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Monte Carlo Approximate Tensor Moment Simula-

tions

J. C. ARISMENDI∗‡ and HERBERT KIMURA‡

∗ ICMA Centre – Henley Business School, University of Reading, Whiteknights, Reading RG6 6BA, UK.

‡ Faculty of Economics, Business and Accountancy – University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil.

Abstract

An algorithm to generate samples with approximate first-, second-, and third-order moments is presented extending

the Cholesky matrix decomposition to a Cholesky tensor decomposition of an arbitrary order. The tensor decomposition

of the first-, second-, and third-order objective moments generates a non-linear system of equations. The algorithm

solves these equations by numerical methods. The results show that the optimisation algorithm delivers samples with

an approximate error of 0.1%–4% between the components of the objective and the sample moments. An application

for sensitivity analysis of portfolio risk assessment with Value-at-Risk (VaR) is provided. A comparison with previous

methods available in the literature suggests that methodology proposed reduces the error of the objective moments in the

generated samples. 1

Key Words: Monte Carlo Simulation, Higher-order Moments, Exact Moments Simulation, Stress-testing

In this research we consider simulation methods, and we simulate random processes with

predetermined moments and cumulants. The main problem is to simulate samples where the

intended statistics of the samples must have a desired moment value, such as the mean, or

the second-order matrix. The moments of a distribution can affect the shape and even all the

characteristics of the distribution; for example, in the case of the normal distribution, we need

only the first- and second-order moments to determine the entire shape of the distribution.

The statistical moments are defined from the moment generating function (as well as the

central moments, or cumulants).

We produce a Monte Carlo method that generates samples with approximate first-, second-,

and third-order moments for the multivariate case. The moments and cumulants are tensors,

and for this reason we introduce some concepts of tensor spaces. Problems with the constraint

on the first- and second-order moment have a solution. Ledermann et al. (2011), using random
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orthogonal matrices, has found a solution of the problem of Monte Carlo simulations with ex-

act skewness and kurtosis, using the measures defined by Mardia (1970); however, Mardia’s

measures report similar skewness values for different elliptical distributions. As a result, Le-

dermman’s methodology will produce the same simulations for elliptical distributions that

have equal skewness but different third-order moments. Our research produces simulations

not with an skewness objective value, but with third-order objective moments.

Let X be a multivariate random variable of dimension p whose first two moments are known.

The problem of generating samples from X with exact first- and second-order moments has

been addressed by several authors. This problem consists in generating a matrix of m samples

X̃ from X, where X̃(i), i ∈ {1, . . . ,m}, is a vector of dimension p. The replicas are generated

with a pseudo-random algorithm, and then a function is applied to give the desired sample

moments. The samples are pairs {X̃(i), p(i)}, where p(i) is the probability density associated

with the sample.

Meucci (2009) classifies the methods used to generate simulations of random variables with

exact mean-covariance in two groups: methods that constrain the probabilities {p(i)}, and

methods that constrain the scenarios {X̃(i)}, i ∈ {1, . . . ,m}. In the former are the methods

of Avellaneda (1998), D’Amico et al. (2003), and Glasserman and Yu (2005). In the latter

are the Wedderburn (1975), Cheng (1985), Li (1992), and Ledermann et al. (2011), where

the spectral decomposition and the QR decomposition methodologies are the most-used. The

Meucci (2009) method constrains the scenarios and is based on the generation of matrix B,

such that BX̃ will have the desired moments. This method offers an improvement in the

performance of the size of the matrix needed to create the samples. Meucci applied this

algorithm to simulate the correlation matrix of a portfolio of plain vanilla options. He offered

the method as an alternative for stress-testing but he did not produce any empirical test to

measure the benefits of using this exact method.

The structure of this paper is as follows: Section 1 introduces the tensor notation; Section 2

reviews the spectral decomposition method for exact mean-covariance (first- and second-order

moments) simulations. Section 3 develops the algorithm proposed to solve the problem of

Monte Carlo approximate first-, second-, and third-order moments simulations and in Section

4 a numerical approximation is provided. In Section 5 we present some numerical results.

Section 6 presents an application to portfolio risks assessment. In Section 7 some concluding

remarks are presented and possible extensions suggested.
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1. Definitions of higher-order tensor moments

The seminal book of Kendall (1947), and the later book of McCullagh (1987) are the main

references for the use of tensors in statistics. In fact, the mathematical definition of a moment

of n-th order, is a tensor of n-th order. Kendall’s book made an introduction to tensor cu-

mulants and tensor moments, while McCullagh described all the mathematical theory behind

tensors and their use in statistics. In the following sections we give a brief introduction to

tensor calculus, as we will use it to describe tensor decompositions approach.

1.1 The summation notation

We use the exponent as an indicator of the tensor’s component.

Definition 1.1: Let X and a be vectors of dimension p with components X(i) and a(i)

for i ∈ {1, . . . , p}, respectively. We are going to use the summation convention as it is the

appropriate notation for working with tensors. We define the object aiXi as:

aiXi ≡
p∑

i=1

a(i)X(i), (1)

where every common index, such as i in (1), denotes a summation of the components of

tensors.

The vectors X and a are considered first-order tensors, and (1) is considered a tensor of

zero-th order. If we refer to the vector and matrix notation, let x and a be two vectors of

dimension p; an equivalent expression to (1) will be:

aiXi ≡ a′x.

Definition 1.2: Let a be a matrix of dimension p×p, and X ≡ x as in (1). Denote using the

vector notation, A ≡ a. The matrix a is a tensor of second order. The equivalent summation

notation of the vector expression xTAx is:

ai,jXiXj ≡
p∑

i=1

p∑
j=1

a(i, j)X(i)X(j). (2)

Definition 1.3: Let a be a tensor of third order; the following tensor product will produce
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a tensor of zero-th order, as the result of (1) and (2),

ai,j,kXiXjXk ≡
p∑

i=1

p∑
j=1

p∑
k=1

a(i, j, k)X(i)X(j)X(k). (3)

In (3), there is not an equivalent vector notation for the expression, and it is for that reason

we use tensor notation for describing higher-order moments and cumulants.

1.2 Tensor moment and tensor cumulant definition

Definition 1.4: Let X be a random vector of dimension p. The characteristic function of

X is defined as:

ψ(ξ, x) = E [exp (ξl1Xl1i)] ,

where l1 ∈ {1, . . . , p}, and ξ is a real-valued vector. The vector x = (x(1), . . . , x(p)) appears

after the calculation of the expected value of a function of the random variable X. This

function can be expanded into the infinite series:

ψ(ξ, x) = 1 + ξl1m(1)l1i+ ξl1ξl2m(2)l1,l2i
2/2! + ξl1ξl2ξl3m(3)l1,l2,l3i

3/3! + . . . , (4)

=
n−1∑
j=1

ξl1 . . . ξljm(j)l1,...,lj i
j/j! + o(∥ξ∥n),

which is convergent for small ξ. The coefficient of the series, m(n) = E(X(l1) . . . X(ln)), is

denoted as the tensor moment of n-th order of X, where l1, . . . , ln ∈ {1, . . . , p}.

Definition 1.5: Calculate the log(·) function of (4):

logψ(ξ, x) =

n−1∑
j=1

ξl1 . . . ξljk(j)l1,...,lj i
j/j! + o(∥ξ∥n).

The coefficient k(n)l1,...,ln = E [(X(l1)−m(1; l1)) . . . (X(ln)−m(1; ln))] is denoted the tensor

cumulant of the n-th order of X, with m(i; l1, . . . , lj) the l1, . . . , lj-th component of the i-th-

order tensor moment.

The covariance matrix is a tensor cumulant of the second order. There is an equivalence

between the first- and second-order tensor moments and tensor cumulants:

m(1) = k(1),

m(2)l1,l2 = k(2)l1,l2 + k(1)l1k(1)l2 .
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1.3 Tensor sample moments and tensor sample cumulants

Definition 1.6: Let X̃ be a matrix of dimension m×p, of m samples of the random variable

X of dimension p; we define the n-th-order tensor sample moment as:

M(n)l1,...,ln = m−1X̃i,l1 . . . X̃i,ln ,

and the n-th-order tensor sample cumulant as:

K(n) = m−1(X̃i,l1 − X̄i,l1) . . . (X̃i,ln − X̄i,ln),

where l1, . . . , ln ∈ {1, . . . , p} and X̄ is a matrix of dimension m × p with the sample mean

vector of X̃ repeated in every row.

1.4 Multivariate measures of skewness and kurtosis

The multivariate measures of skewness and kurtosis developed by Mardia (1970) are the

standard measures in the literature. Fields like finance use these measures. In other fields like

physical sciences, these are also the standard measures. In multivariate statistical analysis

they represent the actual framework to measure deviations from normality. This is the concept

that Mardia and other statisticians used to develop different multivariate skewness measures:

determine the normality of a sample, or deviations from normality.

Mardia’s (1970) skewness and kurtosis definition: Let X = (X(1), X(2), . . . , X(p)) be a

multivariate random vector. Let µ = (µ(1), . . . , µ(p)) denote the mean vector of X and V the

covariance matrix. Denote by Y = (X−µ)′V−1/2 the standardised vector. Let Z be a random

vector with the same distribution as Y , but independent of Y . Mardia’s skewness measure of

X is:

β1 = E
[
(Y ′Z)

]3
. (5)

A fundamental property of a skewness measure is that it is invariant under non-singular

transformations. Mardia’s kurtosis measure is:

β2 = E
[
(Y ′Y )

]4
. (6)

The kurtosis measure is also invariant under non-singular transformations. Mardia (1970)

shows an application where he tested the normality from two artificially generated samples:

one generated from a symmetric distribution and the other from a skewed one, and the re-
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sults confirm the applicability of these measures to recognise the deviations from the normal

distribution in a sample. However, Mardia’s measures were designed to measure third- and

fourth-order moment deviations from the class of elliptical symmetric distributions, but were

not designed to inform about the third- and fourth-order moment properties of elliptical

symmetric distributions.

Besides being the standard measure for multivariate skewness and kurtosis, Mardia’s mea-

sures report the same numeric value for some elliptical distributions of different shapes. There-

fore, we develop an algorithm that considers exact tensor moment simulations, and not only

exact skewness and kurtosis simulations.

2. Exact mean-covariance simulations

In the first part of this section the methods to simulate random vectors with exact covari-

ance are covered, with a detailed explanation of one of the most common methods: spectral

decomposition. None of the methods developed until now uses the definition of higher-order

moment as a tensor.

Most of the statistical and mathematical concepts behind each of the methods for exact

mean-covariance moment simulations are similar. The two most-used methods for the exact

moment sampling that constrain scenarios are the spectral decomposition method, and the QR

decomposition method. These two are the best-known solutions in the academic literature.

Both methods use orthogonal projections. An excellent description of the first method is

in Ledermann et al. (2011). Another reference for these methods can be found in Jackel

(2002). The QR decomposition method uses a similar orthogonal decomposition as the spectral

decomposition method, therefore we briefly describe the spectral decomposition method for

introducing the tensor moment notation. Henceforward, to simplify notation we refer to ‘tensor

moment’ when using the expression ‘moment’.

2.1 Spectral decomposition method

Define X as a random vector of dimension p, and X̃ as a matrix of dimension m × p, of

the m samples of X. From now on, vectors and matrices will be denoted as tensors, and

bold notation used in vector notation will be abandoned. The matrix X̃ has components

X̃i,r, i ∈ {1, . . . ,m}, r ∈ {1, . . . , p}. Define K as the second sample cumulant of X̃. From



7

McCullagh (1987), it is known that Kr,s = n−1ϕi,jX̃i,rX̃j,s, but can also be written as:

Kr,s = n−1(X̃i,r − X̄i,r)(X̃i,s − X̄i,s),

where X̄ is the matrix of m × p with the sample mean of X̃ repeated on every row, and

s ∈ {1, . . . , p}, j ∈ {1, . . . ,m}. The standard Monte Carlo simulation method produce samples

using the following equation:

X̃i,r = X̄i,r + Z̃i,sAs,r,

where matrix A satisfies:

Ar,tAs,t = Kr,s,

for t ∈ {1, . . . , p}, and Z̃ is a sample from a multivariate standard normal. We can see that

the resulting sample second cumulant of X̃ is approximately the covariance or cumulant of

second order of X. This approximation has two sources of errors, one is from the mean and

the other from the covariance of the sample. The first one can be eliminated if we subtract

the sample mean of Z̃:

X̃i,r = X̄i,r + (Z̃i,s − Z̄i,s)As,r,

where Z̄ is the matrix with the mean value of vector Z repeated on every row. For the second

source of error we apply a spectral decomposition method to find a matrix of samples W̃

of dimension m × p, using a projection of the original multivariate normal Z, and impose

the constraint of orthogonality over this matrix, i.e., W̃i,rW̃i,s = Ir,s, where I is the identity

matrix.2 In this case we consider square identity matrices.

Define the first sample without transformations as:

Ỹi,r = Z̃i,r − Z̄i,r,

and let the matrix W̃ have the following form:

W̃i,r = Ỹi,rQr,sΛ
1/2
s,t ,

where the matrix Λ is a diagonal matrix with the eigenvalues of K, and Q is the eigenvector

2Ir,s = 1 if r = s, zero otherwise.
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matrix of K; both Λ and Q are the result from the spectral decomposition of K as:

Kr,s = Qr,sΛr,sQ
−1
r,s .

It can be shown that the sample:

X̃i,r = X̄i,r +
√
nW̃i,sAs,r,

will have as a second-order cumulant the matrix K.

Resuming this method, the solution is to express the sample X̃ as a function of the sample

cumulant K and a random multivariate normal matrix:

X̃ = f(K, Z̃).

3. Exact first-, second-, and third-order moment simulations

Let X̃ be a matrix with m samples of a random variable X. Suppose X has mean vector

zero, E(X) = 0. Define M(1) as the sample first-order moment of this multivariate random

variable:

M(1)r = m−1X̃r,i. (7)

In this case, although there are no common indices on the right-hand side of (7) there must

be a sum over the index i to reduce the second-order tensor X̃ to the first-order tensor M(1).

Define M(2) as the second-order sample moment:

M(2)r,s = m−1X̃r,iX̃s,i,

and M(3) as the third-order sample moment:

M(3)r,s,t = m−1X̃r,iX̃s,iX̃t,i.

Let Ỹ be a random sample of dimension m × p of Y . By construction, suppose we want

to generate Ỹ , with a first-order sample moment equal to the tensor M̂(1), a second-order

sample moment equal to the tensor M̂(2), and a third-order sample moment equal to the

tensor M̂(3). We use a numerical approach to solve this problem, definingM(1)r−M̂(1)r = 0,

M(2)r,s − M̂(2)r,s = 0, and M(3)r,s,t − M̂(3)r,s,t = 0 as the set of non-linear equations to be

solved. The first set of equations, is solved by adding the mean value desired M(1) to the
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sample, as the second- and third-order moments are affine invariant.

Definition 3.1: Define by construction a square matrix A with dimension p×p, with second-

order sample moment equal to M̂(2):

M̂(2)r,s = m−1Ar,iAs,i, (8)

and third-order sample moment equal to M̂(3):

M̂(3)r,s,t = m−1Ar,iAs,iAt,i. (9)

This process is defined as a Cholesky tensor decomposition for second- and third-order tensors.

It is important to study the conditions for the existence of the matrix A. It will be important

in the future to study the conditions of uniqueness. Let us study the existence of the third-

order tensor decomposition (9) of the case p = 2. Let A be a unknown matrix, and M̂(3) a

third-order objective tensor given by the problem:

A =

a(1, 1) a(1, 2)

a(2, 1) a(2, 2)

 , M̂(3) =

M̂(3; 1, 1, 1) M̂(3; 1, 1, 2)

M̂(3; 1, 2, 1) M̂(3; 1, 2, 2)

∣∣∣∣∣∣ M̂(3; 2, 1, 1) M̂(3; 2, 1, 2)

M̂(3; 2, 2, 1) M̂(3; 2, 2, 2)

 .

The tensor decomposition generates a set of four non-linear equations. Solving the set of

equations leads us to the final non-linear equation:

b1/3c2 + a(2, 2)c− M̂(3; 1, 2, 2) = 0, (10)

b =
(
M̂(3; 1, 1, 1)− M̂(3; 2, 2, 2) + a(2, 2)

)
,

c =

−b±
√
b2 + 4a(2, 2)M̂(3; 1, 1, 2)

2a(2, 2)

 ,

where the solution of the unknown variable a(2, 2) in (10) will provide the remaining values

for A:

a(2, 1) = a(1, 2) =
(
M̂(3; 2, 2, 2)− a(2, 2)3

)1/3
,

a(1, 1) =
(
M̂(3; 1, 1, 1)− a(2, 1)3

)1/3
.

The non-linear equation (10) could have a solution inR if and only if b2+4a(2, 2)M̂(3; 1, 1, 2) ≥

0, and even in that case we can not easily confirm that (10) has a solution. In higher dimensions

(p > 2), the non-linear equations will be even more challenging to solve than (10), and for

this reason we use a numerical method to find this decomposition.
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3.1 Exact Cholesky tensor decomposition

We generate a random sample Z̃ from the multivariate standard normal variable Z. This

sample has dimension m × p. Now the product Z̃i,rAr,s will have dimension m × p, and the

second-order sample moment will be equal to:

M̃(2)r,s = m−1(Z̃A)i,r(Z̃A)i,s,

and the third-order sample moment equal to:

M̃(3)r,s,t = m−1(Z̃A)i,r(Z̃A)i,s(Z̃A)i,t.

The expected values of these sample statistics are:

E
(
M̃(2)r,s

)
= M̂(2)r,s,

E
(
M̃(3)r,s,t

)
= M̂(3)r,s,t.

This simulation will have on average the desired second- and third-order moment M̂(2)r,s and

M̂(3)r,s,t; however, to have an exact simulation we need to apply an orthogonal projection T

to Z̃. By construction, we want after the application of T produce the identity3 tensor δr1,r2

of the second-order sample moment of Z̃T multiplied by m:

(Z̃T )i,r1(Z̃T )i,r2 = δr1,r2 , (11)

and the identity4 tensor δr1,r2,r3 , of the third-order sample moment of Z̃T multiplied by m:

(Z̃T )i,r1(Z̃T )i,r2(Z̃T )i,r3 = δr1,r2,r3 , (12)

with r1, r2, r3 ∈ {1, . . . , p}. The reason for this application is to generate an orthogonal pro-

jection of Z̃.

Proposition 3.2: Let M̂(1), M̂(2), and M̂(3) be the second-, and third-order objective

moments. Assume there exists a matrix A, a result of the Cholesky tensor decomposition of

M̂(2) and M̂(3), such that (8) and (9) hold. Define Ỹ as the tensor product:

Ỹi,r = M̂(1) + Z̃i,sTs,tAt,r,

3δr1,r2 = 1 if r1 = r2, zero otherwise.
4δr1,r2,r3 = 1 if r1 = r2 = r3, zero otherwise.
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where Z̃ is a matrix of m samples of Z a multivariate standard normal variable. Let T be a

an application such that (11) and (12) hold. Then, the sample first-, second-, and third order

moments of Ỹ are M̂(1), M̂(2), and M̂(3).

Proof : Let s1, s2, s3, t1, t2, t3 ∈ {1, . . . , p}. We calculate the sample second-order moment of

Ỹ :

m−1Ỹi,rỸi,s = m−1(ZTA)i,r(ZTA)i,s

= m−1(Zi,r1Tr1,r2Ar2,r)(Zi,s1Ts1,r2Ar2,s)

= m−1Ar2,rAr2,s(Zi,r1Tr1,r2Zi,s1Ts1,r2)

= m−1Ar2,rAr2,s(ZT )i,r2(ZT )i,r2

= m−1Ar2,rAr2,sδr2,r2

= m−1Ar2,rAr2,s =M(2)r,s,

and the sample third-order moment of Ỹ :

m−1Ỹr,iỸs,iỸt,i = m−1(ZTA)i,r(ZTA)i,s(ZTA)i,t

= m−1(Zi,r1Tr1,r2Ar2,r)(Zi,s1Ts1,r2Ar2,s)(Zi,t1Tt1,r2Ar2,t)

= m−1Ar2,rAr2,sAr2,t(Zi,r1Tr1,r2Zi,s1Ts1,r2Zi,t!Tt1,r2)

= m−1Ar2,rAr2,sAr2,t(ZT )i,r2(ZT )i,r2(ZT )i,r2

= m−1Ar2,rAr2,sAr2,tδr2,r2,r2

= m−1Ar2,rAr2,sAr2,t =M(3)r,s,t.

�

It has been proved by construction that the sample second- and third-order moments of Ỹ

are exactly M̂(2)r,s and M̂(3)r,s,t, assuming we find matrices A and T .

To generate samples with the second and the third exact moments, we construct the matrix

A such that both conditions are fulfilled:

m−1Ỹr,iỸs,i =M(2)r,s,

m−1Ỹr,iỸs,iỸt,i =M(3)r,s,t.
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4. Numerical method for random sampling with approximate first-, second-, and

third-order moments

In this section we find numerical approximations of matrices A and T . For matrix A we have

the following set of equations derived from Section 3 construction:

p−1Ar,tAs,t = M̂(2)r,s

=⇒ p−1
p∑

i=1

A(r, t)A(s, t) = M̂(2; r, s)

=⇒



p−1 (A(1, 1)A(1, 1) +A(2, 1)A(2, 1) + · · ·A(p, 1)A(p, 1)) = M̂(2; 1, 1)

p−1 (A(1, 1)A(1, 2) +A(2, 1)A(2, 2) + · · ·A(p, 1)A(p, 2)) = M̂(2; 1, 2)
...

p−1 (A(1, p)A(1, p) +A(2, p)A(2, p) + · · ·A(p, p)A(p, p)) = M̂(2; p, p)

, (13)

and,

p−1Ar,uAs,uAt,u = M̂(3)r,s,t

=⇒ p−1
p∑

u=1

A(r, u)A(s, u)A(t, u) = M̂(3; r, s, t)

=⇒



p−1 (A(1, 1)A(1, 1)A(1, 1) + · · ·+A(p, 1)A(p, 1)A(p, 1)) = M̂(3; 1, 1, 1)

p−1 (A(1, 1)A(1, 2)A(1, 1) + · · ·+A(p, 1)A(p, 2)A(p, 1)) = M̂(3; 1, 2, 1)
...

p−1 (A(1, p)A(1, p)A(1, p) + · · ·+A(p, p)A(p, p)A(p, p)) = M̂(3; p, p, p)

, (14)

where u ∈ {1, . . . , p}. To find matrix T in the third-order moments case,5 we apply a similar

algorithm to solve (13) and (14). By construction, we have the following system of non-linear

equations:

m−1(ZT )i,r1(ZT )i,r2(ZT )i,r3 = δr1,r2,r3

=⇒ m−1
m∑
i=1

(ZT )(2; i, r1)(ZT )(2; i, r2)(ZT )(2; i, r3) = δ(r1, r2, r3)

5For the second-order moments simulations, the matrix T is found with a similar approach.
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=⇒



m−1

(
(ZT )(2; 1, 1)(ZT )(2; 1, 1)(ZT )(2; 1, 1) + · · ·

+(ZT )(2;m, 1)(ZT (2;m, 1)(ZT )(2;m, 1)

)
= δ1,1,1 = 1

m−1

(
(ZT )(2; 1, 1)(ZT )(2; 1, 2)(ZT )(2; 1, 1) + · · ·

+(ZT )(2;m, 1)(ZT )(2;m, 2)(ZT )(2;m, 1)

)
= δ(1, 2, 1) = 0

m−1

(
(ZT )(2; 1, p)(ZT )(2; 1, p)(ZT )(2; 1, p) + · · ·

+(ZT )(2;m, p)(ZT )(2;m, p)(ZT )(2;m, p)

)
= δ(p, p, p) = 1

, (15)

plus the set of non-linear equations originated from:

(ZT )i,r1(ZT )i,r2 = δr1,r2 . (16)

The joint non-linear system of equations (13) and (14) has (p×p)+(p×p×p) = p2+p3 equa-

tions. By symmetry M̂(2; r, s) = M̂(2; s, r) and M̂(3; r, r, s) = M̂(3; r, s, r) = M̂(3; s, r, r). To

calculate the total number of equations we use combinatorics. The total number of equations

is only a multiset of 3 elements from p possible elements:p

2

+

p

3

 =

p+ 1

p− 1

+

p+ 2

p− 1

 =
(p+ 1)!

(p− 1)!2!
+

(p+ 2)!

(p− 1)!3!
.

For example, for p = 2 we have 7 equations, for p = 3 we have 16 equations. The number of

unknowns is (p+ 1)p/2. For p = 2 there are 3 unknowns, less than the number of equations.

A Cholesky tensor decomposition A that solves simultaneously (13) and (14) is not feasible,

but just for trivial cases (Ỹ = A, Ỹ of dimension p×p). Additionally, the systems of equations

(15) and (16) will have (p+1)!/((p−1)!2!)+(p+2)!/((p−1)!3!) equations with just (p+1)p/2

unknowns. Therefore, we have to propose a two-stage approximation.

Define a first-order tensor B that contains all the non-linear equations of (15) and (16),

Bu = m−1(ZT )u,r1(ZT )u,r2 − δr1,r2 ,

for u = {1, . . . , (p+ 1)!/((p− 1)!2!)}, and,

Bu = m−1(ZT )u,r1(ZT )u,r2(ZT )u,r3 − δr1,r2,r3 , (17)

for u = {(p+1)!/((p−1)!2!)+1, . . . , (p+1)!/((p−1)!2!)+(p+2)!/((p−1)!3!)}. The following
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minimisation is proposed as a solution for the systems of equations (15) and (16):

min
T

∥B∥. (18)

Denote by C a first-order tensor that contains all the non-linear equations of (13) and (14),

i.e.,

Cu = p−1Ar,uAs,u − M̂(2)r,s,

for u = {1, . . . , (p+ 1)!/((p− 1)!2!)}, and,

Cu = p−1Ar,tAs,tAt,u − M̂(3)r,s,t, (19)

for u = {(p+1)!/((p−1)!2!)+1, . . . , (p+1)!/((p−1)!2!)+(p+2)!/((p−1)!3!)}. The following

minimisation is proposed as a solution for the systems of equations (13) and (14):

min
A

∥C∥ (20)

The solution B∗ of the minimisation problem (18), and the solution C∗ of the minimisation

problem (20) are proposed as the optimal approximation of Cholesky tensor decompositions,

and they are used for the approximate first-, second-, and third-order moments simulations.

We solve this system of non-linear equations using the MATLAB optimisation toolbox.

4.1 Relationship between approximate moment simulations and multi-linear singular

value decomposition

The spectral decomposition method for exact covariance simulation is based on singular value

decomposition (SVD). An approach to solve the exact simulation problem with a tensor is

to find an equivalent definition in tensor calculus of SVD. The two most important tensor

decomposition methods are CANDECOMP/PARAFAC and the TUCKER decomposition.

The CANDECOMP/PARAFAC tensor decomposition is based on the idea of expressing the

N -th-order tensor as the sum of finite rank-one tensor. In later part of this section we define

rank-one tensors. This concept is intuitively similar to the rank of a matrix. Then decom-

posing a tensor into several rank-one tensors is similar to decomposing a matrix into several

vectors, as SVD does. The TUCKER decomposition is a high-order tensor form of matrix

principal component analysis (PCA). In Lathauwer et al. (1994) and Lathauwer et al. (2000)

a generalisation of SVD for tensors is developed, termed multi-linear singular value decompo-
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sition (MSVD). This MSVD is based on the the TUCKER decomposition. They highlight the

expansion of tensors in the development of higher-order statistics, specially in higher-order

moments and cumulants. On the other hand, SVD is one of the most useful methods of lin-

ear algebra. For this reason, Lathauwer et al. (2000) derives the MSVD using matrix based

notation, instead of using the summation notation of physics. The TUCKER decomposition

consists of decomposing a third-order tensor A(3) into 4 components:

A(3)i1,i2,i3 = s(3)j1,j2,j3u
(1)
i1,j1

u
(2)
i2,j2

u
(3)
i3,j3

, (21)

where j1 ∈ {1, . . . , I1}.j2 ∈ {1, . . . , I2}, j3 ∈ {1, . . . , I3}, u
(1)
i1,j1

u
(2)
i2,j2

u
(3)
i3,j3

are

the entries of three orthogonal matrices, and s(3)j1,j2,j3 is an orthogonal ten-

sor, i.e.,
∑

i1,i2
s(3; i1, i2, α)s(3; i1, i2, β) =

∑
i1,i3

s(3; i1, α, i3)s(3; i1, β, i3) =∑
i2,i3

s(2α, i2, i3)s(3;β, i2, i3) = 0 for α ̸= β. In this section we use the bold notation

for matrices for preserving the notation used by Lathauwer et al. (2000).

Lathauwer et al. (2000) define the concept of the matrix unfolding of a tensor, a gen-

eralisation of matrix decomposition as row (column) vectors. Let Ai1i2...iN ∈ CI1×I2...IN

be a N -dimensional tensor, the matrix unfolding denoted as A(j) of dimension (Ij) ×

(Ij+1Ij+2 . . . INI1I2 . . . Ij−1) is a matrix with the element ai1i2...iN at the row position in and

column position equal to (ij+1 − 1)Ij+2Ij+3 . . . INI1I2 . . . Ij−1 + (ij+2 − 1)Ij+3Ij+4 . . . INI1I2

. . . Ij−1+(iN − 1)I1I2 . . . Ij−1+(i1− 1)I2I3 . . . Ij−1+(i2− 1)I3I4 . . . Ij−1+ in−1. The j-mode

vector of A is obtained from the components ai1i2...ij ...iN , where j is the only changing index.

The j-rank of a tensor A, defined as Rj = rankj(A), is the dimension of spanned vector space

of the j-mode vectors. The rank of an N -th-order tensor A, R = rank(A) is the minimal

number of the rank-one tensors that yields A as a linear combination. The j-mode product of

a N -th-order tensor A by a matrix U of dimension Jn×In, denoted as A×nU, is a Q-th-order

tensor whose components are:

(A×n U)(Q; i1, i2, . . . , in−1, jn, in+1, . . . , iN ) =
∑
in

a(Q; i1, i2, . . . , in−1, in, in+2, . . . iN , ujn,in).

This is a special case of inner product of two tensors, using the new notation of Lathauwer

et al. (2000). A sub-tensor Sij=α from N -th-order tensor S, is the N−1-th-order tensor formed

from S with the index ij fixed to α ∈ (1, . . . , N). With all these definitions Lathauwer et al.

(2000) formulate the most important result, with the derivation of MSVD:
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Definition 4.1: A N -th-order tensor A, can be decomposed as the product:

A = S ×1 U
(1) ×2 U

(2) · · · ×N U(N),

where U(j) is a unitary matrix, and S is a N -th-order tensor with the property of all tensors

being orthogonal. Two sub-tensors are orthogonal if the inner product ⟨Sin=α, Sim=β between

them is zero.

Nevertheless, the MSVD produces a decomposition with second-order tensors Ui, i ∈

{1, . . . , N}, such as they are orthogonal in pairs. To achieve the decomposition in (8) and

(9), we will need the tensors Ui to be orthogonal in triplets, and orthogonal in N -tuplets in

the case we would like to extend Proposition 3.2 for higher-order moments exact simulation.

An extension to our work is suggested as a MSVD that could accomplish orthogonality in

N -tuplets.

5. Numerical examples

We solve the system of equations (13), (14), and (15) using the MATLAB optimisation

toolbox. The function fsolve(·) is used to find a solution to the systems of non-linear equations.

Example 5.1 A second-order objective moment M̂(2), and third-order objective moment

M̂(3) are generated as the result of calculating the sample moments of a random vector of 2-

dim of N = 500 samples. In the right-hand columns of Table A1, are the objective moments. In

the left-hand columns are the sample moments of the vector X, of 2-dim with N = 20 samples

generated with the method described in Section 4. We observe differences in sample moments,

with the objective moments being relatively small. The first-order moment is exactly the same,

as we translate the resulting sample by the vector of objective means. For this reason, we do

not report first-order moment differences in the following examples.

Example 5.2 In this case we use the same objective moments M̂(2), M̂(3) as Example 5.1

with a small modification. The third-order central moment is increased to M̂(3; 2, 2, 2) =

0.80. Figure B1(a) shows the resulting samples. In blue are the samples generated applying

the algorithm in Section 4, in red are the initial samples from a BVN distribution used to

generate the blue samples. Increasing the third-order objective moment M̂(3; 2, 2, 2) produces

an increase in the second-order moments (correlation) and the bias we can see in the blue
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samples. A second test is to change the third-order moment to a negative value: M̂(3; 2, 2, 2) =

−0.80. In Figure B1(b) we observe the resulting samples in blue. The second-order moments

(correlation) is higher, but not as in Figure B1(a). A constraint, given that the second-order

moments are positive, prevents the correlation of blue samples becoming negative.

Example 5.3 Now a more complex scenario is generated. We proceed to generate th second-

and third-order objective moments M̂(2), M̂(3) as in Example 5.1, for a 5-dimensional (5-

dim) vector. In Table A2 are the objective moments. The vector X of 5-dim is generated

with N = 20 samples. Table A3 presents the samples generated. The sample moments of X

are presented in Table A4. The differences between objective and sample second- and third-

order moments are small. The increase in dimension will increase the number of variables of

the systems of equations (13), (14), and (15), then the non-linear solver will have a better

performance in finding a solution.

Example 5.4

A final set of examples is generated with different dimensions, from 2-dim to 5-dim, with

a different number of samples required, from N=20 to N=100. For each combination we

repeat the Monte Carlo algorithm 4 by 20 times, and we calculate the Euclidean norm error

of the moments of the resulting samples against the objective moments, and we average the 20

repetitions. Tables A5 and A6 present the results for the second-order sample moment norm

error, and the third-order sample moment norm error. The error reported is ∼ 0.2% − 1%

in the case of the second-order moments; and approximately 1% − 4% in the case of the

third-order moments; with an error of 9% only for the 4-dim, N = 100 case.

6. Application for portfolio risk assessment: Value-at-Risk (VaR)

Risk measurement is fundamental for a portfolio manager, and exploring the sensitivity of the

portfolio’s risk to changes in the weights of its components will be part of this assignment.

The standard measure for measuring market risk adopted by the industry is the VaR. There

basically three methods for calculating the VaR: historical methods, parametric methods like

normal VaR, and Monte Carlo simulation. The first method does not allow us to measure

extreme events, unless they are part of the history of the asset. Even in that case, we do not

have control over the scale of the tail event. Parametric methods are perfect for sensitivity

analysis, but we will need to fit a parametric distributions and some errors could be gained
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in this process. Additionally, some parametric distributions do not acknowledge the presence

of some higher-order moments in the data, like the normal distribution. In this case, the

Monte Carlo simulations will suit the needs of the sensitivity analysis. The Monte Carlo

approximate first-, second-, and third-order moment simulations will offer an advantage over

classical exact first- and second-order moments simulation when measuring risk, like VaR.

We explore an example of the VaR of a portfolio.

Let us define a portfolio with three assets, ω = (ω(1), ω(2), ω(3)). Assume that the density

of the asset’s returns follows a multivariate Student-t distribution, with ν = 3 degrees of

freedom, and parameter,

Σ =


1 0.8 0.8

0.8 1 0.8

0.8 0.8 1

 .

A simulated vector X̃ with 100 days is generated, this vector represents the data observed by

the portfolio manager, and has a resulting mean µ = (0.025,−0.030, 0.084), and covariance,

V =


2.33 2.23 2.12

2.23 3.76 2.92

2.12 2.92 3.20

 .

We calculate the 1-day VaR at 99% confidence level of the sample for three different

weights’ combinations of the portfolio: ωA = (0.9, 0.05, 0.05), ωB = (0.05, 0.9, 0.05), ωC =

(0.05, 0.05, 0.9), with resulting VaRA = 3.96%, VaRB = 4.01%, VaRC = 5.35%. The third

portfolio has a higher VaR, although the variance of the third asset is lower than the variance

of the second asset, as a result of large third-order moments present in the sample. Figure B2

shows three scatter plots of the market returns (blue cross) from X̃, where we can see the

bias of the returns, from the first and second assets towards the third asset. As the market

distribution is unknown for portfolio manager, we generate a Monte Carlo exact first- and

second-order moment simulation of 100-days Z̃, with the parameters µ, V , extracted from the

market sample X̃, following the QR decomposition algorithm described in Meucci (2009). The

VaR of the resulting sample Z̃ for the three scenarios is: VaRA = 2.93%, VaRB = 3.53%,

VaRC = 3.71%. The three scenarios are underestimated by the exact first- and second-

order moments methodology. Now we generate a 100-days sample Ỹ , applying the method-
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ology described in Section 4. The resulting VaR for the three scenarios are: VaRA = 3.59%,

VaRB = 3.71%, VaRC = 4.53%. Although our methodology is still underestimating the real

values, it over-performs the methodology of Monte Carlo exact first- and second-order mo-

ments simulation, improving from a 77% of accuracy of the exact first- and second-order

moments method to a 89% of accuracy of the real VaR value on average.

7. Conclusions

A methodology to generate samples with a Monte Carlo approximate first-, second-, and

third-order moment has been presented. The methodology is based on the theory of tensors.

The first step of the algorithm is to generate a multivariate standard normal (MVSN) sample

X. Then the algorithm determines the first-, second-, and third-order objective moments; and

by an extension of the Cholesky decomposition to tensors of arbitrary dimension, a set of

non-linear equations are established. The system of non-linear equations are solved, and the

equivalent Cholesky tensor decomposition is multiplied by the sample X. The algorithm was

tested in a MATLAB environment, and the functions for solving non-linear equations provided

by MATLAB were used. The results demonstrate that the methodology can transform the

moments of a generated sample X close to a desired level. Extensions to our work include

providing the structure of the non-linear problem to the optimisation software, an extension

to a Monte Carlo approximate first-, second-, third-, and fourth-order moments method and

testing another optimisation software for the solution of the system of non-linear equations.
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Appendix A. Tables

Table A1.: First-, second-, and third-order objective moments and first-, second-, and third-
order sample moments obtained from the Monte Carlo approximate simulation method (2-dim
case).

First-order objective moment (M̂r)

s1 s2
0.1217 0.1112

Sample first-order moment (Mr)

s1 s2
0.1217 0.1112

Second-order objective moment (M̂r,2)

s1 s2
s1 0.3432 0.2289
s2 0.2289 0.2820

Second-order sample moment (Mr,s)

s1 s2
s1 0.3581 0.2581
s2 0.2581 0.3236

Third-order objective moment (M̂r,s,t)

s21 s2s1 s2s1 s22
s1 0.2386 0.1626 0.1626 0.1652
s2 0.1626 0.1652 0.1652 0.2442

Sample third-order moment (Mr,s,t)

s21 s2s1 s2s1 s22
s1 0.1967 0.1817 0.1817 0.1621
s2 0.1817 0.1621 0.1621 0.1732

Table A2.: First-, second-, and third-order objective moments (5-dim case).

First-order objective moment

s1 s2 s3 s4 s5
0.1197 0.1901 0.1759 0.1844 0.1974

Second-order objective moment

s1 s2 s3 s4 s5
s1 0.2440 0.2540 0.1987 0.2574 0.2291
s2 0.2540 0.4145 0.2699 0.3045 0.3168
s3 0.1987 0.2699 0.2626 0.2522 0.2338
s4 0.2574 0.3045 0.2522 0.3758 0.2833
s5 0.2291 0.3168 0.2338 0.2833 0.3375

Third-order objective moment

s21 s2s1 s3s1 s4s1 s5s1 s2s1 s22 s2s3 s2s4 s2s5
s1 0.3084 0.1532 0.2423 0.1741 0.2111 0.1532 0.1269 0.1275 0.0868 0.1322
s2 0.1532 0.1269 0.1275 0.0868 0.1322 0.1269 0.1724 0.1302 0.0853 0.1463
s3 0.2423 0.1275 0.2318 0.1586 0.1787 0.1275 0.1302 0.1476 0.1029 0.1376
s4 0.1741 0.0868 0.1586 0.1641 0.1227 0.0868 0.0853 0.1029 0.0994 0.0990
s5 0.2111 0.1322 0.1787 0.1227 0.1974 0.1322 0.1463 0.1376 0.0990 0.1700

s3s1 s3s2 s23 s3s4 s3s5 s4s1 s4s2 s4s3 s24 s4s5
s1 0.2423 0.1275 0.2318 0.1586 0.1787 0.1741 0.0868 0.1586 0.1641 0.1227
s2 0.1275 0.1302 0.1476 0.1029 0.1376 0.0868 0.0853 0.1029 0.0994 0.0990
s3 0.2318 0.1476 0.2690 0.1934 0.2078 0.1586 0.1029 0.1934 0.1944 0.1441
s4 0.1586 0.1029 0.1934 0.1944 0.1441 0.1641 0.0994 0.1944 0.2268 0.1474
s5 0.1787 0.1376 0.2078 0.1441 0.2067 0.1227 0.0990 0.1441 0.1474 0.1542

s5s1 s5s2 s5s3 s5s4 s25
s1 0.2111 0.1322 0.1787 0.1227 0.1974
s2 0.1322 0.1463 0.1376 0.0990 0.1700
s3 0.1787 0.1376 0.2078 0.1441 0.2067
s4 0.1227 0.0990 0.1441 0.1474 0.1542
s5 0.1974 0.1700 0.2067 0.1542 0.2660
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Table A3.: Values of a sample generated with a Monte Carlo approximate moments simulation
method (5-dim case).

Sample generated (5-dim, N=20)

X1 X2 X3 X4 X5

0.2791 0.5235 0.2834 1.0298 0.6866
0.4316 1.0944 0.1355 0.5152 0.6132
-0.6010 -0.8691 -0.6412 -0.7440 -0.2394
0.6724 0.8090 0.9592 0.6549 1.1254
0.5077 0.4888 1.0831 1.4710 0.4992
-0.2419 -0.8959 -0.3187 -0.4106 -0.3037
-0.2415 -0.8342 -0.2978 -0.8691 -0.5319
0.4499 -0.2079 -0.2486 0.4633 -0.3993
0.0197 0.3657 0.4868 0.2051 1.0965
0.0499 1.1647 0.4716 0.3478 0.2056
0.2582 0.7430 -0.0030 0.1326 0.6598
-0.1747 -0.1212 0.0219 -0.3373 -0.4584
-0.2855 -0.2423 0.2057 -0.3922 -0.3945
-0.5299 -0.3700 -0.3843 -0.4616 -0.5498
-0.3707 0.1682 0.0146 0.1336 0.2216
-0.0315 -0.0037 0.3269 -0.0768 -0.1086
0.1746 0.1989 -0.1472 0.5354 0.3068
0.3424 0.7746 0.1880 0.1552 0.4486
-0.0808 0.0760 -0.0357 0.3721 -0.1134
1.7655 0.9390 1.4185 0.9629 1.1847

Table A4.: First-, second-, and third-order sample moments obtained from the Monte Carlo
approximate moments simulation method (5-dim case).

First-order sample moment

s1 s2 s3 s4 s5
0.1197 0.1901 0.1759 0.1844 0.1974

Second-order sample moment

s1 s2 s3 s4 s5
s1 0.2763 0.2345 0.2229 0.2451 0.2274
s2 0.2345 0.4235 0.2503 0.3031 0.3114
s3 0.2229 0.2503 0.2841 0.2484 0.2423
s4 0.2451 0.3031 0.2484 0.3836 0.2696
s5 0.2274 0.3114 0.2423 0.2696 0.3538

Third-order sample moment

s21 s2s1 s3s1 s4s1 s5s1 s2s1 s22 s2s3 s2s4 s2s5
s1 0.2860 0.1626 0.2397 0.1748 0.2109 0.1626 0.1119 0.1410 0.0993 0.1474
s2 0.1626 0.1119 0.1410 0.0993 0.1474 0.1119 0.1707 0.1095 0.0827 0.1491
s3 0.2397 0.1410 0.2235 0.1630 0.1948 0.1410 0.1095 0.1523 0.1132 0.1421
s4 0.1748 0.0993 0.1630 0.1425 0.1377 0.0993 0.0827 0.1132 0.0971 0.1149
s5 0.2109 0.1474 0.1948 0.1377 0.1830 0.1474 0.1491 0.1421 0.1149 0.1771

s3s1 s3s2 s23 s3s4 s3s5 s4s1 s4s2 s4s3 s24 s4s5
s1 0.2397 0.1410 0.2235 0.1630 0.1948 0.1748 0.0993 0.1630 0.1425 0.1377
s2 0.1410 0.1095 0.1523 0.1132 0.1421 0.0993 0.0827 0.1132 0.0971 0.1149
s3 0.2235 0.1523 0.2453 0.2006 0.2044 0.1630 0.1132 0.2006 0.1855 0.1596
s4 0.1630 0.1132 0.2006 0.1855 0.1596 0.1425 0.0971 0.1855 0.2307 0.1410
s5 0.1948 0.1421 0.2044 0.1596 0.2011 0.1377 0.1149 0.1596 0.1410 0.1557

s5s1 s5s2 s5s3 s5s4 s25
s1 0.2109 0.1474 0.1948 0.1377 0.1830
s2 0.1474 0.1491 0.1421 0.1149 0.1771
s3 0.1948 0.1421 0.2044 0.1596 0.2011
s4 0.1377 0.1149 0.1596 0.1410 0.1557
s5 0.1830 0.1771 0.2011 0.1557 0.2464
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Table A5.: Euclidean norm error of the difference between a second-order objective moment
and a second-order sample moment obtained from the Monte Carlo approximate moments
simulation method for different dimensions and number of samples required.

Norm error of second-order sample moments

20 40 100
2-dim 0.001194 0.000430 0.008636
3-dim 0.002032 0.001939 0.006134
4-dim 0.008078 0.003842 0.044682
5-dim 0.004368 0.010661 0.008345

Table A6.: Euclidean norm error of the difference between a third-order objective moment
and a third-order sample moment of a Monte Carlo approximate moments simulation method
for different dimensions and number of samples required.

Norm error of third-order sample moments

20 40 100
2-dim 0.005828 0.003919 0.024863
3-dim 0.012324 0.017701 0.028279
4-dim 0.013384 0.011493 0.095806
5-dim 0.019222 0.041512 0.040928
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Appendix B. Figures
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(a) Bivariate samples generated with a high value on the
third-order objective moment m03.
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(b) Bivariate samples generated with a negative value on the
third-order objective moment m03.

Figure B1.: Scatter plots of the Monte Carlo approximate moments simulation method gen-
erated samples (blue) and of BVSN generated samples (red).
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(a) Scatter plot of returns of Student-t generated samples (blue
cross) and of Monte Carlo approximate moments simulation
method generated samples (red circle) between the first and the
second component.
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(b) Scatter plot of returns of Student-t generated samples (blue
cross) and of Monte Carlo approximate moments simulation
method generated samples (red circle) between the first and the
third component.
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(c) Scatter plot of returns of Student-t generated samples (blue
cross) and of Monte Carlo approximate moments simulation
method generated samples (red circle) between the second and the
third component.

Figure B2.: Scatter plot of sample returns of the market (blue), and of Monte Carlo approxi-
mate moments simulation method generated samples.




