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Abstract

Estimating the number of eigenvalues located in a given interval of a large sparse
Hermitian matrix is an important problem in certain applications and it is a prerequisite
of eigensolvers based on a divide-and-conquer paradigm. Often an exact count is not
necessary and methods based on stochastic estimates can be utilized to yield rough
approximations. This paper examines a number of techniques tailored to this specific
task. It reviews standard approaches and explores new ones based on polynomial and
rational approximation filtering combined with a stochastic procedure.

1 Introduction

Recent efforts to develop alternative eigensolvers [27, 20, 26] for large scale scientific ap-
plications rely on “splitting” the spectrum of an eigenproblem in intervals and extracting
eigenpairs from each one independently. In order to be efficient, this strategy requires an
approximate knowledge of the number of eigenvalues included in each of these intervals.
In general, any algorithm based on a form of subspace iteration for computing eigenvalues
in a given interval benefits from the knowledge of the approximate number of eigenvalues
inside that interval so as to select the dimension of the subspace to use in the iteration.
In this context subspace size selection was already addressed by Sakurai and co-workers,
[6, 28, 18], using a few different methods. An approximate count of the eigenvalues located
in an interval can also help estimate the rank of a matrix and this is needed in the context of
sampling-based methods [9, 19]. The goal of this paper is to explore inexpensive algorithms
for determining the number of eigenvalues of a Hermitian matrix that are located in a given
interval.
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The standard way of computing the number of eigenvalues of a Hermitian matrix A
located inside an interval [a, b] is to resort to the Sylvester law of inertia [8]. For the sake
of brevity this introduction will only discuss the standard eigenvalue problem although the
paper deals with both standard and generalized problems. If A is nonsingular, it admits the
decomposition A = LDLT , where L is unit lower triangular, and D is diagonal. The Sylvester
inertia theorem then states that the inertias of A and D are the same. This means that the
number of eigenvalues of A that are positive is the same as the number of positive entries
in the diagonal of D (Sturm count). Thus, the LDLT factorizations for the shifted matrices
A− aI and A− bI (assuming that these exist) yield respectively the number of eigenvalues
larger than a and b. The difference between these two numbers gives the eigenvalue count
µ[a, b] in [a, b]. While this method yields an exact count, it requires two complete LDLT

factorizations and this can be quite expensive for realistic eigenproblems.
This paper discusses two alternative methods which provide only an estimate for µ[a, b]

but which are relatively inexpensive. Both methods work by estimating the trace of the
spectral projector P associated with the eigenvalues inside the interval [a, b]. This spectral
projector is expanded in two different ways and its trace is computed by resorting to stochas-
tic trace estimators, see, e.g.,[10, 31]. The first method utilizes filtering techniques based
on Chebyshev polynomials. The resulting projector is expanded as a polynomial function
of A. In the second method the projector is constructed by integrating the resolvent of the
eigenproblem along a contour in the complex plane enclosing the interval [a, b]. In this case
the projector is approximated by a rational function of A.

For each of the above methods we present various implementations depending on the
nature of the eigenproblem (generalized vs standard), and cost considerations. Thus, in the
polynomial expansion case, we propose a barrier-type filter when dealing with a standard
eigenproblem, and two high/low pass filters in the case of generalized eigenproblems. In the
rational expansion case we have the choice of using an LU factorization or a Krylov subspace
method to solve linear systems. The optimal implementation of each method used for the
eigenvalue count depends on the situation at hand and involves compromises between cost
and accuracy. While it is not the aim of this paper to explore detailed analysis of these
techniques, we will discuss various possibilities and provide illustrative examples.

The polynomial and rational expansion methods are motivated by two distinct approaches
recently suggested in the context of electronic structure calculations: i) spectrum slicing and
ii) Cauchy integral eigen-projection. In the spectrum slicing techniques [27] the eigenpairs are
computed by dividing the spectrum in many small subintervals, called ‘slices’ or ‘windows’.
For each window a barrier function is approximated by Chebyshev-Jackson polynomials in
order to select only the portion of the spectrum in the slice. In this method, it is important
to determine an approximate count of the eigenvalue in each sub-interval in order to balance
the calculations in a parallel implementation.

The second set of methods is based on eigen-projectors expressed in the form of Cauchy
integrals [20, 26]. They essentially compute an orthonormal basis of the invariant eigenspace
V associated with the eigenvalues located in the interval. For these methods to work effi-
ciently one must have a good idea of the dimension of the subspace. This dimension must
not be smaller than that of V if we are to account for all the eigenvalues inside the interval
[a, b] and, for reasons related to computational costs, it should also not be too large.

The paper is organized as follows. Section 2 introduces the eigenvalue count problem and
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gives an overview of traditional approaches for solving it. Section 3 discusses methods based
on polynomial expansions and Section 4 is devoted to methods based on rational function
expansions. Section 5 presents additional issues and provides a series of numerical tests to
illustrate the behavior of the methods. Finally, Section 6 offers some concluding remarks.

2 Eigenvalue counts

Let λj, j = 1, · · · , n be the eigenvalues, labeled by increasing value, and u1, u2, · · · , un the
associated orthonormal eigenvectors of an Hermitian matrix A (the generalized problem will
be discussed later). Assuming that λ1 ≤ a < b ≤ λn, our aim is to count the number of
eigenvalues λi in the interval [a, b]. As described in the introduction, the standard way
of obtaining this count is to resort to the Sylvester inertia theorem which will require two
LDLT factorizations. Since exact factorizations can be computationally expensive, choosing
the correct implementation of the LDLT factorization is crucial.

In modeling Hamiltonians of 2-dimensional (2-D) physical systems using finite differences
sparse factorizations can be quite effective so that an eigenvalue count based on the inertias
may be the method of choice. However, this approach becomes expensive in realistic cases
where the matrix arises from simulations of 3-dimensional (3-D) phenomena. As is well-
known [7, 4], in the 3-D case the factorization becomes very costly both in terms of storage
and arithmetic, due to the amount of fill-in generated. For dense eigenproblems the number
of floating point operations per factorization is of order O(n3) and this becomes prohibitive
for large matrices. Hence, counting eigenvalues based on the inertia theorem is a viable
method only when dealing with fairly small dense matrices or for sparse matrices whose
factorization is not too costly, e.g., those generated by 2-D models.

The problem of eigenvalue counts is also closely related to that of computing “Density
of States” (DoS) a term used by physicists for the ‘spectral density’ or the probability of
finding an eigenvalue at a given point in the real line. Some of these techniques bear some
similarity with the ones described here [16]. For example, one can view the polynomial-based
techniques presented in this paper as an adaptation of the Kernel Polynomial Method for
computing the DoS to the problem of estimating eigenvalue counts [29, 33, 23, 30].

This paper explores two alternative approaches that compute an estimate of the eigen-
value count in the interval [a, b] by seeking an approximation to the trace of the eigen-
projector:

P =
∑

λi ∈ [a, b]

uiu
T
i . (1)

The eigenvalues of a projector are either zero or one and so the trace of P is equal to the
number of terms in the sum (1), i.e. to the number of eigenvalues in [a, b]. Therefore, we
can calculate the number of eigenvalues µ[a, b] located in the interval [a, b] by evaluating the
trace of the related projector (1):

µ[a, b] = tr(P ) .

If P were available explicitly, we would be able to compute its trace directly and obtain
µ[a, b] exactly. The projector P is typically not available in practice but it is possible to
inexpensively approximate it in the form of either a polynomial or a rational function of A.
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To this end, we can interpret P as a step function of A, namely:

P = h(A) where h(t) =

{
1 if t ∈ [a, b]
0 otherwise

. (2)

One can now approximate h(t) with either a finite sum ψ(t) of Chebyshev polynomials or a
closed line integration of a rational function χ(t) on the complex plane. These two approaches
lead to distinct approximations of the projector P , namely P ≈ ψ(A) or P ≈ χ(A). In this
form, it becomes possible to estimate the trace of P by a so-called stochastic estimator
developed by Hutchinson [10] and further improved more recently [31, 11, 34].

Hutchinson’s unbiased estimator uses only matrix-vector products to approximate the
trace of a generic matrix A. The idea is based on the use of identically independently
distributed (i.i.d.) Rademacher random variables whereby each entry of randomly generated
vectors v assumes the values −1 and 1 with equal probability 1

2
. Hutchinson proved in a

lemma that E(v>Av) = tr(A). Thus, an estimate Tnv of the trace tr(A) can be obtained
by generating nv samples of random vectors vk, k = 1, .., nv and computing the average of
v>k Avk over these samples.

tr(A) ≈ Tnv =
1

nv

nv∑
k=1

v>k Avk. (3)

In practice there is no need to take vectors with entries equal to Rademacher random
variables. Any sequence of random vectors vk whose entries are i.i.d. random variables will
do as long as the mean of their entries is zero [3]1. For example one can use normally
distributed variables and define the Gaussian estimator exactly in the same fashion as in
(3). While the variance of such an estimator is larger than that of Hutchinson, which uses
Rademacher vectors, it shows a better convergence to the trace, in terms of the number of
sample vectors nv [2].

Instead of the variance of the estimator, a more meaningful criterion is a less than δ
probability that the estimator computes a value Tnv for tr(A) whose relative error exceeds
ε, i.e.

Pr (|Tnv − tr(A)| ≥ ε tr(A)) ≤ δ. (4)

In the particular case the matrix A is a projector P its trace assumes only integers values
and the rounded off value of Tnv will be indistinguishable from tr(P ) when their difference
is less then 1

2
. In this particular case ε ≡ 1/(2 tr(P )) and the following lemma holds [2]

Lemma 2.1 Let be P ∈ Rn×n a projection matrix and let δ > 0 be a failure probability.
Then for nv ≥ 16 tr(P ) ln(2

δ
), the estimator Tnv of P satisfies

Pr (bTnve 6= tr(P )) ≤ δ.

The lemma above suggests that, even for δ = 1, the minimum number of sample vectors
is of the order of magnitude of the trace of the projector with a large pre-factor. In practice
the above lemma gives a rather loose bound and in many cases the estimator Tnv converges
for much lower values of nv than indicated by the lemma. In Sec. 5.4 we will show examples

1This form was used by physicists to compute the density of states [29, 33, 23, 30].
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for which there exists a value nv . tr(P ) after which the estimator Tnv does not experience
any relevant variation. In fact the source of error due to the use of a trace estimator is quite
often negligible relative to the bias introduced by approximating the projector P = h(A)
with either ψ(A) or χ(A).

We can now compute the trace of P as:

µ[a, b] ≈


n

nv

nv∑
k=1

v>k ψ(A)vk Polynomial expansion filtering

n

nv

nv∑
k=1

v>k χ(A)vk Rational expansion filtering.

(5)

where the sample vectors of the Gaussian estimator are normalized to one ‖vk‖ = 1. This
constraint introduces a factor n in the estimator but leaves the conclusion of lemma 2.1
unchanged. Moreover it avoids those rare cases when the Gaussian quotient returns rather
large values. We will refer to this modified definition of Tnv as Rayleigh Quotient (RQ)
estimator.

The polynomial expansion approach does not require any factorization of A, and this is
a big advantage when A is large. Formally, the rational expansion approach would require
a few such factorizations, one for each pole zi of the rational function. However, an exact
factorization is no longer needed since we only need to solve with low accuracy linear systems
with matrices of the form A− ziI and preconditioned iterative methods can be invoked for
this purpose. In the next section we illustrate both approximations in detail and show that
the error in computing µ[a, b] depends essentially on how well the projector is approximated
by the expansion and may be strongly affected by the presence of clustered eigenvalues close
to the limits of the interval [a, b].

3 Polynomial expansion filtering

In the polynomial filtering approach, the step function h(t) in (2) is expanded into a degree
p Chebyshev polynomial series:

h(t) ≈ ψp(t) =

p∑
j=0

γjTj(t). (6)

Here Tj are the j-degree Chebyshev polynomials of the first kind, and the coefficients γj are
the expansion coefficients of the step function h which are known to be

γj =


1

π
(arccos(a)− arccos(b)) : j = 0,

2

π

(
sin(j arccos(a))− sin(j arccos(b))

j

)
: j > 0.

(7)

As a result we obtain an expansion of P into matrices Tj(A)

P ≈ ψp(A) =

p∑
j=0

γjTj(A). (8)
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The above derivation is based on the standard assumption that all the eigenvalues of A lie
in the interval [−1, 1] but it can be trivially extended to a generic spectrum with a simple
linear transformation that maps [λ1, λn] into [−1, 1]. This linear transformation is:

l(t) =
t− (λn + λ1)/2

(λn − λ1)/2

and it requires estimates of the largest and smallest eigenvalues λn, λ1. For the scheme to
work it is necessary that the estimate for λn be larger than λn and the estimate for λ1 be
smaller than λ1.

Two examples of a Chebyshev expansion of h are shown (in red) in Fig. 1. As can be
observed from the plots (red curves), the expansion of h(t) has harmful oscillations near the
boundaries. These are known as Gibbs oscillations. To alleviate this behavior it is customary
to add damping multipliers – Jackson coefficients – so that (8) is actually replaced by

P ≈ ψp(A) =

p∑
j=0

gpjγjTj(A). (9)

Notice that the matrix polynomial for the standard Chebyshev approach has the same ex-
pression as above with the Jackson coefficients gpj all set to one, so we will use the same
symbol to denote both expansions. The Jackson coefficients in their original form can be
shown to be given by the formula,

gpj =

(
1− j

p+2

)
sin(αp) cos(jαp) + 1

p+2
cos(αp) sin(jαp)

sin(αp)
where αp =

π

p+ 2
, (10)

which was developed in [12]. Note that we can also write these coefficients in a slightly
shorter form as:

gpj =
sin(j + 1)αp
(p+ 2) sinαp

+

(
1− j + 1

p+ 2

)
cos(jαp). (11)

Substituting the expression for ψp(A) directly into the stochastic estimator (5), yields
the following estimate

µ[a, b] = tr(P ) ≈ n

nv

nv∑
k=1

[
p∑
j=0

γjv
T
k Tj(A)vk

]
. (12)

A clear advantage of this approach is that it requires only matrix-vector products. In ad-
dition, the vectors wj = Tj(A)v for a given v can be easily computed using the 3-term
recurrence relation of Chebyshev polynomials Tj+1(t) = 2 t Tj(t)− Tj−1(t) which leads to

wj+1 = 2Awj − wj−1.

A similar method which uses a more complicated expansion into orthogonal polynomials,
was also advocated in [24].
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Figure 1: Two examples of polynomial filters.

3.1 Theoretical considerations

It is a known fact that the Chebyshev expansion of a function h(t) (defined in [−1, 1]) is
essentially a Fourier expansion of a function obtained from h by the change of variables
cos θ = t for θ ∈ [0, π]. The function h(t) becomes h(cos θ) for 0 ≤ θ ≤ π and this function
is extended into the interval (π, 2π] by symmetry so the result is an even function (see [22,
sec. 2.4] for details). When the function to expand is discontinuous, as is the case here, the
Fourier expansion does not converge uniformly. In fact the function will oscillate around the
discontinuity, and the maximum of the polynomial in (−1, 1) converges to a number strictly
larger than one [1]. We do however, have pointwise convergence to (h(x + 0) + h(x− 0))/2
where h(x + 0) (resp. h(x− 0)) represents the limit of h(t) when t converges to x from the
right (resp. left).

The Jackson expansion is a member of several techniques used to get rid of Gibbs oscil-
lations. It can be viewed as the expansion of a sequence of smoothed versions of the original
function. Another form of smoothing proposed by Lanczos [14, Chap. 4] and referred to as
σ-smoothing, uses the simpler damping coefficients, called σ factors by the author:

σp0 = 1; σpj =
sin(jθp)

jθp
, j = 1, · · · , p with θp =

π

p+ 1
.

The damping factors are small for larger values of j and this has the effect of reducing
the oscillations. The Jackson coefficients have a much stronger damping effect on these last
terms than the Lanczos σ factors. For example the very last factors, and their approximate
values for large p’s, are in each case:

gpp =
2 sin2(αp)

p+ 2
≈ 2π2

(p+ 2)3
; σpp =

sin(p θp)

p θp
≈ 1

p
.

The above discussion underscores the difficulty in analyzing convergence and in selecting
a proper polynomial degree. First we do not have uniform convergence for the case of the
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standard Chebyshev approximation and therefore it is difficult to relate the vectors ψp(A)v to
h(A)v as would be required to obtain error bounds. Second, for the Jackson (and Lanczos σ-)
smoothing the function being approximated is no longer just h but a smoothed intermediate
version h(p) which varies with the degree p selected. So the process in this case has two steps:
First smooth h into h(p) then approximate h(p).

However, it is important to remember that the standard Chebyshev is the best approx-
imation of the original function h. So any approximation to h that is used, including the
Jackson and Lanczos-σ expansion, will have an error in the weighted L2 norm that cannot
be smaller that that of the standard Chebyshev approach. In the following we assume that
the interval of interest is [−1, 1] and denote by ‖f(t)‖2 the L2 norm associated with the
Chebyshev inner product of functions:

〈ψp, ψq〉 =

∫ 1

−1

ψp(s)ψq(s)√
1− s2

ds (13)

We can now state the following result.

Proposition 3.1 Let ψ
(C)
p , ψ

(J)
p and ψ

(L)
p be the p-th degree Chebyshev, Jackson, or σ-

Lanczos polynomial approximations to the function h respectively, and let γj be the sequence
defined by (7) Then,

‖ψ(C)
p − h(t)‖2 ≤ ‖ψ(J)

p − h(t)‖2, ‖ψ(C)
p − h(t)‖2 ≤ ‖ψ(L)

p − h(t)‖2. (14)

In addition,

‖ψ(C)
p − h(t)‖2

2 =
π

2

∞∑
j=p+1

γ2
j ≤

4π

3(p+ 1)
. (15)

Proof. The two inequalities in (14) follow from the optimality of the least-squares
approximation under the inner product (13). The first part of (15), i.e., the equality, follows
from the fact that the scaled Chebyshev polynomials√

1 + δj0
π

Tj(t)

form a complete orthonormal sequence of polynomials (δij is the Kronecker delta) with Tj
having squared norm equal to π/2 for j > 0. For the second part, we have

‖ψ(C)
p − h(t)‖2

2 =
π

2

∞∑
j=p+1

γ2
j =

π

2

∞∑
j=p+1

[
2

π

(
sin(j arccos(a))− sin(j arccos(b))

j

)]2

≤ π

2

∞∑
j=p+1

[
2

π
× 2

j

]2

=
8

π

∞∑
j=p+1

1

j2
. (16)
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Consider now the sum
∑∞

j=p+1 j
−2. To simplify notation we first start the sum from p instead

of p+ 1. Then we have:

∞∑
j=p

1

j2
=
∞∑
l=1

p−1∑
i=0

1

(lp+ i)2
≤

∞∑
l=1

p−1∑
i=0

1

(lp)2
=
∞∑
l=1

p
1

(lp)2
=

1

p

∞∑
l=1

1

l2
.

As is well-known
∑∞

l=1 l
−2 = π2/6. In the end we obtain:

∞∑
j=p+1

1

j2
≤ 1

p+ 1

∞∑
l=1

1

l2
=

1

p+ 1

π2

6
.

Substituting this into (16) yields the inequality in (15). �

As indicated by the inequalities (14), we cannot do better than the standard Chebyshev
polynomial if we are to measure the quality of the approximation by the L2 norm based on
the inner product (13). The convergence based on the bound (15) is like 1/

√
p, which is

slow. However, much of the inaccuracy occurs around the jumps of the function. From a
practical point of view, the polynomial is available explicitly and it is possible to analyze
the error |ψp(t)− h(t)| in specific subintervals to determine whether ψp will be satisfactory.
The cost of this analysis is trivial since the degree is usually moderate.

3.2 Generalized eigenvalue problem

We now consider the generalized eigenvalue problem Ax = λBx where A and B are sym-
metric and B is positive definite. In this case the projector P in (1) becomes

P =
∑

λi ∈ [a b]

uiu
T
i B, (17)

and the eigenvalue count is again equal to its trace2. However, there are now two matrices
involved and this projector does not admit an expression similar to that in (2) for the
standard case. A common remedy to this issue is to compute the Cholesky factorization
B = LLT of B and transform the generalized eigenproblem into a standard one with the
matrix L−1AL−T . This solution reintroduces the need for a costly factorization which we
wanted to avoid in the first place. The following simple theorem yields the basis for an
efficient alternative:

Proposition 3.2 Let B be a semi-positive definite matrix and B = LLT its Cholesky fac-
torization. Then the inertias of A− σB and L−1AL−T − σI are identical.

Proof. It is well-known that the inertias of a matrix C and XCXT are the same for any
nonsingular matrix X, see, e.g., [8]. The proposition follows by applying this result with
C = A− σB and X = L−1. �

2Details on this can be found for example in [13].
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A consequence of the above statement is that we can estimate the number of eigenvalues
of the pair (A,B) located in a given interval without resorting to any factorization. In essence
the idea is to convert the eigenvalue count for the pair (A,B) into two eigenvalue counts
for two standard eigenvalue problems. Specifically, we have µ[a, b] = µa − µb where µa is the
number of positive eigenvalues of A − aB and µb is the number of positive eigenvalues of
A− bB.

Thus, this approach requires a Chebyshev expansion of the high-pass filters

fσ(t) =

{
1 if t ≥ σ
0 otherwise

for σ = a and σ = b (see Fig. 1b, right, for an example). From these expansions, we would
get estimates for the desired counts µσ for σ = a, b, i.e.,

fσ(t) ≈
p∑
j=0

ησj Tj(t) → µσ ≈
p∑
j=0

ησj tr[Tj(A− σB)].

Using the same set of sample vectors to estimate the two traces, we would then get the
following eigenvalue count in the interval [a, b]:

µ[a, b] = µa − µb ≈
n

nv

nv∑
k=1

[
p∑
j=0

ηaj v
T
k Tj(A− aB)vk −

p∑
j=0

ηbjv
T
k Tj(A− bB)vk

]
.

As will be noted in the section devoted to the numerical experiments, for truly generalized
problems (B 6= I), the spectrum distribution of the matrices A− σB for σ = a, b, may lead
to difficulties, requiring a very large degree polynomial in some cases. It is also possible to
count eigenvalues to the left of a and b by using a low-pass filter. Notice that high-pass/low-
pass filters require usually a lower degree than mid-pass (‘barrier’) filters, so this can also
be used for the standard eigenvalue problem not just the generalized problem. As for the
standard eigenvalue case, costly factorizations are avoided at the expense of using two filters
with standard matrices.

4 Rational expansion filtering

A natural extension to the idea of polynomial filtering is to expand P as a rational function.
One of several ways of achieving this expansion is via the Cauchy integral definition of a
projector:

P = − 1

2iπ

∫
Γ

R(z)dz, (18)

where R(z) = (A − zI)−1 is the resolvent of A, z ∈ C, and Γ is some smooth curve in the
complex plane containing the desired part of the spectrum (see, e.g., [25]). Typically Γ is
taken to be a circle whose diameter is the line segment [a, b]. The above integral is then
approximated by resorting to numerical integration methods, leading to

P ≈ χnc(A) =
nc∑
j=1

ωj(A− zjI)−1,

10



where the zj’s are integration points and the ωjs are quadrature weights. It is now possible to
use the trace estimator by sampling with a set of random vectors. As shown in (5), the trace
of P will be approximated by the average of (Pv, v) over many sample vectors v, multiplied
by n

µ[a, b] = tr(P ) ≈ n

nv

nv∑
k=1

[
nc∑
j=1

ωjv
T
k (A− zjI)−1vk

]
. (19)

This method is not new as a similar idea was advocated in [6].

4.1 Approximations for the spectral projector

The rational expansion can be easily adapted to the case of a generalized eigenvalue problem
Ax = λBx. In this case the desired projector is still given by Eq. (18), but now the resolvent
becomes

R(z) = (A− zB)−1B

(see [13] for a simple derivation). This means that the only change from the standard case
is that the resolvent (A− zjI)−1 in (19) must be replaced by (A− zjB)−1B. In either case
the stochastic estimation requires solving linear systems with multiple right hand sides for
each integration point. In such situations it is customary to factorize the matrix A − zjB
upfront so that the factors can be repeatedly used at a later stage. In general such factors
do not need to be calculated exactly. For example, when employing an iterative procedure,
an approximate factorization of the matrix A− zjB can be used as a preconditioner for the
linear solver.

From the computational cost point of view, this approach may appear to be expensive
and not competitive with the one based on Sylvester’s inertia theorem described in Sec. 2.
Indeed, the inertia approach requires only two factorizations whereas we may now need a
few such factorizations to get a good approximation to the spectral projector. In reality the
method based on Sylvester’s inertia must utilize an exact factorization, whereas in the above
formula, all that is needed is to solve linear systems (A − zjI)yk = vk for many right-hand
sides vk by any inexpensive procedure, including an iterative one.

The rational expansion approach should be favored when used in combination with the
FEAST eigensolver [20, 5, 21] (or similar methods). Such an expansion allows us to get
a rough eigenvalue count when the factorizations of A − ziB have been already computed
in preparation for a subspace iteration-like procedure used by FEAST for the symmetric
problem. In such procedure Gauss-quadrature points (i.e. shifts zi) are positioned along the
half-circle contour as shown on the left of Fig. 2. The same quadrature points can be used to
compute the rational approximation for the projector χnc which is plotted, as a function of
λ, on the right side of Fig. 2. Note the rapid decay of the rational function from ' 1 in the
middle of the interval [−1, 1] to ' 0 outside, which both explain the expected efficiency of
the trace estimator (19), and can lead to some remarkable convergence rates for the FEAST
subspace iteration procedure. More precisely, for the eigenpair (λj, uj), the error introduced
by the numerical integration on the projector is bounded by (Theorem 4.1 in [32]):

‖(h− χnc)uj‖B ≤ α

∣∣∣∣χnc(λM0+1)

χnc(λj)

∣∣∣∣ ∀j ∈ 1, . . . , µ[a, b] (20)
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(a) Quadrature points. (b) Rational approximation filter.

Figure 2: Position in the complex plane of the nc Gauss quadrature points using an integra-
tion along the half-circle, and the corresponding values of the rational function χnc(λ) using
a semi-log plot. The search interval is here set to [−1, 1].

where the first µ[a, b] eigenvalues λ are the ones inside the search interval [−1, 1], and M0

is the size of the search space. The ratio between the rational functions in (20) is inversely
proportional to the FEAST convergence rate, and it is expected to decrease exponentially
with the number of integration points nc. In turn, the value of this ratio may increase
significantly in case one or both of the search interval boundaries is (are) near clusters of the
spectrum (i.e. if M0 is too close to µ[a, b] for FEAST). Similarly, the eigenvalue count may
not be very accurate in this case (see Sec. 5.3 for more details).

4.2 Practical considerations

Next we consider a few implementation issues related to the rational approximation filtering
approach. The eigenvalue count estimator is based on the formula

tr(P ) ≈ n

nv

nv∑
k=1

nc∑
j=1

ωjv
T
k (A− σjI)−1vk. (21)

The above formula involves two loops: the k-loop which we will refer to as the ‘sample vector
loop’ and a j loop which we call the ‘integration loop’ with nc the number of integration
points. As it is written, the above formula suggests that we would run a vector loop, in which
we would generate random vectors, then for each vector in turn we would solve j right-hand
sides (integration loop). This is fine when a direct solver is used for the solutions, provided
we store the factorizations for each integration point.

An important observation here is that we can also swap the two loops, in effect exploiting
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the fact that the trace of the sum of operators is the sum of the different traces:

tr(P ) ≈ tr

nc∑
j=1

ωj(A− σjI)−1

=
nc∑
j=1

ωjtr(A− σjI)−1

≈ n

nv

nc∑
j=1

ωj

nv∑
k=1

vTk (A− σjI)−1vk.

This can be quite useful in a processing phase: As each of the nc factorizations is obtained
we generate a number of random vectors and estimate the trace of (A− σjI)−1 with them.
At the end of all the factorizations, we end up with an eigenvalue count estimate which can
be exploited to determine the subspace dimension to use in the FEAST subspace iteration
procedure (i.e. value of M0 in (20)).

Iterative solvers offer an appealing alternative to exact factorizations. When using a
Krylov subspace method without preconditioning, one can immediately make the well-known
observation that the various systems (A − σjI)yj = v for different j’s and for each random
vector v, can all be solved with the same Krylov subspace (e.g. [17]).

Another issue is to determine what accuracy to require from the solver. In the context
of the FEAST eigensolver [5], the residual norm criterion for GMRES will clearly yield
a similar size error for the eigenvector as it was observed and analyzed in [13, 32]. The
problem for counting eigenvalues is slightly different. A first observation is that we are not
interested in computing eigenvalues or eigenvectors. It is well-known that the error made
on the eigenvalues is typically of the order of the square of the related residual norm [25].
From our observations, a high accuracy is not needed. However, there is a minimum accuracy
required, below which the method will no longer work. It is also important to have consistent
error thresholds. For example, just using a fixed number of GMRES steps will usually not
work. It is best to use a criterion based on a residual norm reduction, for example by a
factor of 10−2.

5 Numerical experiments

This section provides numerical illustrations of a number of features and discusses additional
issues of the methods proposed in Sec. 3 and 4.

5.1 Polynomial filtering: Standard and Jackson polynomials

We use as first example the Na5 matrix generated by the PARSEC code. This matrix,
available from the University of Florida matrix collection 3, is of size n = 5832 and has
nnz = 305630 nonzero entries. We computed eigenvalues at the outset and defined the
interval [a, b] so that a is in the middle of λ100, λ101, and b is in the middle of λ200, λ201. In
this situation the exact eigenvalue count is 100. Using nv = 30 and a degree 70 standard

3http://www.cise.ufl.edu/research/sparse/matrices/
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Figure 3: Chebyshev vs Jackson-Chebyshev for counting eigenvalues λ101 to λ200 for the
matrix Na5.

Chebyshev polynomial yields the results shown on the left plot of Fig. 3. The right plot of
the same figure shows the result obtained with Jackson-Chebyshev polynomials of the same
degree: the last value of the computed average (eigenvalue count estimate) was 101.25 for
Chebyshev and 102.20 for Jackson-Chebyshev. The same sequence of random vectors were
used in both Chebyshev and Jackson-Chebyshev.

From this specific example, one may conclude that Jackson tends to often give an over-
estimate whereas standard Chebyshev often gives an underestimate. In reality, the behavior
of both methods depends crucially on the eigenvalue density distribution in relation to the
position of the extrema of the interval [a, b] and the situation is often reversed (see next
subsection).

5.2 Estimate bias

In this section we consider only polynomial methods, although similar statements can be
made for the rational approximation methods. Since ψp(A) is only an approximation to the
projector (1), its trace will not be equal to the number of eigenvalues inside the interval.
In some situations (not involving clustering) a relatively large degree is needed to get a
reasonable approximation. An illustration of what can happen when the degree is not large
enough is shown in Fig. 4. On the left side the lower horizontal line is the trace of the matrix
ψp(A) computed with a low degree. The higher dashed horizontal line is the actual eigenvalue
count. There is a substantial gap between the two showing that the trace estimator does
work, but it estimates a trace of an inaccurate projector. The right side of the figure shows
that the gap narrows substantially for a higher degree polynomials. As shown in Table 1, a
degree above 70 is necessary to get an approximation that is close enough, where the lower
and upper dashed lines are close. In this regard there could be a big difference between
the Jackson-Chebyshev and the standard Chebyshev polynomials. Here Jackson smoothing
seems to be very detrimental to the estimation. In other situations, the Jackson polynomial
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performs better.
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Figure 4: Chebyshev based counting with a degree 8 (left) and 50 (right) for matrix Si2.

We explored a few ways to fix this bias. In particular the simplest correction is to compare
the integrals of ψp(t) in [−1, 1] with that of the step function on the same interval. The
integral of the step function is just b − a. The integral of each Tk in the interval [−1, 1]
is readily computable (it is equal to zero when k is odd and to −2/(k2 − 1) when k is
even). Then one can obtain the integral of ψp in [a, b] from which a corrective factor can be
obtained. However, experiments with such a correction were mixed. The difficulty inherent
to this problem is that the bias will certainly depend on the distribution of eigenvalues.

p 8 20 30 40 50 70 100 120

tr [ψ
(C)
p (A)] 93.12 97.29 96.98 96.81 97.19 101.58 101.54 100.76

tr [ψ
(J)
p (A)] 74.53 89.59 93.00 94.51 95.29 95.97 96.99 97.74

Table 1: Evolution of the trace of ψp(A) for the standard Chebyshev ψ
(C)
p and Jackson-

Chebyshev ψ
(J)
p approaches for the Si2 test case. The exact count is 100.

5.3 Eigenvalue clustering

As was mentioned at the end of Sec. 5.1, the accuracy of the eigenvalue estimate depends
on the eigenvalue distribution of A. In particular, if either a or b is close or inside a cluster
of eigenvalues, µ[a, b] may overestimate or underestimate the true number of eigenvalues in
[a, b]. Moreover the extent of the error is related to both the size of the cluster and the

relative distance Dλ = ‖λi+1−λi‖
‖λi‖ between eigenvalues in the cluster.

In order to verify this point we ran a series of tests on an eigenproblem containing
artificially engineered clusters of distinct length and density. For each cluster we placed
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the rightmost ending of the interval [a, b] either at the beginning or at the end of the
set of values forming the cluster. For each case we computed µ[a, b] using both the simple

Chebyshev ψ
(C)
p (A) and the Jackson-Chebyshev expansion ψ

(J)
p (A) with two quite different

polynomial degrees p.
Results from our tests clearly show that when the filtering interval intersects the beginning

of a cluster both ψ
(C)
p (A) and ψ

(J)
p (A) overestimate the eigenvalue count. In contrast when

the interval intersects the end of a cluster both expansions underestimate the eigenvalue
count. This result does not in general depend on the polynomial degree adopted and reflects
the tailing effects of the expansions as shown for example in Fig. 1a. Moreover we observed
that the extent of the error made depends on the length of the cluster and on the relative
distance between eigenvalues in the cluster.

We repeated the set of tests for the rational expansion and observed a behavior similar to
polynomial expansions. When most of the values characterizing a cluster are close but outside
the interval [a, b], the trace of χnc(A) overestimates the number of eigenvalues. In contrast,
if such cluster of values is almost entirely within the filtering interval, the eigenvalue count
is underestimated. In other words, clusters located near the end-points will just exacerbate
the bias described in section 5.2.

5.4 Number of sample vectors and estimator accuracy

According to lemma 2.1 there exist a minimum value of vectors for which we can assert
we converged to the value of the trace with probability 1 − δ. While this bound is rather
loose it indicates that convergence is reached for nv ∼ O(tr(P )) for any meaningful δ. In
this section we illustrate the numerical behavior of the estimator with two typical examples
which we briefly comment.

In both plots of Fig. 5 the jagged lines representing the estimates quickly reduce their
wide oscillations and remain close to the exact trace of the approximated P . The value of nv
for which the range of the oscillations from one sample vector to the next become consistently
less than one is between 50 ≤ nv ≤ 100 for Fig. 5a and 200 ≤ nv ≤ 300 for Fig. 5b. These
two typical examples illustrate that, for intervals containing a small number of eigenvalues,
a minimum number of vectors nv ∼ tr(P ) may be needed. In fact a good estimate for the
trace is based on having enough sample vectors vk to represent almost entirely the subspace
generated by the eigenpairs in the interval [a, b] and such a number is exactly tr(P ).

When the number of eigenvalues in [a, b] is larger than a few dozens, the necessary number
of sample vectors can often be lower nv . tr(P ). In general, for the same approximated
projector, the minimum value of nv varies slightly every time a different set of sample vectors
is selected, but overall the experimental bound differs from the theoretical one given by
lemma 2.1 having a much smaller value for the pre-factor of tr(P ).

While this conclusion seems natural due to the nature of the expansions, it may introduce
a practical difficulty in estimating a priori the minimum number of sample vectors necessary
for the estimation of the trace. This difficulty can be overcome by computing the estimator
incrementally and monitoring the value of the increment over a small range of previous
samples (typically no more than 10). When such an increment remains substantially constant
and less than one, the estimated value for the trace can be safely said to have converged.
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(a) Small interval [a, b] including λ5 up to λ40.
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(b) Large interval [a, b] including λ100 up to λ400.

Figure 5: Behavior the Rayleigh Quotient estimator when the number of sample vectors
nv varies. Two distinct test cases are considered with both the polynomial and rational
expansion techniques. (a): Case of a small problem (n = 789) and an interval containing a
small number of eigenvalues. (b): Both the system size and number of eigenvectors are one
order of magnitude larger. In each plot the random generated vectors are the same for both
estimators and the straight color lines are the exact traces of the approximate projector.

5.5 Rational approximation filtering: Direct vs iterative solvers

We ran tests with the same Na5 example which was used in Sec. 5.1. When employing exact
factorizations for each integration point and nv = 40 sample vectors, the eigenvalue count is
µ[a, b] = 98.64 for nc = 3 and µ[a, b] = 100.27 for nc = 5. Clearly more accurate quadrature
rules will yield more accurate counts. Note however, that much faster results can be obtained
using the Sylvester inertia approach since this requires only two direct factorizations (in real
arithmetic).

We can avoid costly direct factorizations and make use of iterative solvers to improve
efficiency. For the Na5 example with same parameters as above, we solved the linear systems
using GMRES with residual norm equal to 10−1, 10−2 and 10−3 and obtained a trace estimate
equal respectively to 75.35, 97.61 and 98.65. As mentioned in Sec. 4.2 a minimum accuracy
for the iterative solver is necessary but we observe that the estimates are reasonably good
starting with a high value for the residual threshold (e.g. 10−2 for GMRES) when compared
with the direct case. Using nc = 3, Fig. 6 shows the absolute errors on µ[a, b] obtained by
comparing direct factorizations and GMRES with 10−2 and 10−3 residual threshold. Results
based on the iterative solver are found in extremely good agreement with those of the direct
factorization, and this agreement is expected to be preserved independently of the number
of integration points.

When there is no preconditioning, the iterative procedure requires only matrix-vector
multiplications with the matrix A. Therefore, using an iterative solver is a promising method
for handling very large systems. In order to further enhance the performance, one can think
of two options to be developed: (i) the generation of a single Krylov subspace common to
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all integration points; (ii) the use of (cheap) preconditioners.

Figure 6: Absolute errors on the eigenvalue count between results obtained with direct
factorization and GMRES using both 10−2 and 10−3 convergence criteria. This absolute
error (i.e. |µDirect[a, b] − µGMRES

[a, b] |) decreases to zero using smaller GMRES residual thresholds.

We also tested the polynomial and rational filtering methods on a generalized eigenvalue
problem corresponding to a 2-D FEM simulation matrix and available from the FEAST
package [5]. In this case the matrices A,B have size n = 12, 450. The number of nonzero
entries in both A and B is nnz = 86, 808. The number of eigenvalues inside the desired
interval is 100 (i.e. 100 lowest eigenvalues). On the left plot of Fig. 7 the varying average of
µ[a, b], obtained with a degree 100 polynomial filtering, shows an almost perfect agreement
with the exact count.

For the rational filtering method we run tests with nc = 5, using a direct solver and GM-
RES with and without preconditioning (denoted by GMRES and P-GMRES respectively).
Comparison of these approaches are shown on the right plot of Fig. 7. For clarity the figure
now omits the small circles corresponding to Rayleigh quotients of each sample and shows
only the running mean. We tested the preconditioned GMRES with an ILU factorization
using a drop tolerance of droptol = 0.01 and a pivoting threshold of 0.05 as defined by
the matlab ilu function with its default reordering. For all the runs with P-GMRES we
used a restart dimension of 20 and limited the number of steps to 200. The iteration is
stopped when the residual norm drops by a preset threshold tolerance (tol). Results with
tol = 10−2 are shown. Other results obtained with GMRES and P-GMRES with tol = 10−3

were quasi-identical with those obtained with the direct solver and are omitted.
The curves show an underestimation of the eigenvalue counts for both GMRES and P-

GMRES. Remarkably, each of these two curves deviates from that of the exact solver by
nearly a constant, indicating the existence of a bias for the case of insufficient accuracy.
This observation is not easy to explain and merits further investigation.

The better accuracy afforded by the rational approximation approach comes at a high
memory cost. The total number of nonzero elements for all the LU factorizations generated
for the 5 integration points for this case is nnzLUtotal = 22, 239, 530, an enormous amount
relative to the original number of nonzero entries which is under 100, 000. In contrast, when
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the ILU factorization is used for nc = 5 and under the conditions of the above experiment
the total number of nonzero elements used for all 5 ILU factorizations drops to nnzLUtotal =
799, 143, about 28 times smaller. This is a 2-D problem. For a 3-D problem a direct approach
becomes unfeasible on a standard workstation and using a preconditioned iterative solver is
the only option.
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Figure 7: (Standard) Chebyshev vs rational approximation for the Gen2D matrix. The
sequences of random vectors used in all the experiments are identical.

5.6 Using estimated eigenvalue counts in FEAST

As mentioned in Sec. 4.1, the convergence rate of the FEAST subspace iterations mainly
depends on the size M0 of the search subspace and the value of the rational function at
λM0+1 (i.e. χnc(λM0+1) in (20)). In Fig. 2, for example, we note for the case nc = 8 and the
search interval λ ∈ [−1, 1] that the rational function is equal to ∼ 10−4 for λ = ±1.5. As a
result, if the search subspace size M0 is taken large enough to include all eigenvalues between
[−1.5, 1.5], one can expect the residuals of the eigenpairs within [−1, 1] to converge with
the same (linear) rate of 104 along the FEAST subspace iterations (while the eigenvalues
should converge with a linear rate of (104)2 = 108).

It is important to note that the same convergence rate applies to any arbitrary intervals
[a, b] if one chooses M0 equal to the eigenvalue count inside a larger interval [a−α, b+α] with
α = (b − a)/4. This eigenvalue count within the larger interval can be estimated, in turn,
using a reduced number of integration points that can take advantage of iterative solvers
with modest residuals (as discussed in Sec. 5.5). The results obtained in Table 2 for the Na5
example, illustrate how an appropriate estimate on a larger interval can be used by FEAST
to guarantee a certain degree of convergence rate for the interior eigenpairs. In particular,
the results show a linear convergence rate for nc = 8 in agreement with the expected 4× 104

that can be directly obtained from a reading of the data in Fig. 2 (at λ = ±1.5). Moreover,
the value of the rational function using nc = 5 indicates an expected convergence rate of
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nc = 8 nc = 5

Iteration # eigenvalue residual conv. rate # eigenvalue residual conv. rate

0 62 1.96×10−1 65 2.06×10−1

1 59 1.58×10−7 59 1.18×10−3

2 59 8.78×10−11 1.8×104 59 3.89×10−5 3.0×101

3 59 1.46×10−14 6.0×104 59 6.48×10−8 6.0×102

4 59 1.30×10−11 5.0×103

5 59 5.02×10−14 2.6×102

Table 2: Convergence results obtained using FEAST v2.1 for a new interval [a, b] (a =
1.38695.. and b = 1.88290..) containing 59 eigenvalues and where the subspace size has been
estimated at 100 by counting the eigenvalues between [a − (b − a)/4, b + (b − a)/4]. Two
runs using nc = 8 and nc = 5 integration points are considered, and the convergence rates
are provided from the moment the number of interior eigenvalues stabilizes.

2× 102 while the reported rates in Table 2 appears to be in agreement or much better after
few iterations.

5.7 Rational approximation filtering for non-symmetric problems

Since the eigenvalues of any projector P , whether orthogonal or not, are equal to either zero
or one, its trace is always equal to the number of its nonzero eigenvalues, which in the case
under consideration is the number of eigenvalues located inside the contour integral. The
stochastic estimator also works for non-symmetric matrices. Therefore, the whole technique
extends to non-Hermitian case without any difference. The contour integration approach for
computing the eigenpairs in a given region of the complex plane has also been successfully
utilized within the framework of the FEAST solver [15].

Here we present some preliminary results on the applicability of the eigenvalue count es-
timate (19) for non-symmetric problems. In order to illustrate the accuracy of this approach,
we select the complex symmetric matrix ’qc324’ available from the Matrix Market 4 which
is of size n = 324. Using a circle centered at (0,0) with radius 0.04, the exact (complex)
eigenvalue count is 37. In order to estimate the trace tr(P ) one generates complex random
vectors vk, k = 1, .., nv with entries ±1 for both the real and imaginary parts. The imaginary
part of the trace is expected to be very small, so the estimates are obtained using the real
part of the trace in our simulation results. Fig. 8 presents the estimates obtained using
two different contour integrations. One notes that nc = 6 (i.e. Gauss-3 for each half-circle)
already provides some reasonable estimates. Further work would be needed to report a de-
tailed study of the accuracy of the approach, but this preliminary result shows promise on
the potential extension of the estimated eigenvalue counts to the complex plane.

4http://math.nist.gov/MatrixMarket/
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Figure 8: The rational approximation method at work for the qc324 matrix using a direct
solver. The plots compare a run using 6 and 16 integration points for the whole contour
(obtained by placing respectively 3 and 8 Gauss integration points in the half-circle) and 20
sample vectors.

6 Conclusion

The methods presented in this paper rely on a compromise between accuracy and speed. If
one is interested in an exact count, then clearly combining the Sylvester inertia theorem with
some direct solution method may be the best option, although this may be too costly or even
impractical in some situations. Otherwise, a stochastic estimate based on approximating the
trace of the eigen-projector by exploiting a polynomial or rational function expansion, will
be sufficient. The rational approximation viewpoint may be perfectly suitable within the
context of a package like FEAST since (approximate) factorizations will be needed at the
outset anyway. The initialization of the package will begin by estimating the eigenvalue
count in order to determine the proper subspace size M0 to use. The additional cost of this
step then remains relatively small and its use may lead to great savings. In other applications
the polynomial approximation can give a good estimate at a relatively low cost.

Since the proposed methods are all based on an approximation of the spectral projector,
they are subject to a slight bias if this approximation is not accurate enough. This bias may
be exacerbated by the presence of clusters near the interval boundaries, since it is generally
near these locations that the inaccuracies of the approximate projector are large. Finding
reliable methods to reduce this bias remains an open issue that is worth investigating.
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