches are summarized next.

3.1.1 h-multigrid

A straightforward extension of low-order to high-order geometric multigrid is to
use the high-order discretization of the operator for the residual computation on
each multigrid level, combined with high-order restriction and prolongation oper-
ators (see §2.2). For hexahedral (or quadrilateral) meshes, the required high-order
residual computations and the application of the interpolation and restriction op-
erators can often be accelerated using elementwise computations and tensorized
finite element basis functions, as is common in spectral element methods [3].

3.1.2 p-multigrid

In the p-multigrid approach, a multigrid hierarchy is obtained by reducing the
polynomial order of the element basis functions. Starting from an order-p poly-
nomial basis (for simplicity, we assume here that p is a power of 2), the coarser
grids correspond to polynomials of order p/2, p/4, . . . , 1, followed by geometric
coarsening of the p = 1 grid (i.e., standard low-order geometric multigrid). As
for high-order h-multigrid, devising smoothers can be a challenge for p-multigrid.
Moreover, one often finds dependence of the convergence factor on the order of
the polynomial basis [22].

3.1.3 Preconditioning by lower-order operator

In this defect correction approach (see [23,24]), the high-order residual is iteratively
corrected using a low-order operator, obtained by overlaying the high-order nodes
with a low-order (typically linear) finite element mesh. While the resulting low-
order operator has the same number of unknowns as the high-order operator, it is
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much sparser and can, thus, be assembled efficiently and provided as input to an
algebraic multigrid method, which computes a grid hierarchy through algebraic
point aggregation. This construction of a low-order preconditioner based on the
nodes of the high-order discretization is used, for instance in [9–11,14]. Due to the
black-box nature of algebraic multigrid, it is particularly attractive for high-order
discretizations on unstructured meshes. Note that even if the mesh is structured,
it is not straightforward to use low-order geometric multigrid since the nodes—
inherited from the high-order discretization—are not evenly spaced (see Figure 1).

3.2 Smoothers

In our numerical comparisons, we focus on point smoothers but we also compare
with results obtained with an elementwise block-Jacobi smoother. In this section,
we summarize different smoothers and numerically study their behavior for high-
order discretizations. Note that, multigrid smoothers must target the reduction of
the error components in the upper half of the spectrum.

3.2.1 Point smoothers

We compare the Jacobi and the symmetric successive over relaxation (SSOR)
smoothers, as well as a Chebyshev-accelerated Jacobi smoother [25]. All of these
smoothers require the diagonal of the system matrix; if this matrix is not assem-
bled (i.e., in a matrix-free approach), these diagonal entries must be computed in a
setup step; for high-order discretizations on deformed meshes, this can be a signifi-
cant computation. Note that the parallelization of Gauss-Seidel smoothers (such as
SSOR) requires coloring of unknowns in parallel, and, compared to Jacobi smooth-
ing, more complex communication in a distributed memory implementation. The
Chebyshev-accelerated Jacobi method is an alternative to SSOR; it can signif-
icantly improve over Jacobi smoothing, while being as simple to implement [1].
The acceleration of Jacobi smoothing with Chebyshev polynomials requires knowl-
edge of the maximum eigenvalue of the system matrix, usually estimated during
setup with an iterative solver.

3.2.2 Comparison of point smoothers

In Figures 2 and 3, we compare the efficiency of these point smoothers for differ-
ent polynomial orders and constant and varying coefficients. For that purpose, we
compute the eigenvectors of the system matrix, choose a zero right hand side and
an initialization that has all unit coefficients in the basis given by these eigenvec-
tors. For the polynomial orders p = 1, 4, 16, we compare the performance of point
smoothers with and without a 2-level v-cycle with exact coarse solve. The coarse
grid for all polynomial orders is obtained using h-coarsening. We depict the coef-
ficients after six smoothing steps in the left column, and the results obtained for a
two-grid method4 with three pre- and three post-smoothing steps (and thus overall
six smoothing steps on the finest grid) in the right column. The SSOR smoother
uses a lexicographic ordering of the unknowns, and we employ two pre- and one

4 For simplicity, we chose two grids in our tests; the results for a multigrid v-cycle are similar.
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post-smoothing steps, which again amounts to overall six smoothing steps on the
finest grid. The damping factors for Jacobi and SSOR smoothing are ω = 2/3 and
ω = 1, respectively. The Chebyshev smoother targets the part of the spectrum
given by [λmax/4, λmax], where λmax is the maximum eigenvalue of the system
matrix, which is estimated using 10 iterations of the Arnoldi algorithm.

The results for the constant coefficient Laplacian operator on the unit square
(see Figure 2) show that all point smoothers decrease the error components in
the upper half of the spectrum; however, the decrease is smaller for high-order
elements. Observe that compared to Jacobi smoothing, Chebyshev accelerated
Jacobi smoothing dampens a larger part of the spectrum. Both, the Chebyshev
and SSOR methods outperform Jacobi smoothing, in particular for higher orders.
Combining the smoothers with a two-grid cycle, all error components are decreased
for all smoothers (and thus the resulting two-grid methods converge, see Table 1
in §4.4), but the error decreases slower for higher polynomial orders. For high
polynomial orders, a two-grid iteration with SSOR smoothing results in a much
better error reduction than Jacobi or Chebyshev smoothing.

In Figure 3, we study the performance of different smoothers for the test prob-
lem 2d-var, defined in §4.1. In this problem, we solve (1) with a strongly (but
smoothly) varying coefficient µ on a deformed domain Ω. Compared to the con-
stant coefficient case, Jacobi smoothing performs worse, both, when used as a
solver and as a smoother. Let us focus on the two-grid correction for polyno-
mial order p = 16 and compare with the results obtained when using multigrid
as a solver, shown in Table 2. Jacobi smoothing does not lead to a converging
two-grid algorithm, as several coefficients are amplified by the two-grid cycle. For
Chebyshev smoothing, the multigrid v-cycle converges slowly although one or two
coefficients appear amplified in the two-grid iteration. This convergence can be
explained by the fact that errors can be interchanged between different eigenvec-
tors in the v-cycle. SSOR smoothing combined with the two-grid method retains
a significant error reduction rate and, as a consequence, converges quickly.

3.2.3 Block-Jacobi smoothing

An alternative smoothing approach for high-order discretizations is based on local
block solves. Since for high polynomial orders many unknowns lie in the element
interiors, Schwarz-type domain decomposition smoothers are promising. For in-
stance, they are more stable for anisotropic meshes than point smoothers. A main
challenge of Schwarz-type smoothers is that they require the solution of dense local
systems. This is either done by using direct methods or approximations that allow
for a fast iterative solution on hexahedral meshes [26, 27]. In §4, we compare the
performance of point smoothers with an elementwise block Jacobi smoothing.

4 Numerical results

In this section, we present a comprehensive comparison of our algorithms for the
solution of high-order discretizations of (1). After introducing our test problems
in §4.1, we present a simple model for the computational cost of the different ap-
proaches in terms of matrix-vector applications in §4.2. In §4.3, we specify settings
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Fig. 2 Error decay for different point smoothers when used as solver (left column) and
when used in a single two-grid step with exact coarse grid solution (right column) for a
two-dimensional, constant coefficient Laplace problem on a unit square (problem 2d-const
specified in §4.1). To keep the number of unknowns the same accross all polynomial orders,
meshes of 32 × 32, 8 × 8 and 2 × 2 elements are used for polynomial orders p = 1, p = 4
and p = 16, respectively. The horizontal axis is the index for the eigenvectors of the system
matrix Ak, and the vertical axis is the magnitude of the error component for each eigenvector.
The eigenvectors are ordered such that the corresponding eigenvalues are ascending; thus, due
to the properties of Ak, the smoothness in every eigenvector decays from left to right. The
system right hand side is zero and the initialization is chosen to have all unit coefficients in the
eigenvector expansion. A total of six smoothing steps is used for all methods, and the coarse
problem in the two-grid step is solved by a direct solver.
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Fig. 3 Shown is the same comparison as in Figure 2, but for the two-dimensional warped
geometry, variable coefficient problem 2d-var specified in §4.1.

and metrics for our comparisons. The results of these comparisons are presented
and discussed in §4.4.

4.1 Test problems

We compare our algorithms for the solution of (1) with constant coefficient µ ≡ 1
on the unit square and the unit cube, and, with varying coefficients µ(x), on the
warped two and three-dimensional domains shown in Figure 4. To be precise, we
consider the following four problems:



12 Hari Sundar, Georg Stadler and George Biros

0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2
·106

0

0.5

−0.5

0

0.5

1

1

2

3
·106

Fig. 4 Two and three-dimensional warped meshes used in our numerical experiments. The
color illustrates the logarithm of the coefficient field, which varies over six orders of magnitude.

– 2d-const: The domain Ω for the problem is the unit square, and µ ≡ 1.
– 2d-var: The warped two-dimensional domain Ω is shown on the left in Fig-

ure 4, and the varying coefficient is µ(x, y) = 1 + 106(cos2(2πx) + cos2(2πy)).
We also study a modification of this problem with a more oscillatory coefficient
µ(x, y) = 1 + 106(cos2(10πx) + cos2(10πy)), which we refer to as 2d-var′.

– 3d-const: For this problem, Ω is the unit cube, and we use the constant
coefficient µ ≡ 1.

– 3d-var: The warped three-dimensional domain Ω shown on the right of Fig-
ure 4 is used; the varying coefficient is µ(x, y, z) = 1+106(cos2(2πx)+cos2(2πy)+
cos2(2πz)).

4.2 Comparing the computational cost

To compare the computational cost of the different methods, we focus on the
matrix-vector multiplications on the finest multigrid level, which dominate the
overall computation. Denoting the number of unknowns on the finest level by
N , the computational cost—measured in floating point operations (flops)—for a
matrix-vector product is Ngp, where gp is the number of flops per unknown and
the subscript p indicates the polynomial order used in the FEM basis. Since high-
order discretizations result in less sparse operators, g1 ≤ g2 ≤ . . . holds. The
actual value of gp depends strongly on the implementation. Also note that the
conversion from gp to wall-clock time is not trivial, as wall-clock timings depend
on caching, vectorization, blocking and other effects. Thus, although gp increases
with p, wall-clock times might not increase as significantly. In general, high-order
implementations allow more memory locality, which often results in higher perfor-
mance compared to low-order methods. This discussion, however, is beyond the
scope of this paper.

The dominant computational cost per iteration of the high-order multigrid
approaches discussed in §3 can thus be summarized as

Ngp(1 +m(spre + spost)). (8)
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Here, we denote by spre and spost the number of pre- and post-smoothing steps
on the finest multigrid level, respectively. Moreover, m denotes the number of
residual computations (and thus matrix-vector computations) per smoothing step.
Jacobi smoothing and Chebyshev-accelerated Jacobi require m = 1 matrix-vector
multiplication per smoothing step, while SSOR requires m = 2 matrix-vector
operations. If, in the approach discussed in §3.1.3, the sparsified linear-element
residual is used in the smoother on the finest grid, the cost (8) reduces to

N(gp + g1m(spre + spost)). (9)

However, since the overall number of iterations increases (see §4.4), this does not
necessarily decrease the solution time.

If the overall number of unknowns N is kept fixed and the solution is smooth,
it is well known that the accuracy increases for high-order discretizations. Due
to the decreased sparsity of the discretized operators, this does not automatically
translate to more accuracy per computation time; see, e.g., [9]. However, note that
many computations in, for instance, a multigrid preconditioned conjugate gradient
algorithm are of complexity O(N) (see Algorithm 4.1) and are thus independent
of gp. Thus, the computational cost of these steps does not depend on the order
of the discretization. Even if these O(N) steps do not dominate the computation,
they contribute to making high-order discretizations favorable not only in terms
of accuracy per unknown, but also in terms of accuracy per computation time.

Algorithm 4.1 Complexity of individual steps in multigrid-preconditioned CG
Input: rhs and guess
Output: solution
1: while not converged do
2: h = Ap . O(Ngp)
3: ρr = (ρ, r) . O(N)
4: α = ρr/(p,h) . O(N)
5: u = u + αp . O(N)
6: r = r − αh . O(N)
7: Convergence Test
8: ρ = Mr . v-cycle O(Ngp)
9: β = (ρ, r)/ρr . O(N)

10: p = ρ+ βp . O(N)
11: end while

4.3 Setup of comparisons

We test the different multigrid schemes in two contexts: as solvers and as pre-
conditioners in a conjugate gradient (CG) method. In tables 1–5, we report the
number of multigrid v-cycles5 required to reduce the norm of the discrete residual
by a factor of 108, where a “-” indicates that the method did not converge within
the specified maximum number of iterations. In particular, these tables report the
following information:

5 each CG iteration uses a single multigrid v-cycle as preconditioner
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• The first column gives the polynomial order used in the finite element dis-
cretization.
• The columns labeled MG as solver report the number of v-cycles required for

convergence when multigrid is used as solver. The subcolums are:
– Jacobi(3,3) denotes that 3 pre-smoothing and 3 post-smoothing steps of a

pointwise Jacobi smoother are used on each level. We use a damping factor
ω = 2/3 in all experiments.

– Cheb(3,3) indicates that Chebyshev-accelerated Jacobi smoothing is used,
again using 3 pre-smoothing and 3 post-smoothing steps. An estimate for
the maximal eigenvalue of the linear systems on each level, as required
by the Chebyshev method, is computed in a setup step using 10 Arnoldi
iterations.

– SSOR(2,1) denotes that a symmetric successive over-relaxation method is
employed, with 2 pre-smoothing and 1 post-smoothing steps. Note that
each SSOR iteration amounts to a forward and a backward Gauss-Seidel
smoothing step, and thus requires roughly double the computational work
compared to Jacobi smoothing. The SSOR smoother is based on a lexico-
graphic ordering of the unknowns, and the damping factor is ω = 1.

For the two-dimensional problems reported in Tables 1–3, we use a multigrid
hierarchy with three levels corresponding to meshes with 32 × 32, 16 × 16
and 8 × 8 elements. The multigrid hierarchy for the three-dimensional tests
reported in Tables 4 and 5 also has three levels with 8 × 8× 8, 4× 4× 4 and
2×2×2 elements. Note that for each smoother we report results for h-multigrid
(columns marked by h; see §3.1.1) as well as for p-multigrid (columns marked
by p; see §3.1.2). For p-multigrid, we restrict ourselves to orders that are powers
of 2. After coarsening in p till p = 1, we coarsen in h. For example, for the
two-dimensional problems and p = 16, we use a total of 7 grids; the first five all
use meshes with 32 × 32 elements, and p = 16, 8, 4, 2, 1, respectively, followed
by two additional coarse grids of size 16× 16 and 8× 8, and p = 1.
• The columns labeled MG with pCG present the number of conjugate gradient

iterations required for the solution, where each iteration uses one multigrid
v-cycle as preconditioner. The sub-columns correspond to different smoothers,
as described above.
• The columns labeled low-order MG pCG report the number of CG iterations

needed to solve the high-order system, when preconditioned with the low-order
operator based on the high-order nodal points (see §3.1.3). While in practice
one would use algebraic multigrid to solve the linearized system approximately,
in our tests we use a factorization method to solve the low-order system di-
rectly. As a consequence, the reported iteration counts are a lower bound for
the iteration counts one would obtain if the low-order system was inverted
approximately by algebraic multigrid.

Note that the number of smoothing steps in the different methods is cho-
sen such that, for fixed polynomial order, the computational work is comparable.
Each multigrid v-cycle requires one residual computation and overall six matrix-
vector multiplications. Following the simple complexity estimates (8) and (9), this
amounts to a per-iteration cost of 7Ngp for h- and p-multigrid, and of N(g1 +6gp)
for the low-order multigrid preconditioner. As a consequence, the iteration num-
bers reported in the next section can be used to compare the efficiency of the
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Table 1 Iteration counts for the two-dimensional unit square problem 2d-const defined in
§4.1. The finest mesh has 32×32 elements and the multigrid hierarchy consists of three meshes.
For p-multigrid, the polynomial order is first reduced to p = 1, followed by two geometric
coarsenings of the mesh. For a detailed description of the different experiments reported in
this table we refer to §4.3.

MG as solver MG with pCG low-order MG
order Jacobi(3,3) Cheb(3,3) SSOR(2,1) Jacobi(3,3) Cheb(3,3) SSOR(2,1) pCG

h p h p h p h p h p h p
1 6 5 5 5 4 4 -
2 7 7 5 6 5 5 5 5 4 4 4 4 14
3 8 6 5 6 5 4 16
4 9 8 6 6 5 5 6 5 5 5 4 4 16
5 12 8 7 7 6 5 17
6 12 9 7 7 6 5 18
7 16 12 8 8 7 6 18
8 17 14 13 10 8 7 9 8 7 6 6 5 19

16 40 33 33 27 17 14 14 12 12 11 9 8 21

different methods. Note that in our tests, we change the polynomial degree of the
finite element functions but retain the same mesh. This results in an increasing
number of unknowns as p increases. Since, as illustrated in §4.4.2, we observe mesh
independent convergence for fixed p, this does not influence the comparison.

4.4 Summary of numerical results

Next, in §4.4.1, we compare the performance of different point smoothers for the
test problems presented in §4.1. Then, in §4.4.2, we illustrate that the number of
iterations is independent of the mesh resolution. Finally, in §4.4.3, we study the
performance of a block Jacobi smoother for discretizations with polynomial orders
p = 8 and p = 16.

4.4.1 Comparison of different multigrid/smoothing combinations

Tables 1–3 present the number of iterations obtained for various point smoothers
and different polynomial orders for the two-dimensional test problems. As can be
seen in Table 1, for 2d-const all solver variants converge in a relatively small
number of iterations for all polynomial orders. However, the number of iterations
increases with the polynomial order p, in particular when multigrid is used as
a solver. Using multigrid as a preconditioner in the conjugate gradient method
results in a reduction of overall multigrid v-cycles, in some cases even by a factor
or two. Also, we observe that SSOR smoothing generally performs better than the
two Jacobi-based smoothers. We find that the linear-order operator based on the
high-order nodes is a good preconditioner for the high-order system. Note that if
algebraic multigrid is used for the solution of the low-order approximation, the
smoother on the finest level can either use the residual of the low-order or of the
high-order operator. Initial tests that mimic the use of the high-order residual in
the fine-grid smoother show that this has the potential to reduce the number of
iterations.

Let us now contrast these observations with the results for the variable coef-
ficient problems 2d-var and 2d-var′ summarized in Tables 2 and 3. First, note
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Table 2 Iteration counts for two-dimensional warped-geometry, varying coefficient problem
2d-var defined in §4.1. The finest mesh has 32 × 32 elements and the multigrid hierarchy
consists of three meshes. For p-multigrid, the polynomial order is first reduced to p = 1,
followed by two geometric coarsenings of the mesh. For a detailed description of the different
experiments reported in this table we refer to §4.3.

MG as solver MG with pCG low-order MG
order Jacobi(3,3) Cheb(3,3) SSOR(2,1) Jacobi(3,3) Cheb(3,3) SSOR(2,1) pCG

h p h p h p h p h p h p
1 14 11 6 8 7 5 -
2 20 19 15 15 7 8 10 10 8 8 5 6 16
3 20 16 8 10 9 6 18
4 22 21 21 19 10 9 11 10 10 10 7 6 19
5 - 28 12 14 12 7 21
6 - 35 13 15 13 8 23
7 - 45 16 18 15 9 24
8 - - 52 46 17 15 20 20 16 15 9 8 25

16 - - 169 148 37 33 51 45 30 27 13 12 31

Table 3 Iteration counts for two-dimensional warped-geometry, varying coefficient problem
2d-var′ defined in §4.1. This problem is identical to 2d-var (see Table 2), but the variations
in the coefficient µ have a smaller wave length. The finest mesh has 32 × 32 elements and
the multigrid hierarchy consists of three meshes. For p-multigrid, the polynomial order is first
reduced to p = 1, followed by two geometric coarsenings of the mesh. For a detailed description
of the different experiments reported in this table we refer to §4.3.

MG as solver MG with pCG low-order MG
order Jacobi(3,3) Cheb(3,3) SSOR(2,1) Jacobi(3,3) Cheb(3,3) SSOR(2,1) pCG

h p h p h p h p h p h p
1 14 12 8 8 8 6 -
2 19 19 15 14 7 8 10 10 8 8 6 6 19
3 20 17 8 10 9 6 22
4 261 333 21 20 10 9 15 15 11 10 7 6 26
5 - 30 12 19 13 8 29
6 - 39 13 37 15 8 35
7 - 52 16 78 18 9 36
8 - - 63 55 17 16 137 109 19 18 10 9 38

16 - - 232 201 67 76 - - 44 37 19 18 56

that all variants of the solver perform reasonably for discretizations up to order
p = 4. When used as a solver, multigrid either diverges or converges slowly for
orders p > 4. Convergence is reestablished when multigrid is combined with CG.
Using multigrid with SSOR smoothing as preconditioner in CG yields, for orders
up to p = 8, convergence with a factor of at least 0.1 in each iteration. Comparing
the results for 2d-var shown in Table 2 with the results for 2d-var′ in Table 3
shows that the convergence does not degrade much for the coefficient with 5-times
smaller wavelength.

Next, we turn to the results for 3d-const and 3d-var, which we report in
Tables 4 and 5, respectively. For 3d-const, all variants of the solver converge. For
this three-dimensional problem, the benefit of using multigrid as preconditioner
rather than as solver is even more evident than in two dimensions.

Our results for 3d-var are summarized in Table 5. As for 2d-var, the perfor-
mance of multigrid when used as a solver degrades for orders p > 4. We can also
observe that the low-order matrix based on the high-order node points represents
a good preconditioner for the high-order system.



Comparison of multigrid algorithms for high-order discretizations 17

Table 4 Iteration counts for three-dimensional unit cube problem 3d-const defined in §4.1.
The finest mesh has 8 × 8 × 8 elements and the multigrid hierarchy consists of three meshes.
For p-multigrid, the polynomial order is first reduced to p = 1, followed by two geometric
coarsenings of the mesh. For a detailed description of the different experiments reported in
this table we refer to §4.3.

MG as solver MG with pCG low-order MG
order Jacobi(3,3) Cheb(3,3) SSOR(2,1) Jacobi(3,3) ,1 Cheb(3) SSOR(2,1) pCG

h p h p h p h p h p h p
1 6 4 4 5 4 3 -
2 8 8 4 5 4 5 6 6 4 4 4 4 25
3 10 7 5 6 5 5 27
4 11 10 8 7 6 5 7 7 6 5 5 4 28
5 14 10 7 8 7 5 29
6 16 11 7 9 7 6 32
7 20 15 9 10 9 6 34
8 22 19 17 15 9 8 10 10 9 8 6 6 35

16 47 42 38 34 17 15 16 14 14 13 9 9 39

Table 5 Iteration counts for three-dimensional, warped-geometry, varying coefficient problem
3d-var defined in §4.1. The finest mesh has 8 × 8 × 8 elements and the multigrid hierarchy
consists of three meshes. For p-multigrid, the polynomial order is first reduced to p = 1,
followed by two geometric coarsenings of the mesh. For a detailed description of the different
experiments reported in this table we refer to §4.3.

MG as solver MG with pCG low-order MG
order Jacobi(3,3) Cheb(3,3) SSOR(2,1) Jacobi(3,3) Cheb(3,3) SSOR(2,1) pCG

h p h p h p h p h p h p
1 13 7 5 7 5 4 -
2 17 18 13 13 7 7 9 9 8 8 5 5 26
3 20 16 8 10 9 6 29
4 23 22 18 18 9 9 11 11 9 9 7 6 31
5 26 21 10 12 10 7 34
6 30 27 12 13 12 8 37
7 35 34 14 14 14 8 37
8 - - 40 38 16 15 18 17 15 14 9 9 38

16 - - 117 110 32 29 67 60 27 26 13 13 47

4.4.2 Mesh independence of iterations

To illustrate the mesh-independence of our multigrid-based solvers, we compare
the number of v-cycles required for the solution of the two-dimensional problems
2d-const and 2d-var when discretized on different meshes. In this comparison,
the coarsest mesh in the multigrid hierarchy is the same; thus, the number of levels
in the hierarchy increases as the problem is discretized on finer meshes. As can be
seen in Table 6, once the mesh is sufficiently fine, the number of iterations remains
the same for all polynomial orders.

4.4.3 Performance of block and `1-Jacobi smoothers

For completeness, we also include a comparison with two common variants of the
Jacobi smoother—the block-Jacobi and the `1-Jacobi point smoother. We limit
these comparisons to 8 and 16 order, and to the 2d-const, 2d-var and the 3d-
var problems. These results are summarized in Table 7.
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Table 6 Number of v-cycles required for the solution of the two-dimensional problems 2d-
const and 2d-var defined in §4.1 for different fine meshes and different polynomial orders.
The coarsest grid for all cases has 2×2 elements. In this comparison, multigrid with SSOR(2,1)
smoothing is used as preconditioner in the conjugate gradient method. A star indicated that
the corresponding test was not performed due to the large problem size.

2d-const 2d-var
order 4 8 16 32 64 128 256 4 8 16 32 64 128 256

1 3 4 4 4 4 4 4 3 4 5 5 5 5 5
2 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 5 5 4 4 4 4 4 6 6 7 7 7 7 7
8 6 6 6 6 6 6 6 9 9 9 9 9 9 9
16 9 9 9 9 9 * * 13 13 13 13 13 * *

Table 7 Comparison between different Jacobi smoothers—point, block and `1. Shown is the
number of iterations, obtained with 3 pre- and 3 post-smoothing steps. All experiments used
a damping factor of ω = 2/3.

order 2d-const 2d-var 3d-var
MG pCG MG pCG MG pCG

pt blk `1 pt blk `1 pt blk `1 pt blk `1 pt blk `1 pt blk `1
8 17 16 51 9 8 16 - 31 111 - 12 57 - 30 176 18 13 37
16 40 31 133 14 12 27 - 61 - 51 17 186 - 52 48 67 17 68

`1-Jacobi smoother These smoothers work by adding an appropriate diagonal ma-
trix to guarantee convergence [2]. They have the additional benefit of not re-
quiring eigenvalue estimates compared with Chebyshev smoothers. In practice,
while guaranteed convergence is desirable, the overall work (i.e., number of itera-
tions) increases. In particular, point-Jacobi outperforms `1-Jacobi as a smoother
for multigrid used as a solver as well as a preconditioner for CG.

Block Jacobi smoother Schwarz-type domain decomposition smoothers are partic-
ularly promising for high polynomial orders, such as order 8 or higher. Results
obtained with an elementwise block Jacobi preconditioner for orders 8 and 16 are
summarized in Table 7. For this comparison, we invert the element matrices ex-
actly, which can be problematic with respect to computational time as well as
storage for realistic problems, in particular for warped meshes and high polyno-
mial orders. One remedy is to use approximate inverse element matrices [26]. As
can be seen in Table 7, the number of iterations is reduced compared to pointwise
Jacobi smoothing; however, this does not imply a faster method since block-Jacobi
smoothing is, in general, more expensive. Again, a high-performance implemen-
tation is required to assess the effectiveness of the different methods. In the next
section, we summarize our findings and draw conclusions.

5 Discussion and conclusions

Using multigrid as preconditioner in the conjugate gradient (CG) method rather
than directly as solver results in significantly faster convergence, which more than
compensates for the additional work required by the Krylov method. This is par-
ticularly true for high-order methods, where the residual computation is more



Comparison of multigrid algorithms for high-order discretizations 19

expensive than for low-order methods, thus making the additional vector addi-
tions and inner products in CG negligible. For problems with varying coefficients,
we find that the number of v-cycles decreases by up to a factor of three when
multigrid is combined with the conjugate gradient method.

None of the tested approaches yields a number of iterations that is indepen-
dent of the polynomial order; Nevertheless, point smoothers can be efficient for
finite element discretizations with polynomial orders up to p = 16. For con-
stant coefficient, all tested multigrid hierarchy/smoother combinations (Jacobi,
Chebyshev-accelerated Jacobi and Gauss-Seidel SSOR smoothing) lead to con-
verging multigrid methods. In general, the difference in the number of iterations
between h- and p-multigrid is small. Problems with strongly varying coefficients on
deformed geometries are much more challenging. Here, SSOR outperforms Jacobi-
based smoothers for orders p > 4. However, in a distributed environment, where
Gauss-Seidel smoothing is usually more difficult to implement and requires more
parallel communication, Chebyshev-accelerated Jacobi smoothing represents an
interesting alternative to SSOR. It is as simple to implement as Jacobi smooth-
ing but requires significantly less iterations to converge; compared to point Jacobi
smoothing, it additionally only requires an estimate of the largest eigenvalue of
the diagonally preconditioned system matrix.

We find that a low-order operator based on the high-order node points is a good
preconditioner, and it is particularly attractive for high-order discretizations on
unstructured meshes, as also observed in [9,11,14]. When combined with algebraic
multigrid for the low-order operator, the smoother on the finest mesh can either
use the low-order or the high-order residual. Initial numerical tests indicate that
the latter choice is advantageous, but this should be studied more systematically.
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