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SUMMARY

Schoenmakers-Coffey matrices are correlation matrices with important financial applications. Several
characterizations of positive extended Schoenmakers-Coffey matrices are presented. This paper provides
an accurate and fast method to obtain the bidiagonal decomposition of the conversion of these matrices,
which in turn can be used to compute to high relative accuracy the eigenvalues and inverses of positive
extended Schoenmakers-Coffey matrices. Numerical examples are included. Copyright (©) 2015 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Correlation models play a key role in many financial applications (cf. [18, 24, 27]). In particular,
to the fields of derivatives pricing and to risk management. A very successful correlation
parametrization has been provided by Schoenmakers and Coffey in [29]. A slight generalization
of the Schoenmakers-Coffey correlation matrix was provided in [18] with the matrices that we
call extended Schoenmakers-Coffey matrices, which are positive definite symmetric matrices. In
[18] it is also shown that extended Schoenmakers-Coffey matrices present important applications
in financial mathematics. Here we restrict our study to positive extended Schoenmakers-Coffey
matrices in order to apply results of Total Positivity theory. In Section 2, we present several
characterizations of positive extended Schoenmakers-Coffey matrices. These characterizations use
concepts and tools coming from the Total Positivity field (see [1, 5, 9, 14, 23]), which is an
interdisciplinary subject related to variation diminishing transformations and with applications to
many other subjects in addition to Economics, such as Statistics, Approximation Theory, Computer
Aided Geometric Design or Mechanics.

As recalled in Section 2, an n X n positive extended Schoenmakers-Coffey matrix A belongs to
the class of oscillatory matrices, which a subclass of nonsingular totally positive matrices, and so
A has n positive and different eigenvalues and the number of variation of signs in the consecutive
components of the eigenvectors corresponding to their kth greater eigenvalueis k — 1,k =1,...,n.
The application of this last property to the first three eigenvectors gives important information in
financial problems (see [18, 25, 26, 27]). In fact, these shape properties of the first three eigenvectors
of the correlation matrices for forward rates in a relevant class of models are known as shift
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(or level), slope and curvature (see [18, 25, 26, 27]). In fact, if the first three eigenvectors have
respectively zero, one or two sign changes, then we say that we observe shift (or level), slope and
curvature. Observe that the fact that the first eigenvector (which is known as the Perron eigenvector
and corresponds to the largest eigenvalue) has zero changes of sign holds for any nonnegative matrix
by the well known Perron-Frobenius theorem.

Let us mention that Lehmer matrices (see [12], [13]) belong to the class of positive extended
Schoenmakers-Coffey matrices, as shown in Section 2, and so the results of this paper can be applied
to Lehmer matrices.

Let us recall that an algorithm can be computed to high relative accuracy (HRA) when it only
uses products, quotients, additions of numbers with the same sign or subtractions of initial data (cf.
[8]). Among the classes of matrices for which algorithms to HRA have been constructed, we can
mention some subclasses of nonsingular totally positive matrices (see [19, 20, 6, 7]). As shown in
[16], for a nonsingular TP matrix A, the adequate parametrization to obtain computations to HRA
is its bidiagonal factorization BD(A). Given a matrix A = (a;;)1<i,j<n, the conversion matrix of A
is the matrix A# := (@nt1—i,nt+1—j)1<i,j<n- In Section 3 we provide a method of O(n) elementary
operations to obtain the BD(A#), where A is an n x n positive extended Schoenmakers-Coffey
matrix. Given this bidiagonal factorization with HRA, the eigenvalues and the inverses of the matrix
A can be also computed with HRA following the procedure presented in Section 3 and using the
tools of [16].

Since positive extended Schoenmakers-Coffey matrices are symmetric, their eigenvalues coincide
with their singular values. Besides, let us also recall the importance of Principal Component
Analysis in many financial models of interest rate dynamics (see [18, 24, 25, 26, 27]). In these
models the eigenvalues are the variances of the principal components. In fact, the estimation of the
eigenvalues of the correlation matrices of forward rates is an important problem in this field (see
[24, 25]). Section 4 includes numerical examples illustrating the accuracy provided by our method
joint with Koev’s algorithms of [17] in order to compute eigenvalues, inverses or the solution of
some linear systems.

2. BASIC DEFINITIONS AND CHARACTERIZATIONS

Let us introduce some basic notations. Let A = (a;j)1<i j<n be a square n x n real matrix. We
introduce a notation for the square submatrices of A. Given a positive integer k < n, Q,, Will
denote the totality of strictly increasing sequences of k natural numbers less than or equal to n:

o= (ozi)le €EQrn If 1<y <ar<...<ap(<n)-

Given o, 8 € Q. then A[c|f] is by definition the & x k submatrix of A containing rows numbered
by « and columns numbered by 3. When « = 3 the principal submatrix A[a|a] is simply denoted
by A[a] and det A[«] is the corresponding principal minor. If « = (1,2, ..., k), then Alq] is called
the leading principal submatrix of A of order k and det A[a] is called the leading principal minor of
A of order k.

A symmetric matrix A such that 7 Az > 0 for all nonzero vector z € R" is called positive
definite. It is well known that positive definite symmetric matrices are characterized by the property
that all their eigenvalues are positive and also by the property that all their leading principal minors
are positive. We say that a matrix A = (a;;)1<i,j<n has unit diagonal if all its diagonal entries satisfy
a;; =1 for all i = 1,...,n. The superdiagonal entries of A are given by the entries a; ;4 for all
i =1,...,n — 1 and the subdiagonal entries are given by the entries a;;1; forall¢ =1,...,n — 1.
A is a tridiagonal matrix if all its entries are null up to its diagonal, superdiagonal and subdiagonal
entries, that is, a;; = 0 whenever |i — j| > 1.

As in [18], we shall consider by simplicity that a covariance matrix is a positive definite
symmetric matrix. If, in addition, it has unit diagonal, then it is a correlation matrix. Since a
positive definite matrix has all its principal minors positive, a correlation matrix R = (p;;)i<i j<n
satisfies that, for any i # j, 0 < det R[i,j] =1 — p}; and so |p;;| < 1. Empirical evidence (cf.
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SCHOENMAKERS-COFFEY MATRICES 3

[24, 25, 26, 27, 28, 29]) suggests that correlations p;; of interest rates satisfy the following
properties:

PO p;; > 0 for all 7, j,
P1 {p;;} is strictly increasing in ¢ and strictly decreasing in j when ¢ < j.

By symmetry of R, P1 implies a corresponding property when ¢ > j. Property PO implies that
interest rates at different maturities are positively correlated and P1 implies that the correlation
coefficients decrease when the distance between the indices increases. The strict increase of
superdiagonal entries is another property suggested by the empirical evidence and that will be also
considered:

P2 {p; i+1} is strictly increasing in 4,which implies by symmetry of R a corresponding property
for the subdiagonal entries.

A Green matrix G = (g;j)1<i,j<n is @ symmetric matrix such that, for each i < j, g;; := u,v;,
where all u;, v; are real numbers different from zero. We say that G is associated to {u; }1<i<, and
{Ui}lgign-

The following result, which corresponds to (6) of [28] (see also [4, 3, 9, 14]) provides the inverse
of a Green matrix.

Theorem 1
Let G be the n x n Green matrix corresponding to the sequences (u;)1<i<n and (v;)1<;<n. Then,
its inverse C = G~' = (¢;j)1<i,j<n is the tridiagonal matrix given by:

U2
C11 = )
Ul(U2U1 - U1U2)
_ Ui+1Vi—1 — Ui—1Vi4+1 —9 1
Ci; — ’ 1= 4, yn— 1,
(Uivifl - Uiflvi)(uiqtlui - uivi+1)
o Un—1
Cnn - )
Un (unvn—l - un—lvn)
1 .
Ci+1,i:Ci,i+1:— ’L:L...,Tlfl.

)
Ui Vi41 — U415

The following class of correlation matrices with important financial applications was introduced
by Schoenmakers and Coffey (see [29]). A matrix A = (a;;)1<4,j<n is called a Schoenmakers-Coffey
matrix associated to parameters {b; }1<;<p if

s = mil’l{bi,b]‘}
A max{bi,bj}’

where

PO’ {b; }1<i<n is positive,
P1’ {b; }1<i<n is strictly increasing,
P2’ {bfﬁ}léién—l is strictly increasing, i.e. {b;} is strictly log-concave.

Taking w; := b; and v; := bi for all ¢, we can observe that a Schoenmakers-Coffey matrix is a
Green matrix, with g;; = b; /b; wheni < j, g;; = b;/b; when ¢ > j and g;; = 1 wheni = j. Observe
that PO’, P1° and P2’ imply properties PO, P1 and P2, respectively. Sometimes, in order to get a more
flexible correlation structure, requiring P2 is not convenient. So, following [18], we can consider a
slightly more general class of matrices A = (a;;j)1<i,j<n (Which we call extended Schoenmakers-
Coffey matrices associated to parameters {b; }1<;<,) by requiring that a;; satisfies

min{|b;], |b;[}

7 1
max{ b, o]} M

A5 = 51gn(blbj)
for all ¢, j and, in addition:
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4 J. DELGADO ET AL.

P1” {|b;|}1<i<n is strictly increasing,

that is, without requiring PO’ and P2’ and slightly weakening P1°.

Finally, in order to consider positive matrices, we shall define an intermediate class of matrices
between Schoenmakers-Coffey matrices and extended Schoenmakers-Coffey matrices given by the
positive extended Schoenmakers-Coffey matrices, so that A > 0 (i.e., a;; > 0 for all ¢, j). That
is, A = (a;j)1<i,j<n 18 a positive extended Schoenmakers-Coffey matrix associated to parameters
{bi}1<i<n if P1” holds, a;; satisfies (1) for all ¢, j and the following property holds

PO” {b;}1<i<n with the same strict sign.

Observe that PO” and P1” imply that either 0 < by < --- < b, or b, < --- < by <0 and then (1)
becomes a;; = b;/b; when 7 < j. Hence a positive extended Schoenmakers-Coffey matrix is also
a Green matrix. Taking into account also the symmetry of a Schoenmakers-Coffey matrix, we also

have
w. = i bi/by _ 1/a1i
i bj bj/bl 1/a1j.
A particular case of Schoenmakers-Coffey matrices is provided by the known Lehmer matrices
A = (a;j)1<i,j<n» which are defined by

ild, ifj >,
aij{ /3 j

)

/i, if j < i.

These matrices have been considered, for example, by N.J. Higham in [12] and [13]: the version 3.0
of the Test Matrix Toolbox for MATLAB 4.2 also includes Lehmer matrices. In the current versions
of MATLAB “gallery(’lehmer’,n)” returns the Lehmer matrix of order n.

From now on, we shall denote by {u;}1<i<, the parameters associated to a positive extended
Schoenmakers-Coffey matrix A = (a;j)1<;,j<n.Then the (7, j) entry of A is given by

a;; = %, i< (3)

Let us observe that, by (2), given a positive extended Schoenmakers-Coffey matrix A =
(@ij)1<i,j<n, it can be associated to the following particular parameters {u;}1<;<, given by

u; =1, ’uj:aT»’ j=2,...,n. @)
J

In order to guarantee that positive extended Schoenmakers-Coffey matrices are positive definite,
and so correlation matrices, we have to recall some concepts of Total Positivity theory. Le us recall
that a matrix is fotally positive if all its minors are nonnegative and it is strictly totally positive if
they are positive (see [14, 23]).

The following result is derived from Corollary 3.8 of [1].

Lemma 1
A nonsingular totally positive matrix has all its principal minors positive. Therefore, a nonsingular
symmetric totally positive matrix is positive definite.

A totally positive matrix A is oscillatory if a certain power AP becomes strictly totally positive,
and they are characterized (see Theorem 4.2 of [1]) in the following way.

Proposition 1
A matrix A is oscillatory if and only if it is a nonsingular totally positive matrix with all its
superdiagonal and subdiagonal entries are positive.

For nonsingular Green matrices, total positivity implies oscillatoriness, as the following result
shows.
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SCHOENMAKERS-COFFEY MATRICES 5

Proposition 2
Let G = (g:5)1<i,j<n be a Green matrix associated to {u; }1<;<n and {v; }1<;<,. Then the following
properties are equivalent:

(1) G is totally positive and nonsingular.
(11) {ui}lgign, {’Ui}1§i§n have the same sign (1e U;Vj > 0, for all 1 < i,j < n) and {ui/vi} is
strictly increasing.
(iii) G is oscillatory.

Proof
(i) == (ii1). By ¢) of p. 79 of [9], G is totally positive if and only if

d<cZ<c<c (5)

and the rank of G coincides with one plus the number of strict signs in (2.4). Therefore (i) implies
(ii).

(i1) == (iii). Again by ¢) of p. 79 of [9], G is totally positive and nonsingular. Since g; ;41 =
UVi1 = gi+1, foralli=1,2,...,n — 1, we deduce from the fact that {u; }1<;<n, {vi}1<i<n are
nonzero with the same sign and from Proposition 1 that G is oscillatory.

(iii)) = (i). It holds because, by Proposition 1, an oscillatory matrix is totally positive and
nonsingular. O

The previous result characterizes Green matrices that are oscillatory or nonsingular totally
positive matrices. Analogously, one could try to characterize Green matrices that are strictly totally
positive matrices. But these properties are never simultaneously satisfied because, given a Green
matrix G, we can find null minors for any ¢, j with ¢ < j:

det G[Z,’L + 1‘],] + 1] = U VjUi41Vi41 — UV 1 VU1 = 0,

which shows that G is not strictly totally positive.
The following result is proved in Corollary 4 of of [18].

Theorem 2
A positive extended Schoenmakers-Coffey matrix is oscillatory.

Since a positive extended Schoenmakers-Coffey matrix is symmetric and, by Theorem 2 and
Proposition 1 it is totally positive and nonsingular, we deduce from Lemma 1 that these matrices
are positive definite and so correlation matrices. Another consequence of Theorem 2 is that all
their eigenvalues are positive and different (see Theorem 6.5 of [1]) and that the number of
variation of signs in the consecutive components of the eigenvectors corresponding to their kth
greater eigenvalue is k — 1, kK = 1,... n. This last property for the cases k = 1,2, 3 corresponds
to properties mentioned in Corollary 4 of [18] as level (also called shift in [25] and [26]), slope
and curvature, respectively. These oscillations of the first three eigenvectors can give important
information in financial problems (see [18, 25, 26, 27]).

We now introduce the last definitions of this section. Let us recall that a square matrix whose off-
diagonal entries are all nonpositive is called a Z-matrix and that nonsingular Z-matrix A is called an
M -matrix if A= > 0. M-matrices present important applications, including their application to the
Leontief’s input-output model, which is an outstanding example of the importance of mathematical
modelling in economics (see [22], [2]).

By Theorem 2, a positive extended Schoenmakers-Coffey matrix is oscillatory and so its first
three eigenvectors satisfy level, slope and curvature, as commented above. The following result
presents several characterizations of these matrices, which are also correlation matrices satisfying
PO and P1. As a consequence, we also characterize nonnegative Green matrices that are nonsingular
totally positive and have unit diagonal.
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Theorem 3
Let G = (gij)1<i,j<n be a Green matrix with unit diagonal associated to {u;}1<i<n, {¥i}1<i<n.
Then the following properties are equivalent:

(i) G'is totally positive and nonsingular.

(i1) @ is oscillatory.
(iii) G is a positive extended Schoenmakers-Coffey matrix associated to parameters {u; }1<;<n.
(iv) G is a correlation matrix satisfying PO and P1.

(v) G~!is a tridiagonal M-matrix

Proof

(i) = (ii). It is a consequence of Proposition 2.

(i) = (iii). If G is oscillatory, then G is totally positive and nonsingular by Proposition 1. So,
by Lemma 1, all principal minors of G are positive and, since it is symmetric, it is positive definite.
Therefore G is a correlation matrix.

Since G is a Green matrix, for each i < j, g;; = u;v; = g;;, where all u;,v; are real numbers
different from zero. Thus, g;; # 0 for all ¢ # j and, since G is oscillatory, g;; > 0 for all i, j.
Since g;; = 1 for all i = 1,...,n, we also have that v; = 1/u;. Let us denote by b; := u; for all
i=1,...,n,and so 0 < g;; = b;/b; = g,; for all i < j and PO” holds. Observe that the sequence
{uwi/vit1<i<n becomes {b?}1<i<n. By Proposition 2, {b?}1<;<, is strictly increasing and hence
{]bi| }1<i<n is also strictly increasing and P1” and (iii) holds.

(iii)) = (iv). It holds because, by Proposition 1, an oscillatory matrix is totally positive and
nonsingular.

(iv) = (v). Since G is a correlation matrix, it is positive definite symmetric, and so G lis
also positive definite symmetric. Since G is a Green matrix, by Theorem 1, G~ is tridiagonal, and
its subdiagonal and superdiagonal entries entries have negative sign. In fact, using the notations
of (ii) = (iii), Theorem 1 shows that that the (i — 1,i) entry of G™! (i = 2,...,n) is given by
((bi/biy1) — (biv1/b;)) "1, which is negative because PO and P1 imply that {b?}1<;<,, is strictly
increasing. In conclusion, G~ is a symmetric Z-matrix positive definite, and so it is a Z-matrix
with all its principal minors positive. Then, by Theorem (2.3) of Chapter 6 of [3], it is a nonsingular
M -matrix and (v) holds.

(v) = (i). If G~ is a tridiagonal M -matrix, then it is known (see Theorem 2.2 of [21]) that the
nonsingular matrix G is totally positive. O

A matrix A = (a;;)1<i,j<n is called strictly diagonally dominant if [a;;| > >, |as;|, for each
1 =1,...,n. Taking into account the well known fact that an strictly diagonally dominant Z-matrix
is an M-matrix (cf. Theorem (2.3) of Chapter 6 of [2]), we can derive from Theorem 3 the following
simple condition for a Green matrix G to be a positive extended Schoenmakers-Coffey matrix: it is
sufficient that G~ is a tridiagonal strictly diagonally dominant Z-matrix.

If we replace in Theorem 3 the hypothesis that G = (g;j)1<s j<n has unit diagonal by its
nonnegativity, then we can also derive an analogous characterization by using a decomposition
of G, as the following result shows.

Corollary 1
Let G = (gi;)1<i,j<n be a nonnegative Green matrix. Then G can be written as

G =DCD, (6)
where D = diag(,/g;;)7—; and C = (¢ij)1<ij<n With ¢;; = \/97917”\'/@ for all ,j. Moreover, the

following properties are equivalent:

(i) G is totally positive and nonsingular.

(ii) G is oscillatory.
(iii) C'is a positive extended Schoenmakers-Coffey matrix.
(iv) C is a correlation matrix satisfying PO and P1.
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(v) G~!is a tridiagonal M-matrix

Proof

Observe that, if G is a Green matrix, then it is associated to nonzero numbers {u; }1<i<n, {Vi }1<i<n
and g¢;; = u;v; # 0 for all 4. Since G is nonnegative, g;; > 0 for all i and we can write (0)
with D a positive diagonal matrix (i.e., with positive diagonal entries). Taking into account that
nonsingularity, total positivity, oscillatoriness, tridiagonality or being a nonsingular M -matrix are
preserved under multiplication by positive diagonal matrices, the equivalences of (i), (ii), (iii), (iv)
and (v) follow from Theorem 3. O

3. BIDIAGONAL DECOMPOSITION OF THE CONVERSION OF POSITIVE EXTENDED
SCHOENMAKERS-COFFEY MATRICES

As shown in Theorem 3, a positive extended Schoenmakers-Coffey matrix A is nonsingular totally
positive. Then it satisfies a unique bidiagonal decomposition, denoted by BD(A) in [16]. In this
last paper, assuming that the parameters of BD(A) are known with high relative accuracy (HRA),
Koev presented algorithms for computing the eigenvalues, singular values and the inverse of the
matrix A with HRA, as well as the solution of linear systems Az = b with the components of b
satisfying a chessboard pattern of alternating signs with HRA. In [17] we can find a software library,
called TNTool, containing an implementation of the previous algorithms for Matlab and Octave. The
corresponding functions are called TNEigenvalues, TNSingularValues, TNSolve and
TNJInverse. They require as input argument the parameters of the bidiagonal decomposition
BD(A) of the matrix A. The function TNSolve also needs a second argument, the vector of
independent coefficients b of the linear system Az = b to be solved. Observe that TNJInverse
provides the bidiagonal decomposition of C' = JA~'.J, where J = diag(((—1)")!"2;'), and so we
compute A~ = JC.J to HRA. In conclusion, if we get the bidiagonal decomposition of a positive
extended Schoenmakers-Coffey matrix to HRA, then we would solve the previous algebraic
problems to HRA using the software library of [17].

In this section, we provide a fast algorithm of O(n) elementary operations to derive the bidiagonal
decomposition of the conversion of an n x n positive extended Schoenmakers-Coffey matrix A to
HRA, assuming that we know the parameters {u; }1<;<, associated to the matrix A to HRA.

Let us first recall the mentioned result on the bidiagonal decomposition of a nonsingular totally
positive matrix A (see Theorem 4.1 of [11]).

Theorem 4
Let A be a nonsingular n x n totally positive matrix. Then A admits a decomposition of the form

A=F,_1---Fi1DGy -Gy, @)

where F; and G;, i € {1,...,n — 1}, are the lower and upper triangular nonnegative bidiagonal
matrices given by

F;, = o1 , GI = I ; ®)

Mp,n—i 1 Mp,n—i 1

and D a diagonal matrix diag(p11, - - - , Pnn ) With positive diagonal entries. If, in addition, the entries
mMij, ﬁlij satisfy

ml-j:0:>mhj Vh>i
and

ﬁzij:Oémik Vk>j,

then the decomposition (7) is unique.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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Following [16], we will denote the unique bidiagonal decomposition (7) of a matrix A by
BD(A). In Theorem 4.1 of [11] it was also shown that m;;, m;;, and p;; are the multipliers and the
diagonal pivots of an elimination procedure called Neville elimination. Roughly speaking, Neville
elimination is a procedure to create zeros in a matrix by means of adding to a given row a suitable
multiple of the previous one (see [10]).

The following result provides the LD LT -factorization of the inverse of a positive extended
Schoenmakers-Coffey matrix, which will be used later to derive the mentioned bidiagonal
decomposition of a positive extended Schoenmakers-Coffey matrix.

Theorem 5
Let G be the n x n positive extended Schoenmakers-Coffey matrix associated to (u;)1<i<n. Then
its inverse G~! can be decomposed as:

G '=ED'ET, )
where
1
far 1
E = 1
fiie1 1
fiv1: 1
fn,nfl 1
and D! = diag(g11, - - -, gnn), With
1
2
i = Uy > 0), 10)
g 1 (i1 — wq) (Uig1 + uy) (>0) (
Uy
fivr5=— (<0), (11)
i+1

fori=1,...,n—1,and g,, = 1.

Proof

By Theorem 3, G~ ! is a tridiagonal nonsingular M -matrix and so it has positive leading principal
minors (cf. Theorem (2.3) of Chapter 6 of [2]). Therefore we can perform its Gaussian elimination
without row or column exchanges and it has an L DU -factorization, whose lower triangular matrix
with unit diagonal is denoted by E and whose diagonal matrix is denoted by D~*. We will also
denote by f;; the multipliers and by g;; the diagonal pivots of the Gaussian elimination of the matrix
G~!. Then, taking into account that G~ is symmetric and the uniqueness of the L DU-factorization
we have that the upper triangular matrix with unit diagonal of the L DU -factorization of G~ is given

by ET. Now we only have to determine the multipliers fo,. . ., fn,n—1 and the pivots g;;. Gaussian
elimination of the tridiagonal matrix C' = G~ consists of n — 1 successive steps, resulting in a
sequence of matrices CV) = C,C(® ... C™) The matrix C*+Y is obtained from C') making

zero the entry (i + 1,4) by adding an adequate multiple of the ith row to the (¢ + 1)th row. So let
us prove that the pivots and multipliers of the procedure are given by (10) and (11), respectively, by
inductiononi =1,...,n — 1. For ¢ = 1, first we have by Theorem 1 and taking into account by (3)
that v; = 1/u;, that

u2 2 1

(1)
= C == =u
g11 11 Ul(%—%) Q(UQ—U1)(UQ+U1)a

that is, formula (10) for ¢ = 1. Second, applying a first step of Gaussian elimination we have

1
(1) (1) T
for = Co1 _ Co1 _ W __Wu
21 — (1) - gll - uQ% - UQ 9
€11 2 (uz—u1)(ug+ui)
Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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that is, formula (11) for 4 = 1. Now let us assume that formulas (10) and (11) hold for some
ke {l,...,n —2} and then let us prove them for k + 1. We have by the tridiagonal structure of
G~ that

_ (k1) (k) (k)  _ (D (1)
GrA1,h4+1 = Cpi1 ki1 = Chpt o1 — JhALkCh o1 = Gt b1 — JR+1kCh kg -

By the induction hypothesis and Theorem 1 we have

Uk+2 _ _ug

_ Uk Uk 42 Uk 1
Jk+1,k+1 = + U Uk+1
Uk+1l _ _ug Uk+2 _ Uk+1 Uk+1 Y1 uk
Uk Ukt1 Ukt1 Ukt +
1

2
e (upt2 — Urg1) (Ukgo + upg1)’

that is, formula (10) for ¢« = k + 1. Now, applying the (k + 1)th step of Gaussian elimination, we
get

1
ARt D ISy
f _ Ck+2,k+1 _ “k42,k+1 Ui Upg1 Ukl
k+2,k+1 — (k+1) - - "9 1 - )
Cht1,k+1 JrALh+1 Uo Gy~ (2 unsn) Uk+2

that is, formula (11) for ¢ = k£ + 1 and the induction holds. Finally, we have for the last pivot of
Gaussian elimination

Inn = CEJ;;) = C»E;T;;l) - fn,n—lc(”_l) = 0972 - fn,n—lc(l)

n—1,n n—1n"
By Theorem | and formula (11) for : = n — 1, we have
1
Un— n— 1
Gnn = n—1 + u 1 -1

1 ( Up un—l) Unp, (unfl __Up )

Un Unp—1 Un Un Un—1
Finally, the signs in (10) and (11) follow from PO and P1”. O

Given a matrix A = (a;;)1<i j<n, We define the conversion matrix of A as A# = (af;)lgmgn =
(@nt1—i,n+1—5)1<i,j<n, Which can be written as A# = PAP where P is obtained from the identity
matrix by reversing the order of its rows. Since G = PG# P, let us analyze the corresponding
algebraic problems mentioned above for G in terms of G#. Observe that, since positive extended
Schoenmakers-Coffey matrices are symmetric, their singular values coincide with their eigenvalues.

¢ Eigenvalues of G. Since P~! = P, the eigenvalues of the matrix G coincide with
those of G#. So, using the bidiagonal decomposition of G# to HRA and the function
TNEigenvalues of TNTool, we can derive the eigenvalues of G with HRA.

o Solution of a system of linear equations Gz = b such that b has a chessboard sign pattern.
Taking into account that b = G = PG# Px and that P~! = P, we conclude that the system
is equivalent to G*y = Pb where y = Px. Observe that, if b has a chessboard sign pattern,
then Pb also has a chessboard sign pattern. Then, using the bidiagonal decomposition
BD(G#) to HRA with the function TNSolve, we get y = Px to HRA. So, from Py, which
only reverses the order of the entries of y, we get x to HRA.

o Inverse of the matrix G, G~'. By P~! = P and G = PG¥ P, we derive G~ = P(G#)~'P.
So, using BD(G*#) to HRA with the functionTNJInverse we get BD(J(G#)~1.J) to HRA.
Thus, with the function TNExpand of [17], this last bidiagonal decomposition and the usual
matrix product we derive G~! to HRA.

In conclusion, if we obtain the bidiagonal decomposition of G# to HRA we will be able to solve
the previous algebraic problems to HRA for G.

We define the matrix F;(«) as the n x n matrix differing from the identity matrix only in its
(i,7 — 1) entry, which is « instead of 0.
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Theorem 6
Let G be the n x n positive extended Schoenmakers-Coffey matrix associated to (u;)1<;<r. Then,
G7 can be decomposed as:

G#* =F, \F,_»-B,DFI...FT ,FT | (12)

where Fl = E¢+1(mi+171) fori = 1, cee,n— land D = diag(pn, . ,pnn), with

('I.Ll'+1 — ui)(ui“ + ui)( 1

Prntl—intl—i = 3 = — >0), (13)
Uit Gii
Y
Mmip11 = ———(= = fat1-in—i > 0), (14)
Un41—i
fori=1,...,n—1, and p1; = 1. Moreover, if the parameters (u;)1<;<, are known to HRA , then

the computation of (13) and (14) (and so, of the BD(G*) given by (12)) can be performed to HRA
and with 2n — 1 quotients and n — 1 additions, subtractions and products.

Proof
By Theorem 5, G='=ED'ET with E = Es(fo1)E5(f32)  En(fan—1) and D7!=
diag(g11,- - -, gnn), Where the f;11 ;s and the g;;’s are defined by (10) and (11). Then we derive

G=(EY'DE™!
= E3 (—fo1)ET (= f32) - EX (= frn—1)DEp(= fan—1) - - - B3(— f32) B2 (— fo1).

Then, taking the conversion in the previous expression

G# = (B3 (—fa))* - (EX (= fam—1)* D (En (= famn-1))7 - (B2~ f1))*
= En(—f21)En1(=fs2) - B2(— fan—1) D¥ ES (= fan—1) - Ep_1 (= f32) EL (— fa1).

Denoting miy11 = _fn+17i,n7i = % and Fz = Ei+1(mi+171) for i = ]., e, = ]., (12)
holds and, by Theorem 4, it gives BD(G#). Finally, (13) and (14) can be computed from the
sequence (u;)1<i<n to HRA because the only subtractions use the initial parameters of the sequence

and their signs are given by (10) and (11). O

Observe that the previous procedure to derive
BD(A*)

to HRA has been provided assuming that we know the parameters (u;)1<;<pnassociated to the
positive extended Schoenmakers-Coffey matrix A to HRA. Under this assumption, we can also
know A to HRA by (3) because it only uses quotients. Conversely, if we know A to HRA, then we
can also obtain associated parameters (u;)1<;<n to HRA by (4), and so we can perform the previous
mentioned algebraic problems for A to HRA.

4. NUMERICAL TESTS

By using the algorithms mentioned in the previous section, the eigenvalues (which coincide with
the singular values), the inverses and the solutions of some linear systems with positive extended
Schoenmakers-Coffey matrices can be computed to HRA. Now we will illustrate the results
presented in Section 3 with numerical examples. In our numerical tests we have considered the
positive extended Schoenmakers-Coffey matrices of orders n = 100,200, ..., 1000 associated to
the parameters (1/3)"_,, which will be denoted by G109, G200, - - - , G1000, respectively.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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4.1. Eigenvalues

First we have computed the eigenvalues of G1qo, - .., G1000 using Mathematica with a 100 digits
precision. In addition, we have also computed approximations to the eigenvalues of those matrices
with the usual Matlab command eig and with TNEigenvalues of software library [17] using
the bidiagonal decomposition to HRA of (G,,)#, n = 100,...,1000, given in Theorem 6. Then
we have taken the approximations of the lowest eigenvalue of each of the matrices and we have
computed the corresponding relative errors considering eigenvalues obtained by Mathematica as
the exact eigenvalues.

In Figure 1, we can see the relative errors of the approximation to the lowest eigenvalue of
each matrix. We can observe that the bidiagonal decomposition to HRA of the conversion of
(G100)7, ..., (G1000)™ joint with Plamen Koev software library provide more accurate results than
these obtained by using e ig Matlab command.

10 E
4
107 HRA LT . 1:
----- eig .- N s 3
__—‘ A 4 ]
12 .- T \\ l' i
_ 10 "¢ .- I E
e ” N’ E
5 0 Fe-e_ L7 1
-13
2107} ,E
k) ]
2 ]
_14
10 ¢ E
_15 ]
10 /\/\/Y
~16
10

1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
n

Figure 1. Relative errors when computing the lowest eigenvalue of G109, G200, - - - ; G1000

4.2. Inverse of positive extended Schoenmakers-Coffey matrices

We have considered again G, G200, - - - , G1000- We have computed its inverse using Mathematica
with 100 digits precision. In addition, we have also computed approximations to the inverse with
the usual Matlab command inv and with TNJInverse using the bidiagonal decomposition of its
converses to HRA given in Theorem 6. We have calculated the componentwise relative errors for
both approximations considering the inverse obtained with Mathematica as exact. The relative error
for the entry with the greatest error can be seen in Table 1.

n HRA
100 | 2.7970963e-14
200 | 3.6618939¢-14
300 | 9.8424379e-14
400 | 1.2602160e-13
500 | 1.4459874e-13
600 | 1.5218884e-13
700 | 1.5563051e-13
800 | 1.6575193e-13
900 | 1.9978553e-13
1000 | 2.1002671e-13

Table I. Maximum relative error when computing the inverse of G,

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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As we know, the inverse of a positive extended Schoenmakers-Coffey is a tridiagonal matrix, but
when this inverse is computed by the usual inv Matlab command, the approximation of the inverse
obtained have all its entries different from zero. So, componentwise relative errors cannot even be
computed.

4.3. Solution of a linear system of equations

We have considered the system of linear equations
G000z = b,

where b has a alternating pattern sign and the absolute value of each of its components have
been randomly generated as an intenger in the interval [1,1000]. Then we have computed an
approximation to the solution with Mathematica using 100 digits precision, and approximations
to this one with Matlab command \ and with TNSolve of the software library [17] using the
bidiagonal factorization of Gﬁ)oo to HRA given in Theorem 6. Then we have computed the relative
errors componentwise, its means an the maximum relative error. Table II shows the results obtained.
We can observe again that HRA methods outperform usual Matlab commands. This advantage joins
with the very low computational cost of the bidiagonal decomposition of the conversion of the
positive extended Schoenmakers-Coffey, as shown in Theorem 6.

Maximal relative error | Mean relative error
HRA 1.0834303e-13 2.3728132e-14
Matlab command \ 2.8056129¢-10 7.9525457e-12

Table II. Relative errors when solving system of linear equations G1ggpz = b
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