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SUMMARY

We describe randomized algorithms for computing the dominant eigenmodes of the Generalized Hermitian
Eigenvalue Problem (GHEP) Ax = λBx, with A Hermitian and B Hermitian and positive definite. The
algorithms we describe only require forming operations Ax, Bx and B−1x and avoid forming square-roots
ofB (or operations of the form,B1/2x orB−1/2x). We provide a convergence analysis and a posteriori error
bounds that build upon the work of [13, 16, 18] (which have been derived for the case B = I). Additionally,
we derive some new results that provide insight into the accuracy of the eigenvalue calculations. The error
analysis shows that the randomized algorithm is most accurate when the generalized singular values of
B−1A decay rapidly. A randomized algorithm for the Generalized Singular Value Decomposition (GSVD)
is also provided. Finally, we demonstrate the performance of our algorithm on computing the Karhunen-
Loève expansion, which is a computationally intensive GHEP problem with rapidly decaying eigenvalues.
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1. INTRODUCTION

Consider the Generalized Hermitian Eigenvalue Problem (GHEP)

Ax = λBx (1)

where, B is Hermitian positive definite and A is Hermitian. The analysis is also relevant if
B is not positive definite. In that case, if B is not positive definite but some combination
(αA+ βB) is positive definite, then the transformed problem Ax = θ(αA+ βB)x has eigenvalues
θi = λi/(αλi + β) and has the same eigenvectors as Equation (1).

We can transform the GHEP into a Hermitian Eigenvalue Problem (HEP), which is of the form
Mx = λx for matrices M positive semidefinite. Since B is positive definite, it has a Cholesky
Decomposition B = LL∗. Define y = L∗x and multiplying both sides of Equation (1) by L−1, we
have

L−1AL−∗L∗x = λL∗x ⇒ L−1AL−∗y = λy (2)
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2 SAIBABA ET AL

which is a HEP and hence, any algorithm for HEPs can be used to solve GHEPs. However,
computing the Cholesky decomposition is not computationally feasible for several matrices. It
should be noted that this type of transformation (2) can be derived for any definition of square
root of a matrix. Although several algorithms exist for computing the square root of a matrix, or
performing matrix-vector products (henceforth, called matvecs) B1/2x or B−1/2x, their application
to large-scale problems is not always efficient. Another transformation, B−1Ax = λx makes the
problem into a regular eigenvalue problem. Even though A and B are Hermitian, in general B−1A
will not be Hermitian. We will focus our attention on problems for which computing Cholesky
decomposition (or any other square root, for that matter) is too expensive to compute explicitly.

The key idea that we will exploit in this paper is the fact that, while B−1A is not Hermitian, it is
Hermitian with respect to another inner product, the B-inner product which we will define shortly.
This property has previously been exploited by Krylov subspace based eigensolvers [12, 20]. An
added advantage to usingB-inner products is that the resulting eigenvectors are nowB-orthonormal.
There are several methods for solving the GHEP (1). These include approaches based on power and
inverse iteration methods, Lanczos based methods and Jacobi-Davidson method. For a good review
on this material, please refer to [3, chapter 5] and [20]. A good survey of existing software for sparse
eigenvalue problems including GHEP is available at [14].

Randomized algorithms have been developed for approximately computing a low-rank
decomposition when the singular values decay rapidly (for a comprehensive review, see [13]).
After computing the approximate low-rank decomposition, an additional post-processing step can
be performed to compute the approximate singular value decomposition. For Hermitian operators,
this post-processing can be modified to obtain an approximate eigenvalue decomposition as well.
The randomized SVD algorithm can be applied to the matrix C def

= B−1A to obtain an approximate
singular value decomposition. However, applying the algorithm directly to the matrix C, will
result in singular vectors that are orthonormal but not B-orthonormal. A symmetric low-rank
decomposition is highly desirable in many application. As a result, we would like to develop square-
root free variants of the randomized SVD algorithm to compute the dominant eigenmodes of the
GHEP.

The algorithms described in this paper are useful when it is necessary to quickly compute an
approximation to the largest eigenmodes. The only requirement is availability of fast ways to
compute Ax, Bx and B−1x and it avoids computations of the form B1/2x and B−1/2x. As a
result, this algorithm is applicable to very general settings. The randomized algorithms are often
faster, are quite robust and accompanied by theoretical guarantees. The error analysis suggests that
the algorithms are most accurate when the (generalized) singular values of B−1A decay rapidly.
Moreover, the low-rank decompositions can be produced to any user defined tolerance, which
allows the user to trade-off between computational cost and accuracy. While it is certainly true that
under the same settings, Krylov subspace methods often are more accurate especially for systems
of the form (1) with rapidly decaying eigenvalues, randomized schemes are numerically robust
and allow freedom in exploiting gains from parallelism and block matrix-vector products. As a
result, randomized algorithms are well suited to computationally intensive problems and modern
computing environments. For example, when efficient block methods to compute Ax, Bx or B−1x
exist, they can be used to significantly speed up calculations. Finally, Krylov subspace methods
must be often accompanied by sophisticated algorithms to monitor restart, orthogonality and loss of
precision. Randomized algorithms, on the other hand, are straightforward to implement in very few
lines of code which are transparent to read. To summarize, one must weigh the trade-offs between
using randomized algorithms which are low-cost, easy to implement and robust and using Krylov
subspace based methods that are capable of higher accuracy but are often, much more expensive.
A further discussion of the suitability of randomized algorithms to high performance computing is
available in [13, 5].

In addition to describing the randomized algorithms, a rigorous error analysis is also provided that
closely follows the proof techniques developed in [16, 13]. Furthermore, we provide computable a
posteriori error bounds on 1) the approximate low-rank representation, and 2) the error between the
true and the approximate eigenvalues (and eigenvectors) as a function of the low-rank representation
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RANDOMIZED ALGORITHMS FOR GHEP 3

error. To the best of our knowledge, the latter result is not available even for the case B = I . We
also provide a randomized algorithm for the Generalized Singular Value Decomposition (GSVD).
We demonstrate the performance of our algorithms on a challenging application - computing the
dominant eigenmodes of the Karhunen-Loève expansion.

2. ALGORITHMS

Algorithm 1 Randomized SVD
Require: matrices A ∈ Cn×n, and Ω ∈ Rn×(k+p) a Gaussian random matrix. Here k is the desired

rank, and p is an oversampling factor.
1: Compute Y = AΩ, and compute QR factorization Y = QR
2: Form B = Q∗A
3: Compute SVD of the small matrix B = ŨΣV ∗

4: Form the orthonormal matrix U = QŨ
5: return U , Σ and V that satisfy A ≈ UΣV ∗

Let us first review the randomized SVD algorithm that is described in [13] to compute the
rank-k decomposition for any matrix A ∈ Cm×n that has rapidly decaying singular values. The
algorithms proceed by computing a matrix Q whose columns form a basis for the approximate
range of A. This is accomplished by forming matvecs of A with random vectors drawn from an i.i.d.
Gaussian distribution. The matrixQ satisfies the bound ‖(I −QQ∗)A‖2 ≤ ε. This is summarized in
Algorithm 1. IfA is Hermitian, and we have found aQ that satisfies ‖(I −QQ∗)A‖2 ≤ ε, then it can
be shown that ‖A−QQ∗AQQ∗‖2 ≤ 2ε. With this observation, an additional step can be performed
to compute a Hermitian eigenvalue decomposition. The smaller matrix T = Q∗AQ is formed and
its eigendecomposition SΛS∗ is computed and A ≈ UΛU∗, where U = QS. This is the two pass
version of the algorithm to compute largest eigenvalues and corresponding eigenvectors. A second
round of matrix-vector products involving A (to compute T = Q∗AQ) can be avoided by using the
information contained in Y,Q and Ω. This is known as a single pass algorithm. This is summarized
in Algorithm 2. For further details regarding the aforementioned algorithms, the reader is referred
to [13].

Algorithm 2 Randomized eigenvalue decomposition
Require: matrices A ∈ Cn×n, and Ω ∈ Rn×(k+p) a Gaussian random matrix. Here k is the desired

rank, and p is an oversampling factor.
1: Compute Y = AΩ, and compute QR factorization Y = QR
2: Form T = Q∗AQ (two-pass) or T ≈ (Q∗Y )(Q∗Ω)−1 (single-pass)
3: Compute EVD of the small matrix T = SΛS∗

4: Form the orthonormal matrix U = QS
5: return U , Λ that satisfy A ≈ UΛU∗

The main difference is that we replace the inner-product with a B-inner product and as a result,
we no longer maintain an orthonormal basis Q but a B-orthonormal basis. Here we summarize
some basic results about B-inner products and the resulting vector and matrix norms. The B-inner
product is defined as 〈x, y〉B

def
= y∗Bx and the B-norm ‖x‖B

def
=
√
x∗Bx. It satisfies the following

inequality, (see, for example [19])

‖x‖22
‖B−1‖2

≤ ‖x‖2B ≤ ‖x‖22‖B‖2 (3)

Let us define the matrix C def
= B−1A. It can be verified that C is self-adjoint with respect to the

B-inner product, i.e. 〈Cx, y〉B = 〈x,Cy〉B . The B-norm of a matrix is defined as an induced vector
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4 SAIBABA ET AL

norm ‖M‖B = max‖x‖B=1‖Mx‖B . We will make use of this fact to derive randomized algorithms
for GHEP that produces a Hermitian low-rank decomposition. It can be verified that for any matrix
M , making the transformation y = B1/2x, we have that

‖M‖B = max
x

‖Mx‖B
‖x‖B

= max
y

‖B1/2MB−1/2y‖2
‖y‖2

= ‖B1/2MB−1/2‖2 (4)

For the error analysis, we will need a generalized notion of singular values, defined as follows

σB(M) =

{
µ

∣∣∣∣µ are the stationary points of
‖Mx‖B
‖x‖2

}
(5)

This definition is similar to [25, definition 3] with S = B and T = I . This results in a following
decomposition of the form

M = UΣBV
∗ U∗BU = I V ∗V = I

and ΣB = diag{σB,1, . . . , σB,n} are the generalized singular values. They have a subscript to
distinguish them from the singular values defined in the regular sense. The existence of this
decomposition is guaranteed by [25, Theorem 3].

2.1. Approximating the range of C

The key step of the algorithms that follow involves the following result: we can compute a matrix
Q ∈ Cn×(k+p), which is B-orthonormal, i.e. Q∗BQ = I such that

‖(I −QQ∗B)C‖B ≤ ε (6)

where, the range of Q approximates the range of C, and p is an oversampling factor. We define the
projection matrix PB

def
= QQ∗B and observe that ‖PB‖B = 1. The reason we choose to use the B-

norm ‖·‖B is because C is self-adjoint with respect to the B-inner product. This is implemented
as follows: We draw the random matrix Ω from a standard Gaussian distribution, and form
Y = B−1AΩ. Then we construct a matrix Q that forms a basis for the range of Y and is B-
orthonormal. This is obtained using a QR decomposition using the B-inner product. The cost of
computing this basis is dominated by the cost of forming the matvecs with respect to B−1 and A
and computing the QR decomposition. A practical way to estimate the error in the approximation (6)
and the average behavior of this error ε is provided in Section 4. The computational costs of this
algorithm is discussed in Section 2.5.

Several algorithms exists for QR decomposition with standard inner product 〈x, y〉 = y∗x
such as Gram-Schmidt (both classical and modified), using Householder transformations and
Givens rotations. However, the use of of the B-inner product precludes the use of Householder
transformations and Givens rotations. The use of modified Gram-Schmidt for QR decomposition
with weighted inner product has been discussed before (for example, see [12]). It is well known that
the modified Gram-Schmidt is more stable than the classical Gram-Schmidt method even for the
case B = I . Hence, we only consider modified Gram-Schmidt approach. However, even though
the computation of R is extremely accurate, Q is not always orthonormal (or B-orthonormal)
due to accumulation of round-off errors. We consider two alternative algorithms: Modified Gram-
Schmidt with re-orthogonalization, denoted by MGS-R, a new algorithm considered in this paper,
and ‘PreCholQR’ [?].

To ensure the B-orthogonality up to machine precision, we extend the algorithm proposed in [8,
Section 9.3], that uses the standard inner-product, to now use the B inner-product. The algorithm
proposed in [8] was an extension to the re-orthogonalization proposed by Rutishauser. It maintains
a factorization that is more accurate than MGS by accumulating changes in R due to the re-
orthogonalization process and unlike the standard MGS it is also designed to work even when
the matrix is rank-deficient. The extension to the B-inner product can be accomplished readily by
changing the definition of inner-products and is summarized in Algorithm 3. Numerical examples in
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RANDOMIZED ALGORITHMS FOR GHEP 5

Algorithm 3 Modified Gram-Schmidt with W -inner products
Require: Y = [y1, . . . , yn] and a positive definite matrix W

1: Q := [y1, . . . , yn] and R = zeros(n,n)
2: for k = 1, . . . , n do
3: q̂k = Wqk, t :=

√
q̂∗kqk

4: flag = 1, c = 0
5: while flag do
6: c = c+ 1
7: for j = 1, . . . , k − 1 do
8: s = q̂∗i qk, ri,k+ = s and qk− = sqi
9: end for

10: q̂k := Wqk and tt =
√
q̂∗kqk

11: if tt > t10ε and tt < t/10 then
12: flag = 1, t = tt
13: else
14: flag = 0
15: if tt < 10εt then
16: tt = 0
17: end if
18: end if
19: rkk = tt
20: if ttε! = 0 then
21: tt = 1/tt
22: end if
23: qk = qktt, and q̂k = q̂ktt
24: end while
25: end for
26: return Q ∈ Cm×n, WQ ∈ Cm×n and R ∈ Cn×n

Section 5.2 indicate that the modified Gram-Schmidt with re-orthogonalization is superior because
it explicitly enforces orthogonality.

We also consider the ‘CholQR’ and ‘PreCholQR’ algorithms described and analyzed in in [?].
In particular, ‘PreCholQR’ has an additional cost due to a thin QR decomposition but has better
stability properties. Given a matrix Y ∈ Cm×n it outputs matrices Q and R such that Y = QR and
Q∗WQ = I . The algorithm and the relevant matrices have been summarized in Algorithm 4 and 5.
In particular, accounting for round-off error, the resulting decompositions for PreCholQR satisfy

‖Y −QR‖2 ≤ cmn2u‖Q‖2‖U‖2‖S‖2
‖Q∗WQ− I‖2 ≤ c′mn2u‖Q‖22‖B‖2 +O(u2)

where c and c′ denote constants and u denotes machine precision. Numerical experiments involving
the stability have been performed in Section 5.2.

Algorithm 4 CholQR with W-inner products
Require: Y ∈ Cm×n, W ∈ Cm×m positive definite
Z = WY
C = Y ∗Z
R = chol(C)
Q = Y R−1, WQ = ZR−1

return Q ∈ Cm×n, WQ ∈ Cm×n and R ∈ Cn×n

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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6 SAIBABA ET AL

Algorithm 5 Pre-CholQR with W-inner products
Require: Y ∈ Cm×n, B ∈ Cm×m positive definite

[Z,S] = qr(Y)
[Q,WQ,U] = CholQR(Z)
R = US
return Q ∈ Cm×n, WQ ∈ Cm×n and R ∈ Cn×n

2.2. Two pass algorithm

In this Section, we derive a symmetric low-rank decomposition to the GHEP in Equation (1) that
uses two sets of matrix-vector products involving the matrix A. This algorithm will be called a two
pass algorithm. In Section 2.3 we will derive an algorithm that only uses one set of matrix-vector
products. The single pass algorithm has a smaller computational cost but is less accurate.

Let us assume that a Q ∈ Cn×(k+p) exists such that ‖(I − PB)C‖B ≤ ε and is relatively easy to
compute. Then, we can derive the following error bound which provides the approximation error to
a symmetric low-rank decomposition,

‖(C − PBCPB)‖B ≤ ‖C − PBC‖B + ‖PBC − PBCPB‖B (7)
≤ ε+ ‖PB‖B‖C − CPB‖B
≤ 2ε

This inequality relies on the following results ‖PB‖B = 1 and ‖C(I − PB)‖B = ‖(I − PB)C‖B .
From (7), we have the following low-rank decomposition

C ≈ PBCPB ⇒ A ≈ (BQ)(Q∗AQ)(BQ)∗ = (BQ)T (BQ)∗ (8)

where, T def
= Q∗AQ. From this point, the eigenvalues of the system (1) can be approximately

computed as the eigenvalues of the matrix T and theB−orthogonal eigenvectors U can be computed
by the product of Q with the eigenvectors of T . The algorithm is summarized in Algorithm 6.

Algorithm 6 starts by constructing a Gaussian random matrix n× (k + p) with i.i.d. entries
chosen from an normal distribution with zero mean and unit variance. Here p is a oversampling
factor, that is chosen to lower the error in the eigenvalue calculations. Typically, p is chosen to
be less than 20 following the arguments in [13, 16]. The improvement in the approximation error
with increasing p is verified in both theory and experiment (see Sections 4 and 5). We then form
matvecs with C to construct Y . Next, we B-orthonormalize the columns of Y , using modified
Gram-Schmidt with B-inner products. This algorithm is summarized in Algorithm 3. Then, we
form the (k + p)× (k + p) matrix T = Q∗AQ, which requires a second round of matvecs with A.
In Section 2.3, we will describe an algorithm that avoids this second round of forming matvecs with
A. We then compute the eigenvalue decomposition of this smaller matrix T , and use this to construct
the approximate generalized eigendecomposition of the matrix C. It can be verified that U∗BU = I .

that satisfy

2.3. Single Pass algorithm

Algorithm 6 requires forming two sets of matvecs Ax for a total of 2(k + p) matvecs. In some
applications, matrix-vector products with A can be expensive and must be used economically. It is
possible to use the information already available in the matricesQ, Y and Ω to avoid a second round
of matvecs with A. This is called a single pass algorithm, following the convention in [13]. In order
to derive such an algorithm, we make the following observation. First, we define Ȳ def

= AΩ

Ω∗Ȳ = Ω∗AΩ ≈ (Ω∗BQ)Q∗AQ︸ ︷︷ ︸
def
=T

(Q∗BΩ)

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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RANDOMIZED ALGORITHMS FOR GHEP 7

Algorithm 6 Randomized algorithm for GHEP
Require: matrices A, B, and Ω ∈ Rn×(k+p) a Gaussian random matrix. Here A,B ∈ Cn×n, k is

the desired rank, p ∼ 20 is an oversampling factor.
1: Compute Y = CΩ, where C def

= B−1A
2: Form QR-factorization Y = QR such that Q∗BQ = I

3: Form T
def
= Q∗AQ and

4: Compute the eigenvalue decomposition T = SΛS∗. Keep the k largest eigenmodes as S = S(:
, 1 : k) and Λ = Λ(:, 1 : k). The columns of S are orthonormal.

5: return Matrices U ∈ Cn×k and Λ ∈ Rk×k that satisfy

A ≈ BUΛ(BU)∗ with U = QS and U∗BU = I

using the relation in (8). Therefore, we can compute T ≈ (Ω∗BQ)−1(Ω∗Ȳ )(Q∗BΩ)−1 by avoiding
additional matvecs withA. At first glance, it appears that we need a second round of matvecs withB
to form F

def
= Q∗BΩ. However, this is not the case since by using Algorithm 3 we have both Q and

BQ. Therefore, forming F only requires an additional O(k + p)3. We summarize the single pass
algorithm in Algorithm 7. Although this method is computationally advantageous, an additional
error is used in computing T which can be understood using Theorem 2 in section 4.

Algorithm 7 Randomized algorithm for GHEP - Single pass
Require: matrices A, B and Ω ∈ Rn×(k+p) is a Gaussian random matrix. Here A,B ∈ Rn×n, k is

the desired rank, p ∼ 20 is an oversampling factor.
1: Compute Ȳ = AΩ, and Y = B−1AΩ
2: Compute Y = QR such that Q∗BQ = I
3: Form T̃ = (Ω∗BQ)−1(Ω∗Ȳ )(Q∗BΩ)−1

4: Compute the eigenvalue decomposition T̃ = SΛS∗. Keep the k largest eigenmodes as S = S(:
, 1 : k) and Λ = Λ(:, 1 : k). The columns of S are orthonormal.

5: return Matrices U ∈ Rn×k and Λ ∈ Rk×k that satisfy

A ≈ (BU)Λ(BU)∗ with U = QS

We note that a different (but similar) approximation was proposed in [13]. Starting with

Q∗Ȳ = Ω∗AΩ ≈ (Q∗BQ)Q∗AQ︸ ︷︷ ︸
def
=T

(Q∗BΩ)

where we have used the relation in (8) that A ≈ (BQ)T (BQ)∗. However, we have not pursued this
approach before.

2.4. Nyström method

Yet, another alternative was proposed in [13] to construct a low rank approximation to A given a
matrix Q with orthonormal columns that approximates the range of A. The Nyström method builds
a more sophisticated rank-k approximation, namely A ≈ AQ(Q∗AQ)−1Q∗A. It can be verified that
this approximation can be used without modification even for the case B 6= I . However, to convert
this low-rank approximation A ≈ AQ(Q∗AQ)−1Q∗A to the form A ≈ BUΛ(BU)∗, we have to
deviate slightly.

First, we use Cholesky factorization to factorize T = LL∗. Next, construct M def
= AQL−∗.

Then, we use Algorithm 3 with input matrices Y = M and W = B−1 to get QMRM = M such
that Q∗MB

−1QM = I and Q̂∗MBQ̂M = I . Compute the SVD of RM = UMΣMV
∗
M . Finally, we

construct the low-rank factorization A ≈ BUΛ(BU)∗ by constructing U = Q̂MUM and Λ = Σ2
M .

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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8 SAIBABA ET AL

The algorithm is summarized in 8. For numerical stability, if T is rank-deficient or ill-conditioned,
its inverse can be replaced with the pseudo-inverse and the algorithm proceeds similarly.

The computational cost of the Nyström algorithm is the same as the two-pass algorithm with an
additional round of matvecs with B−1 and an overall additional cost of O(k + p)2n. Theoretical
and empirical results for the Nyström method suggests that it is often a better approximation than
the two-pass algorithm. The reason is that the Nyström method is essentially performing (for free)
an additional step of the randomized power iteration described in [13, Algorithm 4.3].

Algorithm 8 Randomized algorithm for GHEP - Nyström version
Require: matrices A, B and Ω ∈ Rn×(k+p) is a Gaussian random matrix. Here A,B ∈ Rn×n, k is

the desired rank, p ∼ 20 is an oversampling factor.
1: Compute Y = B−1AΩ
2: Compute Y = QR such that Q∗BQ = I using modified Gram-Schmidt (see Algorithm 3).
3: Form T = Q∗AQ and compute the Cholesky factorization T = LL∗

4: Form M = AQL−∗

5: Using Algorithm 3 with W = B−1 to get QMRM = M such that Q∗MB
−1QM = I and

Q̂∗MBQ̂M = I .
6: Compute the SVD of RM = UMΣMV

∗
M . Keep the k largest modes as UM = UM (:, 1 : k) and

Λ = ΣM (:, 1 : k)2.
7: return Matrices U ∈ Rn×k and Λ ∈ Rk×k that satisfy

A ≈ (BU)Λ(BU)∗ with U = Q̂FUF

2.5. Summary of computational costs

We now briefly discuss the costs associated with the various algorithms described so far. The
cost of the two pass algorithm is 2(k + p) matvecs with A, (k + p) matvecs and B−1x and an
additional O(k + p)2n operations for forming the approximate eigenvalues and eigenvectors. The
B-orthogonalization is accomplished using Algorithm 3 which only uses one set of (k + p) matvecs
with B (assuming no re-orthogonalization), but in return we get two sets of vectors Q and Q̂
which satisfyQ∗BQ = I and Q̂∗B−1Q̂ = I . The Modified Gram-Schmidt also requiresO(k + p)2n
operations for computing inner products. The single pass algorithm, on the other hand, only uses
one set of matvecs with A. The comparison of the costs between the algorithms is summarized
in Table I. However, it should be noted that if re-orthogonalization occurs in the modified Gram-
Schmidt algorithm then the number of matvecs involving B and B−1 could be higher.

However, under certain circumstances, the algorithms described can be further accelerated. We
provide a few examples:

• It is sometimes advantageous to apply a matrix to k + p vectors simultaneously rather than
execute k + p matvecs consecutively. For example, out-of-core finite-element codes are more
efficient when they are programmed to exploit the presence of a block of the matrix A in fast
memory, as much as possible [20].

• Computing AΩ and B−1AΩ can be trivially parallelized. Since this is often the chief
bottleneck, considerable gains might be obtained by parallelism.

It should be noted that the gains from using randomized techniques in comparison to classical
methods (such as Krylov subspace methods) is not because they have a smaller computational cost
but rather because they allow us to to reorganize our calculations such that we can fully exploit
matrix properties and the computer architecture [13].

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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RANDOMIZED ALGORITHMS FOR GHEP 9

Method Cost Ax Bx B−1x Scalar work
Two Pass Algorithm 6 2(k + p) (k + p) (k + p) O(k + p)2n

Single pass Algorithm 7 (k + p) (k + p) (k + p) O(k + p)2n
Nyström Algorithm 8 2(k + p) (k + p) 2(k + p) O(k + p)2n

Table I. Summary of computational costs (assuming no re-orthogonalization in the modified Gram-Schmidt
algorithm)

3. GENERALIZED SINGULAR VALUE DECOMPOSITION

Generalized SVD (GSVD) is often used in the context of inverse problems and deblurring. It has
applicability both as an analytical tool and practical utility in computing minimum norm solutions
in regularized weighted least squares problems. Two different generalizations of the SVD have been
discussed in [25]. Here we consider the second definition in [25, definition 3], with A ∈ Cm×n and
two positive definite matrices S ∈ Cm×m and T ∈ Cn×n

σS,T (A) =

{
µ

∣∣∣∣µ are the stationary points of
‖Mx‖S
‖x‖T

}
(9)

This results in a following decomposition of the form

U−1AV = ΣS,T U∗SU = I V ∗TV = I

and ΣS,T = diag{σS,T,1, . . . , σS,T,n} are the generalized singular values.
A simple modification of the algorithms for GHEP yields us an algorithm for the GSVD as defined

above. We first compute Y1 = AΩ1 and Y2 = A∗Ω2. We S-orthonormalize Y1 and T-orthonormalize
Y2 using Algorithm 5 so that Y1 = Q1R1 with Q∗1SQ1 = I and Y2 = Q2R2 with Q∗2TQ2 = I .
We have the following error bounds ‖(I −Q1Q

∗
1S)A‖2 ≤ εS and ‖(I −Q2Q

∗
2T )A∗‖2 ≤ εT . Error

bounds of the type derived in Proposition 1 can be established in this case as well. It can be shown
that

‖A−Q1Q
∗
1SATQ2Q

∗
2‖2 ≤ εS + εT ‖Q1Q

∗
1S‖2

Based on the above approximate low-rank representation, compute F = Q∗1SATQ2 and compute
its SVD F = ŨΣṼ ∗. Then, the approximate GSVD can be computed using

A ≈ UΣV ∗ U = Q1Ũ V = Q2Ṽ

and the matrices U and V satisfy the relations U∗SU = I and V ∗TV = I .
Generalized SVD is more popularly defined in the following form [25, 11]: given two matrices

A ∈ CmA×n and B ∈ CmB×n, with mA ≤ n,the GSVD is given by

A = UCX∗ B = V SX∗

where, U ∈ CmA×mA and V ∈ CmB×mB are unitary matrices, X ∈ Cn×n is a square matrix C, S
are diagonal matrices with non-negative entries and satisfy the relation C∗C + S∗S = I . The
generalized singular values are given by σ(A,B) are given by the ratio of the diagonal entries
of C and S. The relation between the two definitions presented here is that when rank(B) = n, the
generalized singular values of the matrix pair σ(A,B) = σS,T with S = ImA

and T = B∗B.

4. CONVERGENCE AND A POSTERIORI ERROR BOUNDS

The idea of randomized algorithms is to compute matrix-vector products involving matrix C
def
=

B−1A with vectors ωi that have i.i.d. entries chosen from standard normal distribution. These
columns, when appropriately orthonormalized form an approximate basis for the column space
spanned by the eigenvectors corresponding to the largest eigenvalues. In Section 2, we assumed that
we can compute a Q ∈ Rn×(k+p) that satisfied the error bound (6). In order to estimate the resulting
error in the low-rank representation ε, we use the following result stated in the form of a proposition.
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Proposition 1
Draw a sequence of random vectors ωi that have i.i.d. entries chosen from standard normal
distribution. Let C def

= B−1A with A symmetric and B symmetric positive definite. Fix a positive
integer r and α > 1.

‖(I −QQ∗B)C‖B ≤ α
√

2‖B−1‖2
π

max
i=1,...,r

‖(I −QQ∗B)Cωi‖B (10)

holds with probability at least 1− α−r.

Proof

Using the relation in Equation (4) we have the inequality that

‖(I −QQ∗B)C‖B = ‖B1/2(I −QQ∗B)CB−1/2‖2 ≤
√
‖B−1‖2‖B1/2(I −QQ∗B)C‖2

Define the matrix M = B1/2(I −QQ∗B)C and using the result from [13, lemma 4.1] to the matrix
M , we arrive at

‖(I −QQ∗B)C‖B ≤ α

√
2‖B−1‖2

π
max
i=1,...,r

‖B1/2(I −QQ∗B)Cωi‖2

= α

√
2‖B−1‖2

π
max
i=1,...,r

‖(I −QQ∗B)Cωi‖B

holds with probability at least 1− α−r.

In practice, ‖B−1‖2 might not be easy to compute. Instead, we propose a crude estimator that is
easy to compute. Observe that ‖qi‖B = 1. Using inequality (3), we have

‖qi‖22
‖B−1‖2

≤ ‖qi‖2B = 1 ⇒
√
‖B−1‖2 ≥ max

i=1,...,r
‖qi‖2 (11)

The significance of the Proposition 1 is that we now have an easy to compute a-posteriori bound for
our error that can be obtained by forming matvecs with C. However, as [13] suggests, this is a crude
estimate. The cost of this estimator is mostly performing matvecs with A and B−1. Thus, we can
make a guess for the numerical rank of B−1A, compute the low-rank approximation C ≈ QQ∗BC,
evaluate the error estimate in Proposition 1 and keep adding more samples if this error estimate is
too large. However, the matvecs B−1AΩ performed on random vectors for the error estimator can
be re-used. As a result, the error estimator is almost free of cost. A better estimate can be obtained
by using power iteration acting on a random vector.

The analysis in [13] suggests that if the spectrum of C decays rapidly, then the error in the
approximation is quite small. We are now ready to state our main result and defer the proof to
the Appendix.

Theorem 1
Let Q be computed according to Algorithm 6 by choosing a Gaussian random matrix Ω ∈ Rn×r
with r = k + p. Let C = UΣBV

∗ be the singular value decomposition in the generalized sense (9).
We have the inequality

E‖(I − PB)C‖B ≤
√
‖B−1‖2

(1 +

√
k

p− 1

)
σB,k+1 +

e
√
k + p

p

 n∑
j=k+1

σ2
B,j

1/2


where, σB,j for j = 1, . . . , n are the generalized singular values given by (9) and E[·] denotes the
expectation.
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In addition to the average spectral error, an expression for the deviation bounds of the spectral
error can be derived similar to [13, Theorem 10.8]. The spectral error suggests that if the
singular values (in the generalized sense) are decaying rapidly then the error due to the low-
rank approximation is small, in expectation. Based on the analysis in [13], this result is not
surprising and we defer the proof of this theorem to the appendix. The generalized singular value
decomposition can be computed using the algorithm described in [25]. However, this approach
requires forming square roots of B. We can instead use the following inequality to provide an
estimate σB,k ≤

√
‖B‖2σk. Furthermore, the above error bound suggests that the error is high when

‖B−1‖2 is large. In several cases B−1 is bounded, for instance in finite elements, where B is the
mass matrix and is spectrally equivalent to the identity operator. Otherwise, if some combination
(αA+ βB) can be found such that its inverse has a small norm, we can instead solve the transformed
problem Ax = θ(αA+ βB)x.

At this point, we have provided both an a-priori and a posteriori measure of error in the low-rank
approximation. However, does a small error in the low-rank approximations imply that there is a
small error in the subsequent eigenvalue calculations? In order to answer this question, we turn to
some results from the theory of spectral approximation. We now derive expressions for the error
between the computed eigenvalues and the true eigenvalues and the angle between the true and
approximate eigenvectors. It should be noted that a result of this kind is common in the theory of
perturbation for eigenvalues of Hermitian matrix and makes use of the Kato-Temple Theorem [20,
Theorem 3.8] and [3, Section 7.1, chapter 5].

Proposition 2
LetQ satisfy the relation ‖(I − PB)C‖B ≤ ε so that ‖C − PBCPB‖B ≤ 2ε. Let the eigenpair (λ̃, ũ)
be an approximation to the eigenvalue problem Ax = λBx calculated by Algorithms ??. Then we
have the following error bounds

|λ− λ̃| ≤ min{2ε, 4ε2

δ
} sin∠B(u, ũ) ≤ 2ε

δ

where, δ = minλi 6=λ |λ̃− λi| is the gap between the approximate eigenvalue λ̃ and any other
eigenvalue and ∠B(x, y) = arccos |<x,y>B |

‖x‖B‖y‖B

Proof
We start by defining the residual corresponding to the approximate eigenpair r = Aũ− λ̃Bũ. We
first start with the proof that ‖r‖B−1 ≤ 2ε. By definition, ‖r‖B−1 = ‖B−1/2r‖2. Plugging in the
expression for r, we have

‖B−1/2r‖2 = ‖B1/2(Cũ− λ̃ũ)‖2 = ‖Cũ− λ̃ũ‖B
Also, in a slight change of notation from Algorithm 6, we denote the approximate eigenpairs by
(λ̃i, ũi) for i = 1, . . . , r to distinguish it from the exact eigenpair (λ, u). We have T = Q∗AQ =
SΛ̃S∗ and Ũ = QS. We make the following observations: 1) PBCPB = QQ∗AQQ∗B = Ũ Λ̃Ũ∗B
and 2) since ũ is a column of the B-orthonormal matrix Ũ , we have λ̃ũ = Ũ Λ̃Ũ∗Bũ

Using these observations,

‖Cũ− λ̃ũ‖B = ‖Cũ− Ũ Λ̃Ũ∗Bũ‖B ≤ ‖C − Ũ Λ̃Ũ∗B‖B = ‖C − PBCPB‖B ≤ 2ε

Then from [3, Section 7.1, chapter 5], we have the following relations

|λ− λ̃| ≤ ‖r‖B−1 |λ− λ̃| ≤
‖r‖2B−1

δ
sin∠B(u, ũ) ≤ ‖r‖B

−1

δ

The proof is completed by plugging in the inequality ‖r‖B−1 ≤ 2ε.

The error in low-rank representation is not the only factor that controls the error in the eigenvalues
calculations. Proposition suggests that the accuracy is also determined by an additional parameter
called the spectral gap δ, defined as the gap between the approximate eigenvalue λ̃ and any
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other eigenvalue. When the eigenvalues are clustered, the spectral gap is small and the eigenvalue
calculations are accurate as long as the error in the low-rank representation is small. However, in
this case the resulting eigenvector calculations maybe inaccurate because the parameter δ appears in
the denominator for the approximation of the angle between the true and approximate eigenvector.

The following result provides an upper bound for the difference in the eigenvalues computed using
the two-pass and single-pass algorithms as described in Algorithm 6 and Algorithm 7 respectively.
Numerical results confirm that typically, the two-pass algorithm is more accurate than the single
pass algorithm.

Theorem 2
Let T̃ be computed using the expression T̃ = (Ω∗BQ)−1(Ω∗Ȳ )(Q∗BΩ)−1. Furthermore, assume
that Q satisfies the error bound ‖(I −QQ∗B)C‖B ≤ ε. Label the eigenvalues of T = Q∗AQ
as µ1, . . . , µk+p and the eigenvalues of T̃ as θ1, . . . , θk+p. The eigenvalues µj and θj for j =
1, . . . , k + p are related by the inequality

|µj − θj | ≤ 2ε
√
κ(B)

σ2
max(Ω)

σ2
min(F )

where, F def
= Q∗BΩ and κ(B) = ‖B‖2‖B−1‖2 is the condition number of the matrix B.

Proof
We start with bounding the error ‖T − T̃‖2, where T = Q∗AQ.

‖T − T̃‖2 = ‖F−∗F ∗TFF−1 − F−∗(Ω∗AΩ)F−1‖2
= ‖F−∗Ω∗BQ(Q∗AQ)Q∗BΩF−1 − F−∗Ω∗AΩF−1‖2
≤ ‖A−BQ(Q∗AQ)(BQ)∗‖2‖ΩF−1‖22

From the the assumption that ‖(I −QQ∗B)C‖B ≤ ε and Equation (7) and we have that ‖A−
BQ(Q∗AQ)(BQ)∗‖B ≤ 2ε. For a matrix M , it can be shown that

‖M‖2√
κ(B)

≤ ‖M‖B ≤
√
κ(B)‖M‖2

As a result, ‖A−BQ(Q∗AQ)(BQ)∗‖2 ≤ 2ε
√
κ(B). Finally, putting it all together,

‖T − T̃‖2 ≤ 2ε
√
κ(B)

σ2
max(Ω)

σ2
min(F )

Finally, applying the Bauer-Fike Theorem [20, Theorem 3.6], and using the fact that matrix T is
symmetric and has an orthonormal eigenvectors, we have the desired result.

The error bound in Theorem 2 provides insight into the error made using the single pass
approximation. As a consequence, it is important to understand that the error in the single pass
approximation can significantly degrade the approximation of the eigenvalues. The terms that
contribute are 1) error in the low-rank decomposition ε, 2) ill-conditioned matrices B, and 3) large
σmax(Ω) and small σmin(F ). The largest singular value of Ω is asymptotically

√
n for k � n [13],

so the single pass approximation is poor when the sizes of the matrices are large.

5. KARHUNEN-LOÈVE EXPANSION

5.1. Motivation and background

The Karhunen-Loève expansion (KLE) [10] is a representation of a stochastic process as an
infinite linear combination of orthogonal functions, analogous to a Fourier series representation of
a function. In contrast to a Fourier series where the coefficients are real numbers and the expansion
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basis consists of sinusoidal functions, the coefficients in the Karhunen-Loève Theorem are random
variables and the expansion basis depends on the process. In fact, the orthogonal basis functions
used in this representation are determined by the covariance function of the process. The random
field is characterized by a mean and a covariance function. The KLE requires the computation of
eigenpairs, which are derived from an Fredholm integral eigenvalue problem with the covariance
function as the kernel. Consider the random field s(x), with mean µ(x) and covariance κ(x, y), on
the bounded domain x ∈ D. The covariance kernel is assumed to be symmetric and positive definite.
The KLE can now be written as

s(x) = µ(x) +

∞∑
i=1

ξi
√
λiφi(x) with, (12)

µ(x) = E[s(x)], ξi =
1√
λi

∫
D

(s(x)− µ(x))φi(x)dx

Here, ξi are uncorrelated random variables, (λi, φi(x)) are the eigenpair obtained as the solution to
the Fredholm integral equation of the second kind∫

D
κ(x, y)φ(y)dy = λφ(x) (13)

Since the covariance κ(·, ·) is symmetric and positive definite, the eigenfunctions φi(·) are mutually
orthogonal and form a basis for L2(D) and the eigenvalues λi are real, non-negative and can be
arranged in decreasing order λ1 ≥ λ2 ≥ · · · ≥ 0. If the random field is Gaussian, then ξi ∼ N (0, 1).
Further details are provided in [9].

The eigenpair (λi, φi(x)) in the KLE, can be computed by first discretizing the weak form
of system of Equations (13) (i.e. performing a Galerkin projection) using piecewise linear basis
functions and, subsequently solving the linear eigensystem using a generalized eigenvalue solver
for symmetric matrices, that requires only matrix-vector products involving the discretized operator.
The relevant equations after discretization are

MΓpriorMφi = λiMφi i = 1, . . . , N (14)

where, Γprior is the covariance matrix that arises from the discrete representation of the Gaussian
random field corresponding to the covariance kernel κ(·, ·). M is the mass matrix Mij =

∫
D vivjdx

and vi are the piecewise linear basis functions. The mass matrix is a discrete representation
of the continuous identity operator and hence we expect it to be well-conditioned. We define
A

def
= MΓpriorM and B

def
= M . We also have that B−1A = ΓpriorM is symmetric with respect to

M -inner products. The KLE is truncated to a finite number terms K, which typically far fewer
than the number of basis functions and independent of it. The number of terms retained in the series
depends on the decay of the eigenvalues, which, in turn depends on the smoothness of the covariance
kernel [24]. When the kernel is piecewise smooth, then the eigenvalues decay algebraically, and
when the kernel is piecewise analytic then the decay is exponential. This GHEP nicely fits the
requirements of the randomized algorithm, since it has rapidly decaying eigenvalues.

5.2. Accuracy of the eigenvalue calculations

We consider three different covariance kernels chosen from the Matérn covariance family with
d = ‖x− y‖2/l

κν(x, y) =


exp(−d) ν = 1/2

(1 +
√

3d) exp(−
√

3d) ν = 3/2

(1 +
√

5d+ 5
3d

2) exp(−
√

5d) ν = 5/2

(15)

In the rest of this subsection, we consider the KLE corresponding the covariance kernels defined in
Equation (15) defined on the domain x ∈ [−1, 1] with the length scale parameter chosen to be l = 2.
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The domain has been discretized using 201 grid points. We deliberately chose a small problem to
compare the accuracy against the results obtained from direct algorithms. We note that the rate of
decay of eigenvalues is higher for covariance kernels with increasing values of ν, thus providing a
wide range of eigenvalue decays to study the performance of our algorithm.

Kernel ‖QR− Y ‖2 ‖Q∗BQ− I‖2 ‖Q∗BY −R‖2 ‖Y R−1 −Q‖2
Modified Gram-Schmidt

κ1/2(r) 1.8× 10−15 1.1× 10−11 1.7× 10−11 5.5× 10−11

κ3/2(r) 2.3× 10−15 1.3× 10−7 2.4× 10−7 8.8× 10−7

κ5/2(r) 2.2× 10−15 6.1× 10−4 1.2× 10−3 5.4× 10−3

Modified Gram-Schmidt with re-orthogonalization
κ1/2(r) 1.7× 10−15 1.5× 10−15 1.5× 10−15 5.8× 10−11

κ3/2(r) 2.1× 10−15 1.1× 10−15 1.0× 10−15 8.2× 10−7

κ5/2(r) 2.3× 10−15 1.7× 10−15 1.0× 10−15 5.6× 10−3

PreCholQR
κ1/2(r) 1.06× 10−14 1.17× 10−15 9.84× 10−16 1.43× 10−10

κ3/2(r) 9.06× 10−15 1.11× 10−15 7.01× 10−16 2.79× 10−06

κ5/2(r) 9.78× 10−15 1.15× 10−15 8.78× 10−16 2.8× 10−2

Table II. Comparison of the algorithms for computing the QR decomposition of Y = B−1AΩ where
Ω ∈ R201×100 with i.i.d. entries chosen from N (0, 1). Further, A = MΓpriorM and B = M .

5.2.1. Accuracy of QR with weighted inner product: We compare the algorithms for computing the
QR decomposition of Y = B−1AΩ where Ω ∈ R201×100 with i.i.d. entries chosen from N (0, 1).
For the modified Gram-Schmidt algorithm (MGS), we consider the algorithm in [12] without
additional re-orthogonalization. For the algorithm with re-orthogonalization (MGS-R) we consider
the one proposed in Algorithm 3. We compare the following metrics: ‖QR− Y ‖2, ‖Q∗BQ− I‖2,
‖Q∗BY −R‖2 and ‖Y R−1 −Q‖2. If the quantities were computed in exact arithmetic, they would
all be identically zero. However, in the presence of round-off errors, these quantities are not
numerically zero. We compare the results for three different covariance kernels defined in (15)
and we have A = MQM and B = M . The results are summarized in Table II. We clearly see
that as ν increases the eigenvalues of the KLE decay rapidly, as a result Y becomes more and
more ill-conditioned. Applying the algorithm MGS results in the quantity ‖QR− Y ‖2 being
satisfied to nearly machine precision. However, the other metrics ‖Q∗BQ− I‖2, ‖Q∗BY −R‖2
and ‖Y R−1 −Q‖2 perform badly as ν increases. On the other hand, for the re-orthogonalized
MGS (MGS-R) the quantities ‖QR− Y ‖2, ‖Q∗BQ− I‖2 and ‖Q∗BQ−R‖2 are satisfied to nearly
machine precision. However, like MGS ‖Y R−1 −Q‖2 is higher because R is close to singular. It
is clear that while re-orthogonalization has a significant effect on the orthogonality of Q, it comes
at a higher expense because of additional re-orthogonalization. The accuracy of ‘PreCholQR’ is
comparable with MGS-R. Unless mentioned explicitly we use MGS-R throughout this section for
all the numerical experiments.

5.2.2. Effect of oversampling parameter p: We consider the effect of the oversampling parameter p
on the accuracy of the low-rank approximation and the computed eigenvalues. We plot (in Figure 1)
the error using two-pass, single-pass and Nyström algorithms applied to all three covariance kernels
defined in Equation 15 as a function of the oversampling parameter p. For fairness in comparison,
to eliminate the effect of random sampling, we use the same sequence of pseudo-random numbers
while computing the low-rank decomposition. We can see from Theorem 1 that by increasing p,
the error of the low-rank estimate improves. However, the rate of improvement of the error with
increasing oversampling also seems to increase when the rate of decay of the singular values
is higher. This is consistent with the result of Theorem 1. However, while the error decreases
while using the two-pass and the single-pass algorithms, the rate of improvement of error with
increased oversampling is more pronounced in the case of two-pass and Nyström algorithms.
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Figure 1. Comparison of the error between the true eigenvalues λk and the approximate eigenvalues λ̃k as
a function of oversampling parameter p for each of the covariance kernels defined in Equation (15) - κ1/2

(black), κ3/2 (red) and κ5/2 (blue). The plots correspond to k = 20, 40, 60 and 80. 2-pass algorithm (solid
line) refers to Algorithm 6, 1-pass (dashed line) algorithm refers to Algorithm 7 and Nyström algorithm

(dotted line) refers to Algorithm 8.

This is because, in the single-pass algorithm, an additional error is introduced while converting
the low-rank decomposition A ≈ (BQ)(Q∗AQ)(BQ)∗ to a generalized eigendecomposition of the
form A ≈ (BU)Λ(BU)∗. To gain more insight, we consider the error between the matrices T
(that is formed exactly in the two-pass and Nyström algorithms) and its approximation T̃ (that
is formed in the single-pass algorithm) as a function of oversampling parameter p for each of the
covariance kernels. The results are displayed in Figure 2. The error between T and T̃ decreases with
oversampling although slowly.

Figure 2. Comparison of the error in the approximation of T (that is formed in the two-pass algorithm)
and its approximation T̃ (that is formed in the single-pass algorithm) measured as

∑
k |λk − θk|/

∑
k |λk|

(where λk and θk are defined in Theorem 2)as a function of oversampling parameter p for each of the
covariance kernels defined in Equation (15) - κ1/2 (black), κ3/2 (red) and κ5/2 (blue). The plots correspond

to k = 20, 40, 60 and 80.

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



16 SAIBABA ET AL

Figure 3. Comparison of the actual error in the low-rank representation fk with the random estimator ek
from Proposition 1 and the approximation error from Theorem 1. An oversampling factor of 5 is used and

we also choose r = 5 for the randomized estimator. Here, we use κ5/2 defined in Equation (15).

5.2.3. Accuracy of the estimator: Next, we analyze the performance of the proposed estimator for
the error in the low rank decomposition ‖(I −QQ∗B)C‖B ≤ ε. An oversampling factor of p = 5
was used. We compare the following quantities:

•
√
‖B−1‖2σB,k+1(C), where (k + 1) generalized singular value of the matrix C. This is,

roughly speaking, an estimate of the error according to Theorem 1.
• The actual error in the low-rank approximation fk = ‖(I −QkQ∗kB)C‖B .
• Estimator of the error fk computed using the result in Proposition 1, and is denoted as e5,k.

We pick α = 2 and r = 5.

Figure 3 shows the comparison between the three quantities listed above. We observe that the
error in the low-rank approximation fk is nearly equal to the estimate

√
‖B−1‖2σB,k+1(C) that is

predicted from theory. Moreover, the true error is bounded from above by the estimated error ek
and hence, the estimator provides a good upper bound for the actual error. Next, we try to answer
the following question: How often (statistically speaking) is the estimator for the error close to the
true error? To answer this, we generate 1000 realizations at different values of k = 20, 40, 60, 80 and
compare the true error with the estimated error. The results are presented in Figure 4. It can be seen
that both the actual and the estimated error are concentrated about the mean.

5.2.4. Effect of correlation length l: The rate of decay of eigenvalues is controlled by the
smoothness of the kernel [24]. Additionally, the rate of decay is also dependent on the correlation
length l, which appears in Equation (15) through the distance function d = ‖x− y‖2/l. As has
been observed in [6], for small correlation lengths there is a pre-asymptotic regime before there is
a significant decay rate of the eigenvalues. To demonstrate the effect of correlation length l on
the accuracy of the randomized calculations, we consider the following numerical experiment.
The eigenvalues are computed for the KLE using the covariance kernel κν=5/2 as defined in
Equation (15). The domain for the computations is [−1, 1] and the number of grid points are 501.
The true and approximate eigenvalues are displayed in Figure 5 for 3 different correlation lengths
l = [0.01, 0.1, 1]. Also plotted is the error between the true and approximate eigenvalues measured
as
∑

k |λk − λ̃|/
∑

k |λk|. From the figure, it can be seen that there is no appreciable decay in the
eigenvalues for small correlation lengths 0.5% of domain length. However, for correlation lengths
that are greater than 5% of the domain length, which is typically used in practice, the accuracy of the
eigenvalue calculations is moderate and improves significantly with increasing correlation length.
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Figure 4. Distribution of the true and the estimated error generated for 1000 samples corresponding to
k = 20, 40, 60, 80 eigenvalues. Here, fk is the actual error in the low-rank representation and the random

estimator ek from Proposition 1. We use κ3/2 defined in Equation (15).

It should be noted that the randomized algorithms may not be very accurate for extremely small
correlation lengths.

Figure 5. Effect of correlation length on accuracy of eigenvalues. We use κ5/2 as the covariance kernel
as defined in Equation (15). (left) comparison between the true eigenvalues (solid line) and approximate
eigenvalues (dot-dashed line) computed for different correlation lengths (right) the error between the true

and the approximate eigenvalues measured as
∑
k |λk − λ̃|/

∑
k |λk| as a function of correlation length.

5.2.5. Accuracy of the KL expansion: Thus far, we have established the accuracy of the eigenvalues
using the randomized approach. However, the accuracy of the KL expansion depends on both
the accuracy of the eigenvalues and the eigenvectors. The accuracy of the truncated discrete KL
expansion can be quantified using the following theorem.

Theorem 3
Let (λ, φ) be the exact eigenpair of Equation (13) and the (λ̃, φ̃) be the approximate eigenpair
computed using the Randomized algorithms. Assume that arcsin(2ε/δ) < π/2

E

∥∥∥∥∥
n∑
k=1

ξk

(√
λkφ−

√
λ̃kφ̃

)∥∥∥∥∥
2

M

 / nmin

{
2ε,

2ε

δ

}
+

n∑
k=1

λk
4ε2

δ2
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Here the expectation E[·] is w.r.t to the random variables ξk.

Proof
Using the property that E[ξiξj ] = δij the expression on the left reduces to

E

∥∥∥∥∥
n∑
k=1

ξk

(√
λkφ−

√
λ̃kφ̃

)∥∥∥∥∥
2

M

 =

n∑
k=1

∥∥∥∥√λkφ−
√
λ̃kφ̃

∥∥∥∥2

M

Next considering each term in the summation, we have∥∥∥∥√λkφk −
√
λ̃kφ̃k

∥∥∥∥2

M

≤
∥∥∥√λkφk −

√
λkφ̃k

∥∥∥2

M
+

∥∥∥∥√λkφ̃k −
√
λ̃kφ̃k

∥∥∥∥2

M

≤ λk‖φk − φ̃‖2M + |λk − λ̃k|‖φ̃‖2M

We have that ‖φ̃k‖2M = 1 and ‖φk‖2M = 1 and ∠M (φk, φ̃k) = arccos〈φ, φ̃〉M .

‖φk − φ̃k‖2M ≤ ‖φk‖2M + ‖φ̃k‖2M − 2〈φ, φ̃k〉M = 2(1− cos∠M (φk, φ̃k))

= 2

(
1−

√
1− sin2 ∠M (φk, φ̃k)

)
≤

(
2ε

δ

)2

+O
(

2ε

δ

)4

Here we have used the result of Proposition 2 that bounds sin∠M (φk, φ̃k) ≤ 2ε/δ. The proof
is completed by plugging the above expression into the summation and using the inequality in
Proposition 2 |λk − λ̃k| ≤ min{2ε, 4ε2/δ}.

Figure 6. (left) Accuracy of the eigenvalues λk − λ̃k (right) accuracy of the eigenvectors quantified as
λk2(1− cos∠M (φk, φ̃k)) which appears in the proof of Theorem 3.

Estimation of the spectral gap is hard in practice, since the exact eigenvalues are not known.
We consider the accuracy of the discretized KL expansion. We consider a 1D KL expansion in
the domain [−1, 1] discretized using 501 basis functions. Furthermore, we consider three different
Matérn class covariance kernels described in Equation (15) and take the correlation length l = 0.4.
From the analysis in Theorem 3, we have seen that the second factor controlling the error is the
accuracy of the eigenvalues |λk − λ̃k| the factor λk2(1− cos∠M (φk, φ̃k)) and these quantities
have been plotted in Figure 6. From the figure, it can be seen that the error in both the quantities
deteriorates with the index number of the eigenvalues k and the accuracy is higher as the parameter
ν increases. Furthermore, the accuracy of both quantities is roughly the same order of magnitude
and therefore, both terms have similar contributions to the error in the discretized KL expansion
computed using the randomized algorithms described in this paper.
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5.3. Implementation using H-matrices

Since the matrix Γprior is dense, storage and computational costs of matvecs involving the matrix
Γprior scales as O(N2). In order to mitigate these costs, H-matrix approach has previously been
used for efficient representation of covariance matrices arising out of Gaussian random fields
in [23, 1, 21]. Hierarchical matrices [4] (or H-matrices, for short) are efficient data-sparse
representations of certain densely populated matrices. The main idea that is used repeatedly in these
kind of techniques, is to split a given matrix into a hierarchy of rectangular blocks and approximate
each of the blocks by a low-rank matrix. Hierarchical matrices have been used successfully in data-
sparse representation of matrices arising in the Boundary Element method or for the approximation
of the inverse of a Finite Element discretization of an elliptic partial differential operator. Fast
algorithms have been developed for this class of matrices, including matrix-vector products,
matrix addition, multiplication and factorization in almost linear complexity [4]. The matrix-vector
products involving the dense covariance matrix can be computed inO(N logN) using theH-matrix
approach, where N is the number of grid points after discretization. The use of H-matrices for
computing the KLE along with Krylov subspace methods to compute eigendecomposition has been
discussed in [15, 7]. The specific details of our implementation of H-matrix approach has already
been presented in [21] and will not be provided here.

The assembly of the finite element matrix corresponding to the mesh is handled using the
finite element software FEniCS [17]. Since the matrix M is sparse and can easily be factorized,
computing the dominant eigenmodes of the eigenvalue problem (14) can be efficiently computed
by a transformation into a HEP. Instead, we only assume that Mx and M−1x can be formed fast.
We use this simple example to demonstrate the accuracy and speedup of the randomized algorithm
for GHEP. We compare the performance of Algorithm 6 which is labeled “Two Pass”, Algorithm 7
labeled “Single Pass” and the solution of the GHEP using ARPACK that is accessed via SciPy and
is labeled “ARPACK”. We warn the reader to exercise caution while interpreting the timing values,
since the comparison is made across different programming environments (ARPACK is written in
Fortran). Furthermore, any comparison with Krylov subspace methods is complicated by the fact
that these methods require sophisticated algorithms for monitoring convergence and restarts.

Figure 7. Decay in eigenvalues corresponding to the covariance kernels defined in (15)
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Figure 8. Starting mesh used to illustrate the performance of the randomized algorithms to compute KLE.

The GHEP listed in Equation (14) is solved corresponding to the covariance kernels defined in
Equation (15). For the mesh, we started with a mesh available in the public domain †. Then using the
FEniCS command ‘refine’ twice, we ended up with a finer mesh with 43872 nodes corresponding to
the irregular domain in Figure 8. The time to compute the eigendecomposition, and a summary
of the number of matrix-vector products taken by each solver is summarized in Table III. An
oversampling factor p = 5 is chosen. The eigenvalues are shown in Figure 7. We observe that even
though the single pass algorithm takes half the time as the two pass algorithm (fewer matvecs with
A), the accuracy of this algorithm deteriorates as the number of requested eigenvalues increase. The
difference in computational costs between the randomized algorithms and Krylov subspace based
eigensolvers will be much higher if the cost associated with forming Bx or B−1x is much higher.
In terms of the accuracy of the eigensolvers, we observe that in general, the “Nyström” and “Two
Pass” algorithms are closer in accuracy compared to the “ARPACK” solver; in fact, they are often an
order of magnitude more accurate than the “Single Pass” algorithms. The accuracy improves when
the eigenvalues decay more rapidly, i.e. for covariance matrices κν with increasing ν. Furthermore,
we observe that the first few eigenvalues are computed relatively accurately but the accuracy decays
towards the tail. This accuracy can be improved by increased oversampling, i.e. using a higher value
of p. The summary of the computational costs along with CPU time is provided in Table III.

Method Ax Bx B−1x Time (s)
∑

k |λk − λ̃k|/
∑

k |λk|
κ1/2(r) = exp(−r)

Single Pass 55 157 60 91.49 3.6× 10−2

Two Pass 110 156 55 186.50 7.0× 10−3

Nyström 110 157 157 188.32 2.4× 10−3

ARPACK 128 256 128 205.37 −
κ3/2(r) = (1 +

√
3r) exp(−

√
3r)

Single Pass 55 160 55 95.40 1.0× 10−3

Two Pass 110 162 55 186.68 1.1× 10−4

Nyström 110 160 160 177.70 3.5× 10−5

ARPACK 102 202 102 159.07 −
κ5/2(r) = (1 +

√
5r + 5

3r
2) exp(−

√
5r)

Single Pass 55 161 55 86.25 3.39× 10−5

Two Pass 110 162 55 171.72 4.31× 10−6

Nyström 110 162 162 172.64 1.8× 10−6

ARPACK 102 201 102 155.91 −
Table III. Comparison of computational costs of the randomized algorithms “Single Pass” (Algorithm 7),
“Two Pass” (Algorithm 6) and “Nyström” (Algorithm 8) with ARPACK which is a standard eigensolver for

GHEP. Here, the eigenvalues computed using ARPACK are treated as the “true” eigenvalues λk.

†http://fenicsproject.org/download/data.html
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Finally, we conclude this section with a discussion on choosing between randomized algorithms
and Krylov subspace methods for computing the dominant eigenmodes of the KLE. As can be seen
from Table III, in general the single-pass algorithm is nearly twice as cheap compared to either
two-pass algorithm or ARPACK since the dominant cost is forming matvecs with A. Although, on
the whole two-pass algorithm is more accurate than the single-pass algorithm, in this application
it is more expensive than ARPACK. Therefore, if an accurate eigendecomposition is desired then
ARPACK is recommended.

In finely discretized problems with complicated geometries in 3D, factorizing or inverting the
mass matrixM that is required by both randomized algorithms and ARPACK prove to be expensive.
In such cases, the calculations can be simplified by observing that B−1A = ΓpriorM and as a result,
there is no reason to invert M . This can be used to accelerate the randomized algorithms. The same
trick can be used by Krylov subspace methods as well. The ultimate choice of algorithms would
depend heavily on the architecture used, the specific problem and the desired accuracy.

5.4. Parallel implementation

In this section, we consider the parallel performance of the proposed algorithms for a large-
scale KL expansion. The domain x ∈ [0, 1]3 was discretized with uniformly distributed N =
2003 = 8, 000, 000 grid points. The computations were performed for k = 120 eigenmodes with an
oversampling factor p = 8. Parallel execution times were measured on a Linux workstation equipped
with Intel Xeon E5-2687W running at 3.1 GHz (16 cores) and 128 GB memory. MATLAB was used
to test single pass (Algorithm 6) and two pass (Algorithm 7) algorithms. Since the domain under
consideration is a rectangle and the covariance kernel is stationary, the resulting covariance matrix
is a recursive block-Toeplitz matrix and the dense matrix-vector products involving the matrix Γprior
were accelerated using FFT [2].

For the QR decomposition with weighted inner-products, we consider the ‘PreCholQR’
(Algorithm 5) instead of ‘MGS-R’ (Algorithm 3). The reason for this is that, like Krylov
subspace methods, MGS-R uses W -inner products in a sequential fashion. On the other hand,
the computations in ‘PreCholQR’ can be readily parallelized. The matvecs B−1A = ΓpriorM are
further parallelized further simply using MATLAB command ‘parfor’. This convenient parallel
implementation underscores the coding efficiency and excellent scalability of the randomized
algorithm since typical Krylov subspace methods have to execute matrix-vector multiplications
sequentially. The matrix M was constructed using FEniCS. Up to 16 processes were used for the
tests and each test was executed 10 times to compute the average execution time.

Figure 9. (left) Performance results with 16 processes of randomized algorithms Two-pass (Algorithm 7)
and Single pass (Algorithm 6) for k = 120 eigenvalues and oversampling factor p = 20. (right) Breakdown

of costs of different parts of the algorithm, demonstrating the parts that are scalable.

Figure 9 shows the strong scaling for single pass and double pass algorithms. In these
experiments, the dominant computation cost arose from matrix-vector products B−1A = ΓpriorM
and simple embarrassingly parallel implementation on this step could reduce the overall
computation costs significantly without losing its scalability. The remaining steps with smaller
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np N = 125,000 N = 1,000,000
randomized eigs randomized eigs

1 20.15 199.64
2 10.63 102.53
4 6.99 30.98 * 59.05 254.56 *

8 4.18 35.86
16 3.34 25.94
*multithreaded on 16 cores

Table IV. Comparison of computational times (in seconds) of the randomized algorithm “Single Pass”
(Algorithm 7) with MATLAB function “eigs” for N = 503 = 125, 000 and 1003 = 1, 000, 000 with k =

120 eigenmodes and p = 8 oversampling factor.

computation costs were executed using built-in MATLAB functions (sparse matrix multiplication
M ∗ x, chol and eig), which took around a minute on a single core. While one might reduce the
computation time further using sophisticated parallelization on the entire algorithm, the computation
costs for these steps become negligible for large-scale truncated KL expansion problems. We expect
similar scaling when applied to clusters with distributed memory system. Finally, we demonstrate
significant performance gains over a Krylov subspace implemented on the same computational
environment. Table IV shows the comparison of computational costs of Single pass algorithm
(Algorithm 7) applied to the GHEP MΓpriorMx = λMx with MATLAB function ‘eigs’ applied
to the matrix ΓpriorM for N = 503 = 125, 000 and 1003 = 1, 000, 000 with k = 120 eigenmodes
and p = 8 oversampling factor. As can be seen there is significant speed up in using the randomized
approach even on a small problem size. It should be noted that the spectrum of the eigenvalue
problem ΓpriorMx = λx is identical to the GHEP MΓpriorMx = λMx, however the eigenvectors
obtained using eigs are not M -orthonormal.

6. DISCUSSION AND CONCLUSIONS

We have presented a few algorithms for computing the dominant eigenmodes of the generalized
Hermitian eigenvalue problem Ax = λBx using a randomized approach. The algorithms avoid
the need to factorize B (or form products with B1/2 or its inverse). This is advantageous for
certain classes of problems, where factorizing B is computationally expensive. Instead, we provide
a Hermitian low-rank decomposition by using B-inner products. We discussed various issues
related to computational costs and factors controlling accuracy through an example application
that involved computing the dominant eigenmodes of the Karhunen-Loève expansion. Out of the
two algorithms proposed - although single pass algorithms are faster (on account of using half
the number of matvecs with A), the accuracy that it provides may not be satisfactory unless the
eigenvalues decay very rapidly.

We conclude with an additional example application, in which we think randomized algorithms
maybe computationally beneficial. Consider a linear inverse problem of estimating parameters
s ∈ Rns from noisy measurements y ∈ Rny with ny � ns. Using a Bayesian approach to recover
the unknowns from the measurements, often one has to solve the following regularized least-squares
problem

ŝ = arg min
s

‖y −Hs‖2
Γ−1

noise
+ ‖s− µ‖2

Γ−1
prior

In addition to computing the best estimate ŝ, we would like to derive an efficient representation
for the posterior covariance matrix Γpost

def
= (HTΓ−1

noiseH + Γ−1
prior)

−1 since this gives us insight about
quantifying the predictive uncertainty. For examples, the diagonals of the posterior covariance
matrix Γpost is related to the variance of the estimate. As before, Γprior is approximated as a H-
matrix which can be used form fast products of the form Γpriorx and Γ−1

priorx (using a Krylov
subspace method). Forming and storing the posterior covariance matrix entry wise using the
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formula
(

Γ−1
prior +HTΓ−1

noiseH
)−1

is still out of the question. We consider the generalized Hermitian
eigenvalue problem

HTΓ−1
noiseHu = λΓ−1

prioru (16)

Using any of the randomized algorithms described previously, we get the decomposition

Hdata
def
= HTΓ−1

noiseH ≈ Γ−1
priorUkΛkU

T
k Γ−1

prior

where the columns of the matrix U are the generalized eigenvectors and Λk is a diagonal matrix with
entries as the generalized eigenvalues. Plugging this decomposition into the expression for Γpost, and
applying the Woodbury identity

Γpost = (Γ−1
priorUΛUTΓ−1

prior + Γ−1
prior)

−1 = Γprior − UkDkU
T
k +O

(
λk+1

1 + λk+1

)
where, Dk

def
= diag( λi

1+λi
). For several inverse problems the eigenvalues of the eigenproblem (16)

decay rapidly so that the low-rank approximation can be truncated for small k resulting in an
efficient representation of the posterior covariance matrix. We will discuss this application in an
upcoming paper [22].

References

1. S. Ambikasaran, J.Y. Li, P.K. Kitanidis, and E.F. Darve. Large-scale stochastic linear inversion using hierarchical
matrices. under review, 2012.

2. Sivaram Ambikasaran, Arvind K Saibaba, Eric F Darve, and Peter K Kitanidis. Fast algorithms for bayesian
inversion. In Computational Challenges in the Geosciences, pages 101–142. Springer New York, 2013.

3. Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk Van Der Vorst. Templates for the solution of
algebraic eigenvalue problems: a practical guide, volume 11. Society for Industrial and Applied Mathematics,
1987.
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7. APPENDIX: ERROR ESTIMATION

In this Section, we derive a probabilistic error for the low-rank approximation described in
Theorem 1. The proof follows the arguments of [18, 16] closely and uses several key results of [13].

Proof
First, we derive a deterministic bound for ‖(I −QQ∗B)B−1A‖B . It can be shown that there exists
a matrix F such that

‖(I −QQ∗B)C‖B ≤ 2‖C − CΩF‖B + 2‖CΩG−QRG‖B

The proof of the above inequality follows [18, 16] If we choose Q and R such that CΩ = QR, the
second term drops out. Such a Q and R can be constructed using Algorithm 3. Now, we show that
for any matrix C def

= B−1A and Ω with i.i.d. entries chosen from a Gaussian distribution with zero
mean and unit variance, there exists a matrix G such that CΩF is a good approximation to C in
B-norm. In fact, we show by construction that such an F exists.

We denote the Generalized SVD of C = U

(
ΣB,1

ΣB,2

)
V ∗, where ΣB,1 contain the k largest

singular values of C in the generalized sense. For convenience, henceforth we drop the subscript B
on the singular values. Then,

CΩG = U

(
Σ1

Σ2

)(
Ω1

Ω2

)
F

where, we have V ∗Ω =

(
Ω1

Ω2

)
is also a Gaussian random matrix, because they are invariant under

rotation. Here Ω1 is k × (k + p) and Ω2 is (n− k)× (k + p). Now, we choose G def
= [Ω†1 0]V ∗ so

that

CΩG = U

(
Σ1

Σ2

)(
Ω1

Ω2

)
G

= U

(
Σ1

Σ2

)(
Ω1

Ω2

)
[Ω†1 0]V ∗

= U

(
Σ1

Σ2

)(
I 0

Ω2Ω†1 0

)
V ∗ = U

(
Σ1 0

Σ2Ω2Ω†1 0

)
V ∗

Then, C − CΩG = U

(
0 0

−Σ2Ω2Ω†1 Σ2

)
V ∗ and applying matrix-norm inequalities (see

Proposition 1), we have

‖C − CΩG‖2B ≤ ‖B−1‖2‖B1/2U

(
0 0

−Σ2Ω2Ω†1 Σ2

)
V ∗‖2

≤ ‖B−1‖2‖B1/2U‖22‖V ∗‖22
(
‖Σ2‖22 + ‖Σ2Ω2Ω†1‖

2
2

)
= ‖B−1‖2

(
‖Σ2‖22 + ‖Σ2Ω2Ω†1‖

2
2

)
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However, ‖Σ2‖2 = σB,k+1. Now, applying the result in [13, Theorem 10.6] we get the desired result.
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