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Abstract

Symmetric multiscale collocation methods with radial basis functions
allow approximation of the solution of a partial differential equation, even
if the right-hand side is only known at scattered data points, without
needing to generate a grid. However, the benefit of a guaranteed symmet-
ric positive definite block system comes at a high computational cost. In
particular, the condition number and sparsity deteriorate with the number
of data points. Therefore, we study certain block diagonal and triangu-
lar preconditioners. We investigate ideal preconditioners and determine
the spectra of the preconditioned matrices before proposing more practi-
cal preconditioners based on a restricted additive Schwarz method with
coarse grid correction (ARASM). Numerical results verify the effectiveness
of the preconditioners.

1 Introduction

Radial basis functions (RBFs) are a modern tool to flexibly approximate scat-
tered data [22, 36, 3, 9, 30]. Although they were initially mainly used for
interpolation problems, they have recently become an attractive alternative to
solve PDEs—especially when the given data is arbitrarily scattered [13, 17, 11,
12, 37, 33, 16]. Their attractiveness stems from the fact that the RBF method
dispenses with the expensive generation of a grid. Unlike a method yielding a
nonsymmetric system proposed by Kansa [23], we would like to focus on sym-
metric RBF approximation, which has the advantage that it always yields a
symmetric positive definite system.

The main problem with RBFs is that for a large number of data sites the
condition number of the system one needs to solve becomes prohibitively large.
Therefore, multiscale ideas in combination with compactly supported RBFs have
been developed to reduce the computational cost [8, 10, 26, 38]. Here, we focus
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on a symmetric multiscale RBF collocation method for second-order elliptic
PDEs on bounded domains [7, 8]. The method employs RBFs on a sequence of
levels, and uses different numbers of data sites and RBF support radii on each
level. Consequently, it is particularly suited to problems with multiple scales.

At each level of the multiscale collocation method a linear system of the
form [

A BT

B C

]
︸ ︷︷ ︸

A

[
αi

αb

]
︸ ︷︷ ︸
α

=

[
bi

bb

]
︸︷︷︸
b

, (1)

must be solved, where A is nonsingular and symmetric positive definite [7] and
B ∈ Rm×n has full rank. The positive definiteness of A ensures that A ∈ Rn×n
and C ∈ Rm×m are themselves positive definite. More detailed descriptions of
these matrices will be provided in Section 2.2. We also assume that n ≥ m,
which means that more data sites are located in the interior of the domain than
on its boundary.

Even though the multiscale approach is already much more efficient than the
one-shot method, certain features of A make (1) difficult to solve at later levels.
First, the number of data sites, and thus the dimension of the matrixA, increases
at each level so that finer scales may be resolved. Second, the conditioning of the
coefficient matrix deteriorates as the separation between data sites decreases,
a fact we state more in carefully in Theorem 2. In particular, if one wants to
ensure convergence, the density of nonzero elements increases [7, 8].

When the dimension of A is large, iterative methods are more feasible than
direct methods for solving (1). However, the ill-conditioning and density of
nonzeros mean that fast convergence will typically only be achieved with suit-
able preconditioners. For interpolation problems solved by an analogous RBF
multiscale method, convergence and constant condition numbers can be achieved
at the same time [38]. However, applying the same approach to PDE problems
is insufficient for level-independent convergence [7, 8] and a more sophisticated
strategy is required.

Preconditioners for RBF matrices have previously been developed, with do-
main decomposition approaches among the most popular. Beatson et al. [2]
employed a multiplicative Schwarz method to solve (rather than precondition)
linear systems resulting from interpolation by polyharmonic splines. Yokota et
al. [39] investigated restricted additive Schwarz (RAS) methods for interpolation
by Gaussian RBFs, while Deng and Driscoll [6] used a two-level RAS method as
a GMRES preconditioner for interpolation by multiquadrics. Additionally, Le
Gia et al. [25] applied a two-level overlapping additive Schwarz method to the
problem of solving PDEs by compactly-supported basis functions on spheres.
Alternative preconditioners include those based on approximate cardinal func-
tions [1, 29], which can be combined with domain decomposition [2, 28].

To construct preconditioners for the whole matrix A, however, it seems
sensible to exploit the block structure. Recently, Le Gia and Tran [27] exam-
ined effective block diagonal preconditioners for the RBF multiscale method for
PDEs on the local spherical regions, with additive Schwarz preconditioners for
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each block. In this complementary work we consider both block diagonal and
block triangular preconditioners for the multiscale method for PDEs on general
bounded domains. In contrast to Le Gia and Tran [27] we attempt to identify
ideal preconditioners, from the point of view of fast convergence of the iterative
solver of (1), and analytically determine the spectra of the preconditioned ma-
trices. These ideal preconditioners then guide the development of more practical
alternatives based on restricted additive Schwarz methods.

The rest of this paper is organised as follows. In Section 2 we describe in
more detail the multiscale RBF method and give a brief overview of Krylov
subspace methods and preconditioners for solving (1). We present our ideal
block diagonal and block triangular preconditioners, and describe the spectra of
the preconditioned matrices, in Section 3. We investigate the effect of replacing
A by an additive Schwarz preconditioner in 4 and give numerical results in
Section 5. Note that throughout, the transpose of a matrix A is represented by
AT and its nullspace by null(A).

2 Background

In this section we present background material on the multiscale RBF method
and on preconditioned Krylov subspace methods.

2.1 Second-order elliptic boundary value problems

Let Ω ⊂ Rd. We consider second-order elliptic boundary value problems of the
form

Lu = f in Ω,

u = F on ∂Ω,
(2)

where L is a second-order elliptic linear differential operator defined by

Lu(x) =

d∑
i,j=1

aij(x)∂iju(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x),

which is strictly elliptic on Ω. That is, there exists a constant cE > 0 such that

cE‖ξ‖22 ≤
d∑

i,j=1

aij(x)ξiξj

for all x ∈ Ω ⊂ Rd and ξ = (ξi) ∈ Rd.
If we assume that the right-hand sides f and F are chosen such that the

solution u lies in the Sobolev space Hσ(Ω) with σ > d/2+2, then the differential
operator Lu is in fact well-defined since we know by the Sobolev embedding
theorem that Hσ(Ω) ⊆ C2(Ω).

To ensure that L is a bounded operator from Hσ(Ω) to Hσ−2(Ω), we impose
some restrictions on the coefficients. For k := bσc > 2 + d/2 we demand that
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aij , bi, c lie in W k−1
∞ (Ω). Due to our previous assumption on σ, we see that

(k − 1) − 1 > d/2, which implies by the Sobolev embedding theorem that the
coefficients are continuously differentiable, see [17] for details.

2.2 Multiscale RBF collocation

In order to solve the boundary value problem (2), we will construct a numerical
approximation from a linear combination of translated radial basis functions.
These basis functions are particularly useful in the context of scattered data
approximation. Therefore, we introduce two measures that help us to describe
scattered data points X = {x1, . . . , xN} in Ω ⊂ Rd. The mesh norm

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2

is the radius of the largest data-free hole that is contained in the domain of
interest Ω. On the other hand, the separation distance

qX = min
j 6=k
‖xj − xk‖2

is the shortest distance between any two data points in X.

Definition 1 (Radial basis function). A continuous function Φ: Rd → R is
called positive definite on Rd if for any d-dimensional data set X = {x1, . . . , xN}
of pairwise distinct points the matrix

AΦ,X := (Φ(xj − xk))1≤j,k≤N

is positive definite. We refer to Φ a radial basis function if it is a radial positive
definite function.

Thus, radial basis functions lead naturally to symmetric and positive definite
matrices.

There are many different examples of radial basis functions. Among them
Gaussians, (inverse) multiquadrics and polyharmonic splines have been popular.
Here, we are interested in compactly supported radial basis functions since in
this case the matrix AΦ,X is sparse. The Fourier transform of the compactly
supported radial basis function shall satisfy

c1(1 + ‖ω‖22)−σ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖22)−σ (3)

for 0 < c1 ≤ c2. For σ > d+1
2 it is indeed possible to find such a function, see

[5].
The most prominent examples of such compactly supported RBFs were given

by Wendland [35]. For any given integer smoothness degree and dimension
Wendland was able to construct radial basis functions that are polynomials
within the unit ball and vanish outside of it. They have the special property
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that for given smoothness and dimension these polynomials are of the smallest
degree such that the compactly supported RBF is still positive definite.

The numerical solution we would like to consider is of the form

s(x) =

n∑
j=1

αijL(2)Φ(x− xj) +

m∑
j=1

αbjΦ(x− yj), (4)

where X = {x1, . . . , xn} ⊂ Ω and Y = {y1, . . . , ym} ⊂ ∂Ω denote scattered data
points in the interior and on the boundary, respectively, for which the right-
hand sides are known. The superscript next to the differential operator in the
first sum means that the operator is applied to the second argument of RBF
and then evaluated at data site xj . The real interior and boundary coefficients
αij and αbj are determined by applying the boundary value problem (2) to the
numerical approximation s at these scattered data points. The system one needs
to solve is then given by (1), where the different parts are given by

A = (L(1)L(2)Φ(xi − xj))1≤i,j≤n,

B = (L(2)Φ(xi − xj))1≤i≤m
1≤j≤n

, C = (Φ(xi − xj))1≤i,j≤m,

αi = (αij)1≤j≤n, αb = (αbj)1≤j≤m,

bi = (f(xj))1≤j≤n, bb = (F (yj))1≤j≤m.

In the context of generalised interpolation [36], it can be shown that the
matrices A and A are symmetric and positive definite. The matrix C, on the
other hand, is symmetric and positive by Definition 1. This guarantee that the
block matrix A is always symmetric and positive definite is the main reason we
choose our numerical approximation as in (4). However, the above approach
also differs fundamentally from other methods commonly used to approximate
PDEs such as finite difference, finite element and finite volume methods. Unlike
for these methods, the matrix system (1) is not a discrete approximation of
the PDE. Hence, classical preconditioning theory for PDE problems does not
directly apply.

Though it would be feasible to use just this one-shot solution as a numerical
approximation to the solution of the PDE, it is not very efficient to do so since
the system suffers from severe ill-conditioning. One way around this is to employ
the following multiscale strategy.

We will choose a sequence of denser data sets as well as smaller support radii.
We denote a sequence of point sets in the bounded domain Ω by X1, X2, X3, ...
and sequence of point sets on the domain’s boundary ∂Ω by Y1, Y2, Y3, .... For
support radii δj > 0 and a compactly supported basis function Φ we define

Φj(x− y) = Φδj (x− y) = Φ

(
x− y
δj

)
.

So if Φ has unit support, the Φj indeed have support radii δj . Instead of using
just the previously introduced one-shot approximation, we will construct several
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ones, coming from the spaces

LVXj + VYj = span{LΦj(· − x) | x ∈ Xj}+ span{Φj(· − y) | y ∈ Yj}.

Each approximation from these spaces shall resolve the current residual so that
the sum of all those approximations yields a numerical solution to the original
PDE. This is achieved quite naturally by the following multiscale RBF colloca-
tion algorithm.

Algorithm 1 (Multilevel RBF collocation algorithm). Given right-hand sides
f and F do:

1. Set u0 = 0, f0 = f, F0 = F

2. For j = 1, 2, 3 . . . do

(a) Determine the correction sj ∈ LVXj
+VYj

to residuals fj−1 and Fj−1

from the equations

Lsj(x) = fj−1(x), x ∈ Xj ,

sj(y) = Fj−1(y), y ∈ Yj .

(b) Update the final approximation and the residuals

uj = uj−1 + sj ,

fj = fj−1 − L(sj |Ω),

Fj = Fj−1 − sj |∂Ω.

A variant of this algorithm for pure interpolation problems was shown to
converge [38] if the support radii are chosen proportionally to the mesh norms.
This in turn implied that for quasi-uniform data sets (i.e. when the separation
distance is comparable to the mesh norm) the condition numbers of the interpo-
lation matrices could be bounded independently of the current level. Thus, the
conjugate gradient method would converge in a fixed number of steps, regardless
of the size of the problem.

Unfortunately, the same does not hold for the multiscale collocation algo-
rithm. We state the two main results from [7] concerning convergence and
stability, omitting some technical details in favour of readability. The main
point here is that in order to guarantee convergence, one has to cope with ill-
conditioning issues.

Theorem 1 (Convergence). Let Φ satisfy (3) for σ > 2+d/2, and h denote the
maximum of the boundary and interior mesh norms. Then, the multiscale col-
location algorithm for elliptic boundary values problems converges if the support
radius δ is chosen proportional to h1−2/σ.

Theorem 2 (Stability). Under the same assumptions of Theorem 1, the con-
dition number of the block matrices A = A(δ) arising in Algorithm 1 can be
bounded by

cond(A) ≤ Cq−8+8/σ
X∪Y .
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Employing the diagonal preconditioner M with entries

mij =


0, i 6= j,

δ2, 1 ≤ i ≤ n,
1, n ≤ i ≤ n+m,

the condition number can be bounded by

cond(M−1AM−1) ≤ Cq−4
X∪Y .

The preconditioner M, first suggested by Fasshauer [8], aims to mitigate
different scaling of the blocks of A in (1), since due to the chain rule the block
A scales like O(δ−4), B like O(δ−2) and C like O(1).

The preconditioned system is

M−1AM−1︸ ︷︷ ︸
Ã

y =M−1b, M−1y = x, Ã =

[
Ã B̃T

B̃ C̃

]
, (5)

Due to the obvious improvement in the condition number the diagonal pre-
conditioner achieves, we assume that this preconditioner has been applied to (1)
and solve (5) in the following sections, dropping the tildes for convenience.
Lastly, we point out that employing

√
diag(A) yields better condition numbers

thanM but the result in Theorem 2 still applies as the diagonals only differ by
constants.

2.3 Preconditioned Krylov subspace methods

When the system (5) is large, iterative methods are often used to obtain its
solution. Krylov subspace methods are iterative solvers for linear systems with
large, sparse coefficient matrices. When the coefficient matrix is symmetric pos-
itive definite, as in (5), we can apply the conjugate gradient method (CG) [19].
For nonsymmetric systems, iterative methods such as GMRES [32], QMR [14]
or Bi-CGSTAB [34] are required.

Whichever Krylov method is employed, the rate of convergence can be sen-
sitive to the conditioning of the matrix A. In particular, the convergence rate
of Krylov methods for symmetric positive definite matrices typically decreases
when the condition number of A increases, i.e., when the eigenvalues are less
clustered. Moreover, for any of the mentioned Krylov methods small eigenval-
ues can cause slow convergence. The condition numbers of the RBF multiscale
matrices A increase at each level and thus to achieve fast convergence of the
Krylov subspace method it is necessary to precondition (5). In right precon-
ditioning AP−1y = b, α = P−1y, is solved in place of (5). Symmetry can be
preserved when the preconditioner is symmetric positive definite, (see, for exam-
ple, Greenbaum [18, Chapter 8]) and CG can be applied to the preconditioned
system.
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2.4 Test problem

The next sections are devoted to overcoming the ill-conditioning described by
Theorem 2. To illustrate the improvements made, as well as certain features of
A, we test our preconditioners using the following example problem.

We have implemented a Poisson problem on the unit square, which comes
from [9], namely

∆u = −5

4
sin(πx) cos(πy/2) on (0, 1)2,

u =

{
sin(πx) on 0 ≤ x ≤ 1, y = 0,

0 otherwise.

We use Wendland’s compactly supported radial basis function, φ2,3(r) = (1 −
r)8

+(32r3 + 25r2 + 8r + 1) ∈ C6(R2), which satisfies (3) with σ = 4.5 as well as
support radii of the form

δ = ν (h/µ)
1−2/4.5

with µ = 0.5 and ν = 2.4. Again, h denotes the maximum of the boundary
and interior mesh norms on uniform grids. By Theorem 1, we have ensured
convergence of the multiscale collocation algorithm. Theorem 2 states that the

condition number of the collocation matrix in (1) should behave like q−6.2
X∪Y and

the condition number of the preconditioned collocation matrix in (5) should
behave like q−4

X∪Y . These theoretical results were verified in [7].

3 Ideal block preconditioners

To achieve better conditioning as the levels increase we need effective precondi-
tioners. In this section we introduce ideal block diagonal and block triangular
preconditioners for the linear system (5) that depend on the blocks and on the
Schur complement S = C−BA−1BT . We additionally examine the effect of the
preconditioning blocks on the spectrum and conditioning of the preconditioned
matrix. Although the preconditioners we obtain may be too expensive to apply
in practice, since they all involve linear solves with A, in subsequent sections we
show that A can be replaced by a restricted additive Schwarz preconditioner to
obtain an efficient alternative.

Our block diagonal preconditioners are positive definite and the precondi-
tioned system can be solved by the conjugate gradient method. On the other
hand, block triangular preconditioners are nonsymmetric and can only be used
in conjunction with a Krylov method for nonsymmetric matrices. However, if
the speed of convergence is significantly faster with the block triangular precon-
ditioner this may outweigh any extra cost associated with using a nonsymmetric
solver; this is the case here.

Note that since P−1A, P− 1
2AP− 1

2 and AP−1 are similar they all have the
same eigenvalues, although their eigenvectors may differ. Thus, in the following
we determine only the eigenvalues of P−1A.
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3.1 Block diagonal preconditioners

For saddle point matrices, for which C = 0 in (5), it is well known that if the
preconditioner

P0 =

[
A 0
0 BA−1BT

]
,

is applied then P−1
0 A has the three eigenvalues 1, (1 ±

√
5)/2 [21, 24, 31].

Krylov methods applied to this preconditioned system usually converge rapidly;
for example, CG converges in at most three iterations. When C is small in
norm, we might expect the preconditioner P0 to continue to perform well but
when the norm of C increases a different choice for the (2,2) block might be
preferable. Accordingly, we consider the block diagonal preconditioner

PD =

[
A 0

0 Ŝ

]
, (6)

where Ŝ ∈ Rm×m is symmetric positive definite, and investigate the spectrum
of P−1

D A for different choices of Ŝ. The following lemma describes the spectrum
of P−1

D A.

Lemma 3. The matrix P−1
D A, with PD and A defined by (6) and (5), respec-

tively, has the eigenvalue 1 with multiplicity n−m. Each of the remaining 2m
eigenvalues λ, with corresponding eigenvector [uT vT ]T , satisfy

λ =
1

2

(
1 +

vTCv

vT Ŝv

)
±

√
1

4

(
1− vTCv

vT Ŝv

)2

+
vTBA−1BT v

vT Ŝv
. (7)

Proof. The eigenvalues λ of P−1
D A satisfy

Au+BT v = λAu,

Bu+ Cv = λŜv, (8)

where u ∈ Rn and v ∈ Rm are not simultaneously 0. Both A and PD are
nonsingular and so λ 6= 0. If λ = 1, then BT v = 0 which, since B has full rank
and m ≤ n, implies that v = 0. Then (8) shows that u ∈ null(B). We can find
n−m linearly independent vectors u ∈ null(B) and so λ = 1 is an eigenvalue of
P−1
D A with multiplicity n−m.

If λ 6= 1, then u = 1/(λ − 1)A−1BT v, from which we see that v 6= 0.

Substituting for u in (8), dividing by vT Ŝv and simplifying gives (7).

The 2m non-unit eigenvalues (7) lie in two intervals on the real line which
should be small if the rate of convergence of the Krylov subspace method is to
be fast. That is, the boundary introduces problematic eigenvalues. This makes
sense when comparing the matrix to that obtained by a similar algorithm for
problems on the sphere [26].
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Since (7) contains the terms vTCv and vTBA−1BT v, we consider the choices

C, S, and BA−1BT for Ŝ and examine their effect on the non-unit eigenvalues.
To investigate all three choices simultaneously, we let

Ŝ = βC + γBA−1BT , (9)

where β and γ are either 0 or 1. Note that since A−1 may be dense even when
A is sparse, the choices S and BA−1BT are not necessarily practical. However,
they provide insight into the best theoretical choice and how different choices
affect the quality of PD.

Since the fractions vTCv/vT Ŝv and vTBA−1BT v/vT Ŝv appear in (7), for

our choice of Ŝ we shall find the generalised Rayleigh quotient

µ(v) =
vTBA−1BT v

vTCv

useful for assessing the quality of our preconditioners. This ratio is bounded,
for any v ∈ Rm, v 6= 0, by [20, Theorems 4.2.11 and 7.7.6]

0 < λmin(C−1BA−1BT ) ≤ µ(v) ≤ λmax(C−1BA−1BT ) < 1. (10)

Substituting (9) for Ŝ in (7) and simplifying gives

λ1,2 =
1

2

(
1 +

1

β + µ(v)γ

)
±

√
1

4

(
1− 1

β + µ(v)γ

)2

+
µ(v)

β + µ(v)γ
.

Table 1 shows the non-unit eigenvalues we expect for each choice of Ŝ. If
µ(v) � 1, both Ŝ = C and Ŝ = S are good choices, since the eigenvalues of

P−1
D A are clustered near 1. However, Ŝ = BA−1BT is not a good choice, since

the eigenvalues of P−1
D A may be spread out. The limiting case µ(v) = 1 shows

that if µ(v) is close to 1 then P−1
D A will have very small eigenvalues and will,

therefore, be ill-conditioned for all three choices. This suggests scaling Ŝ, i.e.,
choosing ωŜ for some positive scalar ω, to ensure that µ(v) is not too close to
1.

Table 1: Approximate values of non-unit eigenvalues of P−1
D A for different

choices of µ(v). Note that S is singular when µ(v) = 1.

Ŝ λ1,2 µ(v)� 1 µ(v) = 1

C 1±
√
µ(v) 1±

√
µ(v) 0, 2

BA−1BT 1
2 (1 + 1

µ(v) )±
√

1
4 (1− 1

µ(v) )2 + 1 1, 1
µ(v) 0, 2

S 1
2 (1 + 1

1−µ(v) )±
√

1
4 (1− 1

1−µ(v) )2 + µ(v)
1−µ(v) 1, 1

1−µ(v) —

Because the optimal choice of Ŝ depends on µ(v), we compute the extreme
values of µ(v), i.e, the extreme eigenvalues of C−1BA−1BT , for the test problem
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from Section 2.4, with the results given in Table 2. We see that the smallest
value of µ(v) for this problem is on the order of 10−3 and that the largest is near
1. The spread of eigenvalues means that an optimal choice is not straightforward
to determine, but since the smallest eigenvalue is closer to zero than the largest
eigenvalue is to 1, the best choice appears to be Ŝ = C (since BA−1BT is
expensive to apply). Note that this gives an analogous preconditioner to that
proposed by Le Gia and Tran [27]. Our numerical results in Section 5.1 confirm
this. However, we note that if eigenvalues of P−1

D A become too small, the
convergence rate of the conjugate gradient method may decrease.

Table 2: Extreme eigenvalues of C−1BA−1BT for different problem sizes.

n+m 289 1 089 4 225 16 641
λmin(C−1BA−1BT ) 0.0011 0.0030 0.0065 0.012
λmax(C−1BA−1BT ) 0.77 0.88 0.94 0.97

3.2 Block triangular preconditioners

We now consider block triangular preconditioners for (5). Since A has the block
decomposition [

A BT

B C

]
=

[
A 0
B S

] [
I A−1BT

0 I

]
,

we choose the preconditioner

PT =

[
A 0

B Ŝ

]
. (11)

It is easy to see that

P−1
T A =

[
I A−1BT

0 Ŝ−1S

]
and so the ideal choice is Ŝ = S since then all eigenvalues of P−1

T A are 1
and GMRES converges in two steps [21]. However, the Schur complement is
prohibitively expensive to apply and we are unaware of a spectrally equivalent
approximation. If Ŝ 6= S then P−1

T A has n eigenvalues at 1 and the remainder

are the eigenvalues of Ŝ−1S. We again consider the choices Ŝ = C and Ŝ =
BA−1BT , which correspond to each term in the ideal choice S.

When Ŝ = C the eigenvalues of Ŝ−1S are 1− η, where η is an eigenvalue of
C−1BA−1BT , and (10) shows the eigenvalues of Ŝ−1S lie in (0,1). Thus, the
eigenvalues of P−1

T A are contained in an interval but η ≈ 1 will result in small

eigenvalues, which may cause slow convergence rates. When Ŝ = BA−1BT the
eigenvalues of Ŝ−1S are given by 1/η− 1. If η is small the eigenvalues of P−1

T A
may be spread out while if η ≈ 1 some eigenvalues of P−1

T A may be very small;
both situations can negatively affect the speed of convergence. Our numerical
experiments in Section 5.1 verify that C is a better choice for Ŝ than BA−1BT

for our problem.
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4 Domain decomposition preconditioner

We see that preconditioners built from blocks A, B and C, and the Schur com-
plement S, are effective at reducing the number of Krylov subspace iterations
required to solve (5). However, these preconditioners are costly to apply. For
larger problems A is typically much bigger than C, since there are usually many
more interior than boundary points. Consequently, we examine a two-level re-
stricted additive Schwarz (RAS) domain decomposition preconditioner [4] for
A, although we note that the same procedure could easily be applied to C as
well. Although the RAS preconditioner is nonsymmetric it requires less com-
munication than the additive Schwarz (AS) method, making it better suited
to parallel implementations. (Note that the block triangular discussed in the
previous section is already nonsymmetric.) Moreover, the rate of convergence of
RAS methods is typically similar to, or better than, that of AS methods [4, 15].

In the traditional overlapping AS method, we divide the domain V = Ω into
a set of disjoint subdomains, so that V = V1,0+V2,0+...+Vk,0. These subdomains
are then extended by θ to give V = V1,θ+V2,θ+ ...+Vk,θ, where θ is the number
of nodes in each direction by which the overlapping domain is larger than the
non-overlapping domain (see Figure 1a). The restriction of V to the ith domain
Vi,θ is associated with the operator Ri,θ while the corresponding prolongation
operator is RTi,θ. The restriction of A to the ith domain is Ai,θ = Ri,θAR

T
i,θ so

that Ai,θ contains the rows and columns of A associated with the data sites in
subdomain Vi,θ. Then, the additive Schwarz (AS) preconditioner M of A is

M−1
AS =

k∑
i=1

RTi,θA
−1
i,θRi,θ.

The restricted additive Schwarz preconditioner is a slight modification of
the AS preconditioner which uses the overlap for computations but which only
projects information from the non-overlapping domain. In this case the prolon-
gation operator becomes Ri,0, and the RAS preconditioner is

M−1
RAS =

k∑
i=1

RTi,0A
−1
i,θRi,θ.

Note that the subdomain solves in the AS and RAS methods could be replaced
by inexact solves, and all subdomain solves can be computed in parallel, but we
do not consider this here.

As the number of subdomains increases, the speed of convergence of the RAS
scheme can be slow because information takes longer to propagate through all
subdomains. However, this slow convergence can be remedied by incorporat-
ing a coarse-grid correction to give a two-level, or augmented, RAS method
(ARASM). We consider only additive corrections and let V0 ⊂ V be the set
of coarse grid RBF centres and R0 and RT0 be the corresponding restriction
and prolongation operators. The coarse grid representation of A is then A0 =
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Figure 1: (a) Additive Schwarz subdomains on the boundary (j) and in the
interior (k). The overlapping domain is shown with diagonal lines and the non-
overlapping domain is shaded. The overlap is θ = 1 because the overlapping
domain is obtained from the non-overlapping domain by extending by one node
in each direction. (b) Coarse and fine grid points with coarse grid points denoted
by larger red circles.

j

θ = 1

k

(a) (b)

R0AR
T
0 and the two-level preconditioner is

M−1
ARASM = RT0 A

−1
0 R0 +

k∑
i=1

RTi,0A
−1
i,θRi,θ.

In our numerical results the coarse grid contains every second node of the fine
grid (see Figure 1b).

To demonstrate the effectiveness of the ARASM preconditioner, and its sen-
sitivity to the size of the problem, number of domains and overlap, we apply
right-preconditioned GMRES with the ARASM preconditioner to the matrix
A in the saddle point system (5) for the test problem defined in Section 2.4.
The initial vector for GMRES is the zero vector and we stop when the relative
residual ‖rk‖2/‖r0‖2 falls below 10−6, where rk = bi − Aαik is the residual at
the kth iteration.

Table 3 shows the GMRES iteration counts. Without a preconditioner the
iteration number grows rapidly with the problem size. In contrast, with the
ARASM preconditioner the iteration number has a much more modest depen-
dence on n. Moreover, this dependence is weaker when the overlap is larger
and an overlap of θ = 4 appears to be sufficient for n-independent iteration
counts. We also note that for larger problems it seems advantageous to have
more subdomains—a possible explanation is that the conditioning of the sub-
problems improves as the subdomains get smaller.

In summary, it seems that the ARASM preconditioner is a good approxima-
tion of A in the block diagonal and block triangular preconditioners. We verify
this in the following section.
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Table 3: GMRES iteration counts for the RAS preconditioner applied to A
in (5). The number of subdomains is k and the overlap is θ. We denote by ‘–’
problems for which the dimension of A is too small for the number of subdomains
and overlap.

n GMRES
k = 4 k = 8 k = 16

θ = 1 θ = 2 θ = 4 θ = 1 θ = 2 θ = 4 θ = 1 θ = 2 θ = 4
961 44 17 14 11 19 16 – 24 – –

3 969 92 21 18 16 23 20 19 23 19 –
16 129 192 25 22 20 24 22 22 26 21 23
65 025 402 26 23 23 25 23 23 26 22 22

261 121 849 28 25 23 27 24 23 28 23 21

5 Numerical results

In this section we apply our preconditioners to the test problem described in
Section 2.4. The problem sizes we consider are n + m = 289, . . . , 64049. Note
that without preconditioning, conjugate gradients terminates in n+m steps (see
Table 4). The condition numbers for the unpreconditioned coefficient matrix are
given in Table 5. Throughout, we terminate computations when the relative
residual ‖rk‖2/‖r0‖2 falls below 10−8.

5.1 Ideal preconditioner

The ideal preconditioners PD and PT described in Section 3 are examined first.
We apply conjugate gradients when the block diagonal preconditioner PD is used
and right-preconditioned GMRES when the block triangular preconditioner PT
is used.

From Table 4 we see that, as predicted in Section 3.1, Ŝ = C gives the
fastest convergence rate for the block diagonal preconditioner PD. Although
the convergence speed is mesh-dependent, the iteration growth is quite modest.
On the other hand, CG requires more iterations when BA−1BT and S are used
and the iteration growth is more rapid. Additional computations, which for
brevity are not reported, show that GMRES achieves similar iteration counts
to CG when Ŝ = C. The CG iteration counts are reflected in the condition
numbers of P−1

D A (see Table 5) which are smallest when Ŝ = C. In addition,

Ŝ = C has smaller condition number growth than that for the exact Schur
complement S.

We consider now the ideal block triangular preconditioner PT in (11). As

predicted in Section 3.2, GMRES converges in 2 steps when Ŝ = S (see Table 6).
However, forming the Schur complement is prohibitively expensive for large
problems. The choice Ŝ = C is a reasonable alternative and performs better
than BA−1BT , as we might expect from the analysis in Section 3.2. An added
bonus is that when Ŝ = C the growth in the iteration count appears to slow as
the problem size increases. The condition number of P−1

T A is not as relevant
to convergence rates as that of P−1

D A, because P−1
T A is nonsymmetric, and we

14



Table 4: Iteration counts for PCG to reach a tolerance of 10−8 with the ideal
block diagonal preconditioner.

Ŝ 289 1 089 4 225 16 641 64 049
Unpreconditioned 289 1 089 4 225 16 641 64 049

C 27 38 46 56 66
BA−1BT 80 114 129 149 168

S 32 51 74 108 149

Table 5: Condition numbers of P−1
D A. The asterisk indicates that condition

numbers are estimated for dimension 16 641 using the Matlab function condest.

Ŝ 289 1 089 4 225 16 641∗

Unpreconditioned 3.3× 104 5.5× 105 9.0× 106 3.4× 108

C 2.9× 102 2.6× 103 2.9× 104 3.4× 105

BA−1BT 4.1× 105 1.7× 106 9.2× 106 3.6× 107

S 1.3× 103 2.5× 104 5.4× 105 7.3× 106

do not report this information. However, for all problem sizes the condition
numbers of P−1

T A are of similar magnitudes to those of P−1
D A for Ŝ = C,

BA−1BT and are less than 100 for the Schur complement S.

5.2 Additive Schwarz preconditioners

Although Tables 4 and 6 show that we can develop preconditioners that sig-
nificantly reduce the number of GMRES iterations, our ideal preconditioners
require a linear solve with A at each iteration. As the level increases, both
the dimension of A and the density of nonzeros grow, making this solve costly.
Consequently, we see how the preconditioners are effected by replacing A by the
ARASM preconditioner described in Section 4. The ARASM preconditioner is
nonsymmetric and so for both the block diagonal preconditioner and block tri-
angular preconditioner we apply right-preconditioned GMRES and set Ŝ = C.
If n < 2000 we use 4 subdomains and an overlap of θ = 2 data sites. Otherwise,
we use 8 subdomains and an overlap of θ = 4. When n+m = 289 the problem
is too small to apply the ARASM preconditioner with the choice of subdomains
and overlap. Our results are reported in Table 7.

Table 6: Iteration counts for GMRES to reach a tolerance of 10−8 with the ideal
block triangular preconditioner.

Ŝ 289 1 089 4 225 16 641 64 049
C 14 20 23 28 29

BA−1BT 33 48 62 76 79
S 2 2 2 2 2
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Table 7: Iteration counts for GMRES to reach a tolerance of 10−8 with the
additive Schwarz preconditioners.

1 089 4 225 16 641 64 049
Block diagonal 41 53 57 66

Block triangular 28 34 46 51

The ARASM block diagonal preconditioner gives higher iteration counts
than the corresponding ideal preconditioner (see Table 4) for small problems
but both perform similarly for larger problems. We caution that conjugate
gradients is used with the ideal preconditioner and so the results are not directly
comparable with those in Table 4 but, as noted in Section 5.1, GMRES behaves
similarly to CG when the ideal block diagonal preconditioner (6) is applied with

Ŝ = C. The convergence speed of the ARASM block triangular preconditioner
is slower than for the ideal preconditioner, but the growth with dimension is
still modest and iteration counts are lower than for the ARASM block diagonal
preconditioner.

6 Conclusions

We have developed block diagonal and block triangular preconditioners for the
symmetric positive definite systems that arise in the RBF multiscale collocation
method for PDEs and have described the spectra of the preconditioned matrices
for different choices of (2,2) block Ŝ. We find, analytically and experimentally,

that the block diagonal preconditioner with Ŝ = C has the most favourable
spectrum for fast CG convergence. On the other hand, choosing Ŝ = S =
C − BA−1BT in the block triangular preconditioner guarantees convergence
of GMRES in two iterations. However, the block triangular preconditioner
is costly to form when Ŝ = S and so a reasonable alternative is to choose
Ŝ = C in the block triangular preconditioner. Practical preconditioners that
replace A by a restricted additive Schwarz method augmented with a coarse-
grid correction (ARASM) were introduced and numerical experiments show that
they are effective. Further speed-ups could be achieved by using inexact solves
within the ARASM preconditioner and by exploiting parallelism. Additionally, a
spectrally equivalent approximation to Ŝ should improve the rate of convergence
of the block triangular preconditioned system.
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[33] D. Schräder and H. Wendland. A high-order, analytically divergence-free
discretization method for Darcy’s problem. Math. Comput., 80(273):263–
277, 2011.

[34] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of BiCG for the solution of nonsymmetric linear systems. SIAM Journal
on Scientific and Statistical Computing, 13:631–644, 1992.

[35] H. Wendland. Piecewise polynomial, positive definite and compactly sup-
ported radial functions of minimal degree. Advances in Computational
Mathematics, 4(4):389–396, 1995.

[36] H. Wendland. Scattered Data Approximation, volume 17 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge Uni-
versity Press, Cambridge, 2005.

[37] H. Wendland. Divergence-free kernel methods for approximating the Stokes
problem. SIAM Journal on Numerical Analysis, 47(4):3158–3179, 2009.

[38] H. Wendland. Multiscale analysis in Sobolev spaces on bounded domains.
Numerische Mathematik, 116(3):493–517, 2010.

[39] R. Yokota, L. Barba, and M. G. Knepley. PetRBF – A parallel O(N)
algorithm for radial basis function interpolation with Gaussians. Computer
Methods in Applied Mechanics and Engineering, 199:1793–1804, 2010.

19


