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Abstract

In [13], Hillar and Lim famously demonstrated that “multilinear (tensor) analogues of many

efficiently computable problems in numerical linear algebra are NP-hard”. Despite many recent

advancements, the state-of-the-art methods for computing such ‘tensor analogues’ still suffer

severely from the curse of dimensionality. In this paper we show that the Tucker core of a

tensor however, retains many properties of the original tensor, including the CP rank, the

border rank, the tensor Schatten quasi norms, and the Z-eigenvalues. When the core tensor is

smaller than the original tensor, this property leads to considerable computational advantages

as confirmed by our numerical experiments. In our analysis, we in fact work with a generalized

Tucker-like decomposition that can accommodate any full column-rank factor matrices.
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1 Introduction

A tensor is a multidimensional extension of matrices, which has recently attracted a surge of research

attention due to its wide applications in computer vision [39], psychometrics [12, 5], diffusion

magnetic resonance imaging [10, 3, 34], quantum entanglement problem [14] and tensor-structured

numerical methods for multi-dimensional PDEs [20, 19]. We refer the interested reader to the

surveys [23, 21] on these subjects.

To study the spectral theory of tensors, various notions of tensor decompositions, eigenvalues and

norms have been proposed. Unfortunately, unlike many of their matrix counter-parties, most tensor

problems are computationally intractable [13]. Therefore, the numerical algorithms that aim to

globally solve those problems are often time-consuming. For instance, the approach proposed in [8]

to compute all Z-eigenvalues of a tensor is based on the so-called SOS (sum of squares) approach,

which leads to a series of Semidefinite Programs with fast-growing sizes. Thus, it is naturally

desirable that the same computational task would be performed on a tensor with smaller size. In

this paper we establish that many of the aforementioned properties of a tensor carryover to its

Tucker core, which is typically much smaller. To start off, let us introduce an extended notion of

Tucker decomposition.

Definition 1. Consider an N -way tensor X ∈ C
I1×I2×···×IN . The equation

X = G ×1 A
(1) ×2 · · · ×N A(N) , JG;A(1), . . . ,A(N)K, (1)

is called a size-(J1, . . . , JN ) Tucker decomposition of X , and G ∈ C
J1×J2×···×JN is called a core

tensor associated with this decomposition, and A(n) ∈ C
In×Jn is the n-th factor matrix for n =

1, . . . , N , where ×n is the mode-n (matrix) product. Moreover, a Tucker decomposition is said to

be independent if each of the factor matrix has full column rank; a Tucker decomposition is said to

be orthonormal if each of the factor matrix has orthonormal columns.

Note that the conventional Tucker decomposition corresponds to the orthonormal Tucker decom-

position, which is also known as the higher-order SVD (HOSVD) in the literature. De Lathauwer,

De Moor and Vandewalle [26] proposed an algorithm to compute such a decomposition. In a se-

quel, the same authors soon later proposed the higher-order orthogonal iteration (HOOI) in [27] to

accommodate for inexact Tucker decomposition. In this paper, our analysis will be performed on

the above-defined general independent Tucker decomposition unless specified otherwise.

The CP decomposition of a tensor is another important notion of tensor-decomposition, which

leads to the definition of CP rank. The fact that the CP decomposition of core tensor is useful

to decompose the original tensor itself has already been observed (see [4] and Section 5.3 of [23]).

Consequently, the CP rank of a tensor equals that of its Tucker core follows from this observation.
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Moreover, De Lathauwer et al. [26] showed that the Frobenius norm remains invariant for a given

tensor and its core. However, those results are scattered in the literature, and often they are im-

plicit. In this paper, we aim to establish the equivalence between a tensor and its Tucker core in a

systematic fashion, including the CP rank and the Frobenius norm, and also other forms of tensor

ranks, Z-eigenvalues and tensor Schatten quasi norms. In addition to tensor decompositions, the

study of tensor eigenvalues became popular after the seminal papers of Qi [31] and Lim [28]. Fur-

thermore, recently the tensor nuclear norm was used by Yuan and Zhang [41] in tensor completion

to capture the low-rank structure; the regression bound obtained in [41] is better than that induced

by the mode-n matricization. Those properties allow us to propose the following scheme to com-

pute the rank, the norms and the eigenvalues of a tensor, as long as these properties are invariant

between the tensor and its Tucker core. As a first step, one computes Tucker decomposition of

a given tensor. Then, the computations are performed on the smaller Tucker core. Finally, the

computed quantity is transformed back to the original tensor. As we shall see later, the size of the

Tucker core may be no more than 2 for some structured tensors, regardless the size of the original

tensor. The savings on the computational time gained by following this scheme could be significant

when the size of the core is considerably smaller compared to the original tensor, which is the case

for many specific instances encountered in our numerical experiments.

The remainder of this paper is organized as follows. In the next section, we introduce the tensor

notations and operations that we shall use in this paper. Then we discuss the invariance of the tensor

ranks, the norms and the eigenvalues in Sections 3, 4 and 5 respectively. Section 6 discusses the

implications of the invariance properties, the advantages of size reduction, and an error estimation

of the new computational scheme. Finally, we apply our scheme to compute all the Z-eigenvalues

of symmetric tensors. Our numerical results show that our strategy leads to a significant reduction

in computational time on a set of testing instances.

2 Notations and preliminaries

Throughout this paper, we use the boldface lowercase letters, the capital letters, and the calligraphic

letters to denote vectors, matrices, and tensors, respectively. For example, a vector (always a column

vector unless otherwise stated) x, a matrix A, and a tensor X . We use ‖·‖ to denote the Euclidean

norm of the vectors. For a matrix A, σmax(A) and σmin(A) denote the largest and smallest singular

value of A, while ‖A‖2 denotes its spectral norm:

‖A‖2 = max
‖x‖=1

‖Ax‖ = σmax(A).

We use lowercase subscripts to denote its components; e.g. xi is the i-th entry of vector x, aij is the

(i, j)-th entry of matrix A, and xi1···in is the (i1, · · · , in)-th entry of n-th order tensor X . Moreover,
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we use the superscripts with bracket to refer a sequence of variables; e.g., a sequence of N matrices

is denoted by A(1),A(2), . . . ,A(N).

The mode-n (matrix) product denoted by “×n” of a tensor X ∈ C
I1×I2×···×IN and a matrix A ∈

C
J×In results in a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN such that

[X ×n A]i1···in−1jin+1···iN
=

In∑

in=1

xi1···in−1inin+1···iN · ajin .

In the meanwhile, for a given tensor X ∈ C
I1×I2×···×IN , the mode-n matricization denoted by X(n)

is a mapping from tensor to matrix. In particular, the (i1, i2, . . . , iN )-th entry of X corresponds to

the (in, j)-th entry of X(n), where

j = 1 +

N∑

k=1,k 6=n

(ik − 1)Jk, Jk =

k−1∏

m=1,m6=n

Im.

Some properties relating the mode-n product and mode-n matricization are summarized in the fol-

lowing proposition, which will be used later. Interested reader is referred to [1] for more information

on tensor multiplications.

Proposition 1. For any N -way tensor X ∈ C
I1×I2×···×IN and matrix U ∈ C

J×In, their mode-n

product satisfies

(X ×n U)(n) = UX(n).

Moreover, for any given matrices A ∈ C
Jm×Im, B ∈ C

Jl×Il, if m 6= l then we have

(X ×m A)×l B = (X ×l B)×m A;

if m = l and suppose the matrix multiplication is compatible, then we have

(X ×m A)×m B = X ×m (BA).

The outer product denoted by “◦” of two tensors X ∈ C
I1×I2×···×IN1 and Y ∈ C

IN1+1×···×IN1+N2 is

a tensor of size I1 × · · · × IN1+N2 such that

[X ◦Y ]i1···iN1+N2
= xi1···iN1

· yiN1+1···iN1+N2
.

In particular, X is a rank-1 tensor if it can be written as an outer products of vectors; e.g.

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The inner product of two tensors X ∈ C
I1×I2×···×IN and Y ∈ C

I1×I2×···×IN is denoted by

〈X ,Y〉 =

I1∑

i1=1

· · ·

IN∑

iN=1

xi1···iN · yi1···iN .
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For any tensor X ∈ C
I1×I2×···×IN , the Frobenius norm of tensor X is defined as

‖X ‖F ,
√

〈X ,X 〉.

More discussions on tensor operations can be found in [24]. The notion of tensor decomposition is

central to the study of tensors. Let us now formally introduce the so-called CP decomposition and

the CP rank, where ‘CP’ is a further abbreviation from CANDECOMP (canonical decomposition)

by Carroll and Chang [5] and PARAFAC (parallel factorization) by Harshman [12] in early 1970’s.

Definition 2. For an N -way tensor X ∈ C
I1×I2×···×IN , a CP decomposition is a representation of

X as a sum of r rank-1 tensors,

X =
r∑

t=1

a(1,t) ◦ · · · ◦ a(N,t),

where a(n,t) ∈ C
In. The CP rank of X , denoted by rankCP (X ), is the minimum integer r such that

a size-r CP decomposition is possible.

Another important notion of tensor decomposition is the so-called Tucker decomposition proposed

by Tucker [38], as introduced in Definition 1 (though in a slightly more general format). Likewise,

this decomposition also leads to another notion of tensor rank.

Definition 3. For an N -way tensor X ∈ C
I1×I2×···×IN , its Tucker Rank, denoted by rankT (X ), is

an N -dimensional vector

rankT (X ) = (rank(X(1)), . . . , rank(X(N))), (2)

where X(n) is the mode-n matricization of X for n = 1, . . . , N , and rank(·) denotes the regular

matrix rank.

In fact, many of the operations we have discussed about can be represented by Tucker decomposi-

tion. For example, a rank-one tensor

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) = J1;a(1),a(2), . . . ,a(N)K

where 1 is the scalar one; mode-n matrix product

X ×n A = JX ; II1 , . . . , IIn−1 ,A, IIn+1 , · · · , IIN K,

where Ik is the unit matrix of dimension k × k; the inner product of a tensor G and a symmetric

rank-one tensor (which defines a polynomial):

〈G,x ◦ · · · ◦ x︸ ︷︷ ︸
N

〉 = JG;xT, . . . ,xT

︸ ︷︷ ︸
N

K.
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The CP decomposition can also be viewed as a special Tucker decomposition with

X =

r∑

t=1

a(1,t) ◦ · · · ◦ a(N,t) = JI ;A(1), . . . ,A(N)K,

where A(n) = [a(n,1), . . . ,a(n,r)] for each n = 1, . . . , N , and I is an N -way unit tensor, with all zero

elements except the diagonal elements are ones.

3 The invariance of the tensor ranks

There are certain correspondence between the CP decomposition of a given tensor and that of its

orthonormal Tucker core [19, 4, 20, 23]. In particular, performing Tucker decomposition and further

CP decomposition on the Tucker core is called two-level rank decomposition in [20]. Approximating

the original tensor by the two-level decomposition is discussed in [22, 19]. Possible computational

savings gained by exploiting this relation were discussed in [37]. Moreover, as a direct consequence

of this correspondence, the CP rank of a tensor equals to that of its orthonormal Tucker core, which

is also known as the CANDELINC Theorem; see [6].1

In this section we aim to show that in fact several notions on the rank of a tensor carryover to that

of its independent Tucker core. Besides, we provide a unified treatment on the independent Tucker

decomposition in such a way that the technical results presented in this section will facilitate our

analysis in later discussions.

3.1 Invariance of the CP rank under independent Tucker decomposition

Let us start with the CP rank.

Theorem 2. For any given tensor X ∈ C
I1×I2×···×IN with independent Tucker decomposition

X = JG;X(1), . . . ,X(N)K, we have rankCP (X ) = rankCP (G).

Before proving Theorem 2, we shall first show the following lemma.

Lemma 3. For an N -way tensor X ∈ C
I1×I2×···×IN with independent Tucker decomposition

X = G ×1 A
(1) ×2 · · · ×N A(N), (3)

there exist B(1),B(2), . . . ,B(N) such that

G = X ×1 B
(1) ×2 · · · ×N B(N) and G ∈ C

R1×R2×···×RN .

1We would like to thank Nikos Sidiropoulos for his insightful comments and information on the topic in private

communications.
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Also, for any n = 1, 2, . . . , N , we have

G = G ×n A(n) ×n B(n), X = X ×n B(n) ×n A(n).

Proof: Since A(n) is a tall matrix (columns are linearly independent), A(n)HA(n) is invertible. By

letting

B(n) = (A(n)HA(n))−1A(n)H

we have B(n)A(n) = (A(n)HA(n))−1A(n)HA(n) = IIn . As a result,

G ×n A(n) ×n B(n) = G ×n (B(n)A(n)) = G ×n IRn = G.

Moreover, since X = G ×1 A
(1) ×2 · · · ×N A(N), applying ×1B

(1) ×2 · · · ×N B(N) on both sides of

(3) yields:

X ×1 B
(1) ×2 · · · ×N B(N) = G ×1 A

(1) ×2 · · · ×N A(N) ×1 B
(1) ×2 · · · ×N B(N)

= G ×1 (B
(1)A(1))×2 · · · ×N (B(N)A(N)) = G.

In a similar vein, applying ×nB
(n) ×n A(n) on both sides of (3) yields

X ×n B(n) ×n A(n) = G ×1 A
(1) ×2 · · · ×n A(n)B(n)A(n) · · · ×N A(N) = X .

�

Note that the above lemma leads to an exact independent Tucker decomposition of a given tensor

X . First, for each n one performs a mode-n matricization on X to get X(1), · · · ,X(N). Then, for

each mode-n one computes a matrix factorization such that X(n) = A(n)C(n) and A(n) has full

column rank. Finally, letting B(n) = A(n)
(
(A(n))HA(n)

)−1
, we have

(
X ×n (A(n))H ×n B(n)

)
(n)

=
(
X ×n

(
A(n)

(
(A(n))HA(n)

)−1
(A(n))H

))
(n)

= A(n)
(
(A(n))HA(n)

)−1
(A(n))HX(n)

= A(n)
(
(A(n))HA(n)

)−1
(A(n))HA(n)C(n)

= A(n)C(n) = X(n).

Moreover, due to the one-to-one correspondence between a tensor and its mode matricization we

conclude that X ×n (A
(n))H ×n B

(n) = X . Now, by letting G = X ×1 (A
(1))H ×2 · · · ×N (A(N))H ,

an exact independent Tucker decomposition JG;B(1), . . . ,B(N)K of X follows.

Lemma 4. For any N -way tensor

X =

r∑

t=1

a(1,t) ◦ a(2,t) ◦ · · · ◦ a(N,t)

assuming the multiplications are compatible we have

X ×n B =

r∑

t=1

a(1,t) ◦ · · · ◦ a(n−1,t) ◦ (Ba(n,t)) ◦ a(n+1,t) ◦ · · · ◦ a(N,t).
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Proof: Denote A(n) = [a(n,1), . . . ,a(n,r)]. We have X = JI;A(1), . . . ,A(N)K, and so

X ×n B = JI;A(1), . . . ,A(N)K ×n B

= JI;A(1), . . . ,A(n−1),BA(n),A(n+1), . . . ,A(N)K

=

r∑

t=1

a(1,t) ◦ · · · ◦ a(n−1,t) ◦
(
Ba(n,t)

)
◦ a(n+1,t) ◦ · · · ◦ a(N,t),

which completes the proof. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Suppose the core tensor G has a CP rank r associated with the decompo-

sition:

G =

r∑

t=1

b(1,t) ◦ b(2,t) ◦ · · · ◦ b(N,t).

Then Lemma 4 suggests that

X = G ×1 A
(1) ×2 · · · ×N A(N)

=

r∑

t=1

(
A(1)b(1,t)

)
◦ · · · ◦

(
A(N)b(N,t)

)
,

which is a valid rank-1 decomposition of X with r rank-1 terms, implying that rankCP (X ) ≤ r =

rankCP (G).

On the other hand, since the Tucker decomposition is independent, Lemma 3 holds and there exist

B(1),B(2), . . . ,B(N) such that

G = X ×1 B
(1) ×2 · · · ×N B(N).

Applying the same argument, we have rankCP (G) ≤ rankCP (X ). This completes the proof for

Theorem 2. �

Since an orthonormal Tucker decomposition is independent, as a direct consequence of above the-

orem, we conclude that if G is the core tensor of X under the orthonormal Tucker decomposition

then rankCP (X ) = rankCP (G).

3.2 Tensors with a symmetric structure

In this subsection, we establish similar results for the symmetric tensors. Formally speaking, a

tensor is symmetric if the length along all the directions are equal, and the elements are invariant

under any permutation of the indices, i.e.

xiσ(1)iσ(2)···iσ(N)
= xi1i2···iN

8



where σ(·) is any given permutation function of {1, 2, . . . , N}. Symmetric tensors are well studied;

see e.g. [7]. Parallel to the definitions in the preceding sections, we have:

Definition 4. For an N -way symmetric tensor X ∈ C
I×I×···×I , a symmetric CP decomposition

of size r is to represent X as follows

X =
r∑

t=1

a(t) ◦ · · · ◦ a(t).

The symmetric rank of X , denoted by rankS(X ), is the minimal integer r such that a size-r

symmetric CP decomposition exists.

Definition 5. For an N -way symmetric tensor X ∈ C
I×I×···×I , an exact Tucker decomposition

is called symmetric if all the factor matrices are identical; i.e., the Tucker decomposition is of the

form

X = JGs;X,X , . . . ,XK.

As before, a symmetric Tucker decomposition is said to be independent if the factor matrix has full

column rank; a symmetric Tucker decomposition is said to be orthonormal if the factor matrix has

orthonormal columns.

We remark that for an N -way symmetric tensor X ∈ C
I×I×···×I , its matricizations of all modes are

identical to each other, i.e., X (m) = X(n) for all m,n = 1, . . . , N . Based on this observation, an

independent symmetric Tucker decomposition of a given symmetric tensor X can be constructed

as follows. First, perform a symmetric matrix factorization such that X = AAH and A has full

column rank. Then, construct

G = X ×1 A
H ×2 · · · ×N AH ,

and B = A
(
AHA

)−1
. Following a similar argument for asymmetric tensors, it can be verified

that JG;B, . . . ,BK is an independent symmetric Tucker decomposition of X . Now we present the

invariance of symmetric CP rank.

Theorem 5. For any symmetric tensor X ∈ C
I×I×···×I and its independent symmetric decompo-

sition

X = JGs;X,X , . . . ,XK,

the core tensor Gs ∈ C
J×J×···×J is also symmetric, and rankS(G

s) = rankS(X ).

Proof: By Lemma 3 we have

Gs = X ×1 B ×2 · · · ×N B, (4)

9



where B = (XHX)−1XH ∈ C
J×I . Now we show that Gs is symmetric. For any (j1j2 . . . jN ) and

any permutation function σ(·) of {1, 2, . . . , N}, by definition of the mode product, we have

gsj1j2...jN =
I∑

i1,...,iN=1

xi1i2...iN · bi1j1bi2j2 · · · biN jN

=

I∑

i1,...,iN=1

xi1i2...iN · biσ(1)jσ(1)
biσ(2)jσ(2)

· · · biσ(N)jσ(N)

=

I∑

i1,...,iN=1

xiσ(1)iσ(2)...iσ(N)
· biσ(1)jσ(1)

biσ(2)jσ(2)
· · · biσ(N)jσ(N)

= gsjσ(1)jσ(2)···jσ(N)
,

where the third equality follows from the fact that X is symmetric.

Now that Gs is symmetric, we may assume its symmetric CP rank to be r, with the decomposition

Gs =
r∑

t=1

bt ◦ · · · ◦ bt︸ ︷︷ ︸
N

.

Invoking Lemma 4 yields

X = Gs ×1 X ×2 · · · ×N X

=

r∑

t=1

(
Xbt

)
◦ · · · ◦

(
Xbt

)
︸ ︷︷ ︸

N

,

which is a symmetric rank-1 decomposition of X . This implies that rankS(X ) ≤ rankS(G
s). Noting

that we can also decompose Gs in the form of (4), by the same argument we have rankS(G
s) ≤

rankS(X ), leading to rankS(X ) = rankS(G
s). �

4 Invariance of the tensor norms and the border rank

In this section, we study the invariance properties of various tensor norms and the so-called border

rank. These relationships enable us to measure the error between the tensor and an approximative

decomposition.

4.1 Invariance of tensor norms under independent Tucker decomposition

We first consider the tensor Frobenius norm.

10



Theorem 6. For any given tensor X ∈ C
I1×I2×···×IN with independent Tucker decomposition

X = JG;X(1), . . . ,X(N)K, we have that

α‖G‖F ≤ ‖X ‖F ≤ β‖G‖F , (5)

where β = ‖X(1)‖2‖X
(2)‖2 · · · ‖X

(N)‖2 and α = β/(
∏N

n=1 κ(X
(n))) with κ(X(n)) being the condi-

tion number of the matrix X(n) for all n.

The following lemma presents a bound on the Frobenius norm of mode-n matrix multiplication,

which leads to the proof of Theorem 6.

Lemma 7. For any given tensor X ∈ C
I1×I2×···×IN and matrix A ∈ C

Jn×In, we have

‖X ×n A‖F ≤ ‖A‖2‖X ‖F .

Proof: The claimed inequality is equivalent to

‖AX(n)‖
2
F ≤ ‖A‖22‖X(n)‖

2
F .

To show this, let X(n,k) be the k-th column of X(n). We have

‖AX(n)‖
2
F =

∑

k

‖AX(n,k)‖
2
F

≤
∑

k

‖A‖22‖X(n,k)‖
2
F

= ‖A‖22

(
∑

k

‖X(n,k)‖
2
F

)

= ‖A‖22‖X(n)‖
2
F ,

where the inequality is due to the consistency of the matrix spectral norm and the Euclidean vector

norm. �

Proof of Theorem 6: Since X = JG;X(1), . . . ,X(N)K, by Lemma 7,

‖X ‖F = ‖JG;X(1), . . . ,X(N)K‖F ≤ ‖G‖F ‖X
(1)‖2‖X

(2)‖2 · · · ‖X
(N)‖2.

Thus, we may simply let β = ‖X(1)‖2‖X
(2)‖2 . . . ‖X

(N)‖2 and obtain the upper bound in (5). On

the other hand, by Lemma 3 it follows that

G = JX ;Y (1), . . . ,Y (N)K,

with Y (n) =
(
(X(n))HX(n)

)−1
(X(n))H . Therefore, from Lemma 7 one has

‖G‖F = ‖JX ;Y (1), . . . ,Y (N)K‖F ≤ ‖X ‖F ‖Y
(1)‖2‖Y

(2)‖2 · · · ‖Y
(N)‖2.
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Now we let α = 1

‖Y
(1)

‖2‖Y
(2)

‖2···‖Y
(N)

‖2
, and it remains to prove β/α =

∏N
n=1 κ(X

(n)). To this

end, for any n, suppose the matrix X(n) has SVD: X(n) = U (n)Σ(V (n))H . Then

Y (n) =
(
(X(n))HX(n)

)−1
(X(n))H

=
(
V (n)Σ2(V (n))H

)−1
V (n)Σ(U (n))H

= V (n)Σ−2(V (n))HV (n)Σ(U (n))H

= V (n)Σ−1(U (n))H .

Therefore, ‖Y (n)‖2 =
1

σmin(X
(n)

)
for all n and α =

∏N
n=1 σmin(X

(n)). Consequently,

β

α
=

∏N
n=1 ‖(X

(n))‖2∏N
n=1 σmin(X

(n))
=

∏N
n=1 σmax(X

(n))
∏N

n=1 σmin(X
(n))

=

N∏

n=1

κ(X(n)).

�

Note that when β = α, the estimation (5) on the Frobenius norm of X becomes exact. In general,

the ratio β/α measures the quality of approximating the Frobenius norm of X by that of αG. When

the factor matrix is orthonormal, the associated condition number is 1, and then the Frobenius

norm of the tensor and its Tucker core are equal.

Corollary 8. For an orthonormal Tucker decomposition, its factor matrix X(n) is orthonormal.

Thus ‖X(n)‖2 = ‖(X(n))H‖2 = 1 for n = 1, 2, ..., N , and we have ‖X ‖F = ‖G‖F .

Remark that the above result was shown by De Lathauwer et al. as Property 8 in [26].

4.2 The quasi-p norm and the tensor nuclear norm

We proceed to other tensor norms in this subsection.

Definition 6. For any tensor X ∈ C
I1×I2×···×IN , the tensor p-quasi norm for 0 < p ≤ 1 2 of X is

defined as

‖X ‖p , inf

{( r∑

s=1

|λs|
p

)1/p

: X =
r∑

s=1

λsx
(1)
s ◦ x(2)

s ◦ . . .x(N)
s ,

‖x(n)
s ‖ = 1, ∀s = 1, 2, . . . , r, ∀n = 1, 2, . . . , N

}
.

(6)

2In a private conversation, Lek-Heng Lim pointed out to us that ‖X‖p trivially equals to zero for any tensor X

for any p > 1.
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When N = 2, it reduces to the Schatten p-quasi norm for matrix, which plays an important role

in low-rank matrix optimization [16]. When p = 1, the above definition corresponds to the tensor

nuclear norm, which was originally proposed in Grothendieck [11] and Schatten [35]. Recently, this

tensor nuclear norm was applied in Yuan and Zhang [41] to analyze the statistical properties of

Tensor completion problem. Friedland and Lim [9] showed that computing the nuclear norm of a

given tensor is NP-hard. Interestingly, for the quasi-p norm, similar bounds between a given tensor

and its core tensor hold true.

Theorem 9. For any given tensor X ∈ C
I1×I2×···×IN with independent Tucker decomposition

X = JG;X(1), . . . ,X(N)K, we have

α‖G‖p ≤ ‖X ‖p ≤ β‖G‖p,

where β = ‖X(1)‖2‖X
(2)‖2 . . . ‖X

(N)‖2 and α = β/(
∏N

n=1 κ(X
(n))) with κ(X(n)) being the condi-

tion number of matrix X(n) for all n.

Proof: For any ǫ > 0 find CP decomposition of tensor G =
∑r

s=1 λsg
(1)
s ◦ g

(2)
s ◦ . . . g

(N)
s with

‖g
(n)
s ‖ = 1 satisfying ‖G‖p ≥ (

∑r
s=1 |λs|

p)1/p − ǫ, denote the index set S = {1 ≤ s ≤ r | X(i)g
(i)
s =

0 for some i, 1 ≤ i ≤ N}. Then from Lemma 4, we have

X =

r∑

s=1

λsg
(1)
s ◦ g(2)

s ◦ . . . g(N)
s ×1 X

(1) ×2 X
(2) ×3 · · · ×N X(N)

=

r∑

s=1

λs(X
(1)g(1)

s ) ◦ (X(2)g(2)
s ) ◦ · · · ◦ (X(N)g(N)

s )

=
∑

s∈S

λs(X
(1)g(1)

s ) ◦ (X(2)g(2)
s ) ◦ · · · ◦ (X(N)g(N)

s )

=
∑

s∈S

N∏

n=1

‖X(n)g(n)
s ‖ · λs

(
X(1)g

(1)
s

‖X(1)g
(1)
s ‖

)
◦ · · · ◦

(
X(N)g

(N)
s

‖X(N)g
(N)
s ‖

)
,

which is a valid CP decomposition of X . Moreover, by the definition of tensor p-quasi norm,

‖X ‖p ≤

(
∑

s∈S

N∏

n=1

‖X(n)g(n)
s ‖p · |λs|

p

)1/p

≤

(
∑

s∈S

N∏

n=1

(‖X(n)‖p2‖g
(n)
s ‖p) · |λs|

p

)1/p

=

(
r∑

s=1

N∏

n=1

(‖X(n)‖p2‖g
(n)
s ‖p) · |λs|

p

)1/p

=

N∏

n=1

‖X(n)‖2

(
r∑

s=1

|λs|
p

)1/p

=

N∏

n=1

‖X(n)‖2 · (‖G‖p + ǫ),

where the second equality is due to ‖g
(n)
s ‖ = 1 for all n and s. Since ǫ > 0 can by chosen arbitrarily,

we have ‖X‖p ≤
∏N

n=1 ‖X
(n)‖2 · ‖G‖p. On the other hand, due to the nature of independent Tucker

decomposition and Lemma 3, one has that G = JX ;Y (1), . . . ,Y (N)K. By repeating above argument,
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we have ‖G‖p ≤
∏N

n=1 ‖Y
(n)‖2·‖X ‖p. The rest of the proof follows similarly from that of Theorem 6.

�

Similar to the analysis in the previous subsection, when the Tucker decomposition is orthonormal

then the p-quasi norm of a tensor and that of its core are equal.

Corollary 10. For an orthonormal Tucker decomposition, we have ‖X ‖p = ‖G‖p.

4.3 The border rank

Although the CP rank is a natural extension of matrix rank, one undesirable theoretical property of

this definition is that the best rank-r approximation may not even exist (see [23] for more details).

In particular, a rank-r tensor may be approximated arbitrarily close by a sequence of tensors whose

CP ranks are strictly less than r. To get around this, Bini [2] proposes the concept of the border

rank, which is defined as follows.

Definition 7. For an N -way tensor X ∈ C
I1×I2×···×IN , its border rank, denoted by rankB(X ), is

defined as

rankB = min
{
r | ∀ǫ > 0,∃ E ∈ C

I1×I2×···×IN , s.t. ‖E‖F ≤ ǫ and rankCP (X + E) ≤ r
}
.

In other words, the border rank of a given tensor is the minimum CP-rank of tensors that can

be found in any neighborhood of the given tensor. By the bound on the tensor norms, we now

establish the equality of the border rank between a given tensor and its core.

Theorem 11. For any given tensor X ∈ C
I1×I2×···×IN with independent Tucker decomposition

X = JG;X(1), . . . ,X(N)K, we have rankB(X ) = rankB(G).

Proof: Assume rankB(G) = r, we want to show rankB(X ) ≤ rankB(G) = r. By definition of the

border rank, for any ǫ > 0, there exists E ∈ C
J1×J2×···×JN such that ‖E‖F ≤ ǫ/

∏N
n=1 σmax(X

(n))

and rankCP (G + E) ≤ r. Now, construct

T = E ×1 X
(1) ×2 · · · ×N X(N),

and consider the tensor X + T = (G + E) ×1 X
(1) ×2 · · · ×N X(N). Obviously, by Theorem 2 we

have

rankCP (G + E) = rankCP (X + T ) ≤ r. (7)

Moreover, according to Theorem 6 we also have

‖T ‖F =

N∏

n=1

σmax(X
(n)) · ‖E‖F ≤ ǫ. (8)
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Combining (7) and (8) implies that rankB(X ) ≤ rankB(G).

Now we recall that for independent Tucker decomposition, G = JX ;Y (1), . . . ,Y (N)K, with Y (n) =(
(X(n))HX(n)

)−1
(X(n))H for all n (see Lemma 3 for more details). The inequality rankB(X ) ≥

rankB(G) follows similarly from the argument above, which establishes the desired equality. �

5 Invariance of tensor eigenvalues

In this section, we focus on the real-field and investigate the invariance properties of various notions

of tensor eigenvalues.

5.1 Invariance of the Z-eigenvalues

Let us consider the class of real-valued symmetric tensors, and denote the symmetric rank-one

tensor x ◦ · · · ◦ x︸ ︷︷ ︸
N

as x◦N . For any symmetric tensor T ∈ R
I×···×I and (N − 1)-way rank-1 tensor

x◦(N−1), T (x◦(N−1)) denotes an I dimensional vector such that

(T (x◦(N−1)))iN ,

I∑

i1,i2,...,iN−1=1

Ti1i2···iN−1iN · xi1xi2 · · · xiN−1
.

With this notion in place, the Z-eigenvalue and Z-eigenvector of a tensor are defined as follows.

Definition 8. For an N -way symmetric tensor T ∈ R
I×···×I , if there exists a number λ ∈ R and

a nonzero vector x ∈ R
I such that

T (x◦(N−1)) = λx, xTx = 1. (9)

Then λ is called the Z-eigenvalue of T , and x is called the corresponding Z-eigenvector.

The Z-eigenvalues were first studied by Qi [31] and Lim [28] independently. The relationship

between the Z-eigenvalues of a symmetric tensor and that of its core is described as follows.

Theorem 12. For any given N -way symmetric tensor T ∈ R
I×I×···×I with exact independent

symmetric Tucker decomposition T = JGs;X ,X , . . . ,XK, construct

Ĝ
s
= Gs ×1 (X

TX)1/2 ×2 · · · ×N (XTX)1/2.

Then any Z-eigenvalues of Ĝ
s
are also Z-eigenvalues of T while any non-zero Z-eigenvalue of T

are also Z-eigenvalues of Ĝ
s
.
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Proof: Since the Tucker decomposition is independent, by Lemma 3,

Gs = T ×1 Y ×2 · · · ×N Y ,

with Y = (XTX)−1XT. Furthermore, due to Theorem 5, Gs is symmetric and so is Ĝ
s
. Let λ be

a Z-eigenvalue of Ĝ
s
with Z-eigenvector a. We have

λa = Ĝ
s
(a◦(N−1)) = Ĝ

s
×1 a

T ×2 · · · ×N−1 a
T

= Gs ×1 (X
TX)1/2 ×2 · · · ×N (XTX)1/2 ×1 a

T ×2 · · · ×N−1 a
T

= T ×1 Y ×2 · · · ×N Y ×1 a
T(XTX)1/2 ×2 · · · ×N−1 a

T(XTX)1/2 ×N (XTX)1/2

= T ×1 a
T(XTX)−1/2XT ×2 · · · ×N−1 a

T(XTX)−1/2XT ×N (XTX)−1/2XT.

Applying ×NX(XTX)−1/2 to both sides and invoking Lemma 3 yield

T ((X(XTX)−1/2a)◦(N−1)) = T ×1 a
T(XTX)−1/2XT ×2 · · · ×N−1 a

T(XTX)−1/2XT

= λa×N X(XTX)−1/2 = λX(XTX)−1/2a.

Furthermore, we have aT(XTX)−1/2XTX(XTX)−1/2a = aTa = 1, thus λ is an eigenvalue of T

with corresponding eigenvector X(XTX)−1/2a.

On the other hand, suppose µ is a Z-eigenvalue of T associated with the Z-eigenvector b. Following

a similar argument, one has

Ĝ
s
((

(XTX)−1/2XTb
)◦(N−1)

)

= Ĝ
s
×1 (b

TX(XTX)−1/2)×2 · · · ×N−1 (b
TX(XTX)−1/2)

= µ(XTX)−1/2XTb.

By applying ×NbTX(XTX)−1/2 to both sides of the above equality, we have

Ĝ
s
×1 (b

TX(XTX)−1/2)×2 · · · ×N (bTX(XTX)−1/2) = µbTX(XTX)−1XTb.

Moreover, it is easy to verify that

Ĝ
s
×1 (b

TX(XTX)−1/2)×2 · · · ×N (bTX(XTX)−1/2)

= Gs ×1 b
TX ×2 · · · ×N bTX

= T ×1 Y ×2 · · · ×N Y ×1 b
TX ×2 · · · ×N bTX

= T ×1 b
T ×2 · · · ×N bT = µb×N bT = µ,

where the third equality is due to Lemma 3. If µ 6= 0, then bTX(XTX)−1XTb = 1, meaning that

µ is the Z-eigenvalue of core tensor Gs with the associated Z-eigenvector (XTX)−1/2XTb. �
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We remark that if the Tucker decomposition is orthonormal then Ĝ
s
= Gs, and the above theorem

states that all the Z-eigenvalues (except zero) of a symmetric tensor equal to the Z-eigenvalues of

its core. This motivates us to focus on the eigenvalues of the core tensor, which however may miss

a zero eigenvalue. Fortunately, the following result tells us that when the size of the core is strictly

less than the size of the original tensor, then zero eigenvalue is always present.

Proposition 13. Suppose a given N -way symmetric tensor T ∈ R
I×I×···×I has an exact inde-

pendent symmetric Tucker decomposition T = JGs;X ,X, . . . ,XK such that Gs ∈ R
J×J×···×J . If

I > J , then 0 is an Z-eigenvalue.

Proof: We note the the factor matrix X ∈ R
I×J in the independent Tucker decomposition. Since

J < I, there exists a non-zero vector a such that XTa = 0. Thus we have

T ×1 a
T · · · ×N−1 a

T = Gs ×1 (a
TX) · · · ×N−1 (a

TX)×N X = 0,

implying that a is a Z-eigenvector corresponding to the Z-eigenvalue 0 of the tensor T . �

Invariance of the Z-eigenvalues has interesting implications regarding the nonnegativity properties

as well. A commonly used notion of nonnegativity is the positive semidefinite (PSD) tensor:

T (x◦(2N)) ≥ 0, ∀ x ∈ R
I ,

where T is symmetric and has degree 2N . Since all the Z-eigenvalues of T correspond to all the

KKT points of the polynomial optimization: min‖x‖2=1 T (x◦(2N)), we have the following result as

a consequence of Theorem 12:

Corollary 14. For any given 2N -way symmetric tensor T ∈ R
I×I×···×I with exact independent

symmetric Tucker decomposition T = JGs;X ,X , . . . ,XK, T is PSD if and only if Gs is PSD.

The dual of the class of PSD tensors is the sum of powers (SOP) tensors (see [17]):

T =

m∑

k=1

(xk)◦(2N), where m a positive integer and xk ∈ R
I , ∀ k = 1, · · · ,m.

Similarly, Theorem 2 also implies:

Corollary 15. For any given 2N -way symmetric tensor T ∈ R
I×I×···×I with exact independent

symmetric Tucker decomposition T = JGs;X ,X , . . . ,XK, T is SOP if and only if Gs is SOP.

We remark that verifying whether a tensor is PSD or SOP are in general NP-hard problems [13, 17].

A famous result of Hilbert states that a 4th order tertiary polynomial is PSD if and only if it is a

sum of squares, where the latter condition can be verified easily. This implies that if the core of a

4th order symmetric tensor has size no more than 3, then one can easily verify if it is PSD or not.
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5.2 Invariance of the M-eigenvalue

In this subsection, we consider tensors with a “less” symmetric structure, termed partial sym-

metricity. In particular, for a four-way tensor T ∈ C
N×M×N×M , we call it partial symmetric

if

tijkl = tkjil = tilkj = tklij , for i, k = 1, 2, . . . , N ; j, l = 1, 2, . . . ,M.

Similarly, a Tucker decomposition is called partial symmetric if it is of the form

T = JGps;A,B,A,BK.

Below we introduce the notion of M-eigenvalue and M-eigenvector proposed in Qi, Dai and Han

in [32].

Definition 9. For a four-way partial symmetric tensor T ∈ R
N×M×N×M , if there exist two num-

bers λ and µ ∈ R, two nonzero vectors x ∈ R
N and y ∈ R

M such that

T (·,y,x,y) = λx, xTx = 1

T (x,y,x, ·) = µy, yTy = 1

where T (·,y,x,y) =
∑N

k=1

∑M
j,l=1 tijklyjxkyl and T (x,y,x, ·) =

∑N
i,k=1

∑M
j=1 tijklxiyjxk. Then λ

and µ are called the M-eigenvalues of T , while x and y are called the corresponding M-eigenvectors.

Theorem 16. For any four-way partial symmetric tensor T ∈ R
N×M×N×M with its exact inde-

pendent partial symmetric Tucker decomposition T = JGps;A,B,A,BK, construct

Ĝ
ps

= ×1(A
TA)1/2 ×2 (B

TB)1/2 ×3 (A
TA)1/2 ×4 (B

TB)1/2.

Then any M-eigenvalues of Ĝ
ps

are also M-eigenvalues of T while any non-zero M-eigenvalues of

T are also M-eigenvalues of Ĝ
ps
.

Proof: Similar to the proof of Theorem 5, one can show that Gps and Ĝ
ps

are both partial

symmetric. Therefore, the M-eigenvalues of Ĝ
ps

are well-defined. The rest of the proof is similar

to that of Theorem 12, and is omitted here for brevity. �

Similar to the symmetric case, if the partial symmetric Tucker decomposition is orthonormal then

Ĝ
ps

= Gps, and the equivalence of the M-eigenvalues (except for 0) between a partial symmetric

tensor and its Tucker core can be established. The following proposition demonstrates when 0 is

always an eigenvalue of the original tensor.

Proposition 17. Suppose a given four-way partial symmetric tensor T ∈ R
I1×I2×I1×I2 has an

exact independent partial symmetric Tucker decomposition T = JGps;A,B,A,BK such that Gps ∈

R
J1×J2×J1×J2. Either J1 < I1 or J2 < I2 implies the existence of a zero M-eigenvalue.

The proof is almost identical to that of Proposition 13, and is omitted here.
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6 Miscellaneous discussions and error estimations

The invariance properties that we have established immediately lead to possible enhancements of

many existing bounds. For instance, it is well known that for X ∈ C
I1×I2×···×IN with I1 ≤ I2 ≤

· · · ≤ IN , it holds that rankCP (X ) ≤ I1I2 · · · IN−1. Recently, Hu [15] showed that the tensor

nuclear norm ‖X ‖1 is upper bounded by I1I2 · · · IN−1 · ‖X(N)‖∗, where ‖ · ‖∗ denotes the nuclear

norm of a matrix, and the bound is tight when N = 3. Now, all these bounds can be sharpened by

means of the Tucker rank.

Suppose X ∈ C
I1×I2×···×IN is an N -way tensor with rankT (X ) = (R1, . . . , RN ). Without loss of

generality, assume that R1 ≤ R2 ≤ · · · ≤ RN . Then

• rankCP (X ) ≤ R1R2 · · ·RN−1;

• ‖X ‖1 ≤ R1R2 · · ·RN−1 · ‖X(N)‖∗.

As discussed earlier, tensor related computations such as the CP decompositions, norms or eigenval-

ues are mostly NP hard [13]. Moreover, exact solution methods, such as the SOS (Sum of Squares)

approach to tensor eigenvalue computation (see [8]), are often very sensitive to the size of the

underlying tensor. At the same time, the Tucker decomposition involves only matrix operations,

hence easy computable. Therefore it is natural to consider a reduction scheme where the tensor

computation is only carried out for its core. Before proceeding, we set out to explore if size of the

Tucker core of a tensor is indeed typically smaller than the size of the tensor itself. To this end,

we find it compelling to test the size reduction on some well studied specific instances of tensors.

Below is a summary of our experimental results.

• (A tensor case studied in [25].)

This specific tensor is in C
3×3×3, corresponding to the following polynomial

T (x4) = 81x40 + 17x41 + 626x42 − 144x0x
2
1x2 + 216x30x1 − 108x30x2 + 216x20x

2
1 + 54x20x

2
2+

96x0x
3
1 − 12x0x

3
2 − 52x31x2 + 174x21x

2
2 − 508x1x

3
2 + 72x0x1x

2
2 − 216x20x1x2.

The dimension of the tensor is 3 while the size of its core tensor is 2.

• (A tensor case studied in [29].)

This specific tensor is in C
5×5×5, with its components given by

T i1i2i3 = i1i2i3 − i1 − i2 − i3 (0 ≤ i1, i2, i3 ≤ 4).

The dimension of the tensor is 5 while the size of its core tensor is 2.
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• (Another tensor case studied in [29].)

This specific tensor is in C
5×5×5×5, with its components given by

T i1i2i3i4 = tan(i1i2i3i4) (0 ≤ i1, i2, i3, i4 ≤ 4).

The dimension of the tensor is 5 while the size of the core tensor is 4.

For some special classes of tensors, it might be possible to estimate the size of its Tucker core.

Proposition 18. Consider N -th order tensor X with a separate structure:

Xi1···iN =
N∑

n=1

fn(in). (10)

Then the size of its Tucker core is no more than (2, · · · , 2). Consider the following N -th order

symmetric real tensor T (see [30] or Example 4.12 in [8]):

T i1··· ,iN = sin(i1 + · · ·+ iN ).

The size of its Tucker core is no more than 2.

Proof. For tensor X , it suffices to show that the rank of any mode-n matricization X(n) is no more

than 2. Note that X(n) can be specified componentwise by (X(n))in,j = fn(in)+
∑

k 6=n fk(ik) where

j = 1 +
∑N

k=1,k 6=n (ik − 1)Jk with Jk =
∏k−1

m=1,m6=n Im. By constructing vectors a = [fn(in)] and

b = [
∑

k 6=n fk(ik)], it follows that X(n) = aeT + ebT. Consequently, rank(X(n)) ≤ 2 and the first

half of the conclusion is proved.

To study tensor T , due to the symmetric property, without loss of generality it suffices to consider

the mode-1 matricization T (1) such that

(T (1))i1,j = sin(i1 + · · ·+ iN )

= sin(i1)cos(i2 + · · · + iN ) + cos(i1)sin(i2 + · · ·+ iN ) with j = 1 +

N∑

k=2

(ik − 1)nk−1,

where n is the length of the tensor along each direction. Simply letting

a = [sin(i1)], b = [cos(i2 + · · ·+ iN )], c = [cos(i1)] and d = [sin(i2 + · · ·+ iN )]

yields that

T (1) = abT + cdT,

proving the second half of the proposition.
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As observed above, Tucker core of size no more than 2 is not uncommon. Actually, Examples 2-5

provided in the next section all belong to this category. We shall remark here that there are specific

techniques available to solve tensor problems of size 2. For example, computing the Z-eigenvalues

of a size 2 tensor is equivalent to finding the common roots of two bivariate polynomials, and a

numerical procedure for solving the latter problem was discussed in [36].

Now let us turn to the issue of estimating the error projected on the original tensor while working

with a Tucker core approximately. Obviously, errors may occur in the process of Tucker decompo-

sition; so the core tensor that we deal with may not be the true core tensor. The question is: Will

the errors expand very quickly? We shall discuss the case for the CP decomposition here. The

answer is negative.

Proposition 19. For a given tensor T ∈ C
I1×I2×···×IN , its independent (but not necessarily exact)

Tucker decomposition T = JG;A(1), . . . ,A(N)K has the error

Err1 = ‖T − G ×1 A
(1) · · · ×N A(N)‖F .

Now we perform a CP decomposition on G and get

G̃ =

r∑

t=1

a(1,t) ◦ · · · ◦ a(N,t)

with Err2 = ‖G − G̃‖F . Then

T̃ = G̃ ×1 A
(1) ×2 · · · ×N A(N)

is a CP decomposition of T with an error estimation

‖T − T̃ ‖F ≤ Err1 + Err2

N∏

n=1

‖A(n)‖2.

Proof: By Lemma 4,

G̃ ×1 A
(1) ×2 · · · ×N A(N) =

r∑

t=1

a(1,t) ◦ · · · ◦ a(N,t) ×1 A
(1) ×2 · · · ×N A(N)

=
r∑

t=1

A(1)a(1,t) ◦ · · · ◦A(N)a(N,t),

which is indeed a CP decomposition of T . Moreover, the error of this decomposition is:

‖T − T̃ ‖F = ‖T − G̃ ×1 A
(1) ×2 A

(2) · · · ×N A(N)‖F

= ‖T − G ×1 A
(1) ×2 A

(2) · · · ×N A(N) + (G − G̃)×1 A
(1) ×2 A

(2) · · · ×N A(N)‖F

≤ ‖T − G ×1 A
(1) ×2 A

(2) · · · ×N A(N)‖F + ‖(G − G̃)×1 A
(1) ×2 A

(2) · · · ×N A(N)‖F

≤ Err1 + Err2

N∏

n=1

‖A(n)‖2,
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where the last inequality is due to Lemma 7. �

We remark that when the Tucker decomposition is exact and orthonormal, then the above propo-

sition reduces to Lemma 2.5 in [22]. This proposition also suggests that one may indeed choose to

work with a smaller Tucker core, and the resulting approximative CP decomposition will have a

controllable error bound, thanks to an additive rate of the error accumulations.

7 Numerical experiments

The goal of this section is to experiment if a reduced Tucker core helps to solve the tensor problem

overall. The answer is, interestingly: it depends. If we apply the standard Alternating Least Squares

(ALS) approach to find the CP decomposition, then [37] reported that more ALS iterations may be

required on a compressed core tensor. This is perhaps not very surprising, because in some cases

the computational complexity does not necessarily go down with the size per se. Since we are not

aware of a standard solver to compute the CP decomposition exactly to do the comparison, we

choose to experiment with an ‘easier’ computational object: the Z-eigenvalues and Z-eigenvectors

of a symmetric tensor.

Most papers focussed on the computation of the largest or the smallest Z-eigenvalue; see [33, 30, 18].

Most recently, Cui, Dai and Nie [8] proposed an algorithm that can find every Z-eigenvalue of a

given tensor. Their idea is to formulate the problem of computing each Z-eigenvalue as a polynomial

optimization problem, and then resort to the SOS method that in principle can globally solve any

polynomial optimization to optimality. In our numerical experiments, we used the method in [8]

to compute all the Z-eigenvalues and Z-eigenvectors for the original tensor and for its Tucker core

tensor. In particular, we record both the running time of Algorithm 3.6 in [8] applied to some

specific instances and the running time of the same algorithm on the corresponding Tucker core

tensor plus the time consumed by the Tucker decomposition. Our code is based on that in [8] with

some slight modifications and parameter tunings.

In the following, we choose five testing examples to do this experiment, and report the corresponding

numerical results. All of our experiments are run using MATLAB R2013a on a MacBook with an

Intel dual core CPU at 1.3 GHz ×2 and 4 GB of RAM, under an OS X 10.9.5 operating system.

Example 1. (Example 2 in [40])

Consider the symmetric tensor X ∈ R
5×5×5×5 such that

X (x◦4) = (x1 + x2 + x3 + x4)
4 + (x2 + x3 + x4 + x5)

4.

The dimension of the original tensor is 5 while the dimension of its core is 2. It took 30.03 seconds

to compute directly on the tensor itself while the computation on its core (including the Tucker
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decomposition) took only 3.29 seconds. The computed eigenvalues and eigenvectors of the original

tensor are in Table 1 and that of the core tensor are in Table 2.

Eigenvalues Eigenvectors

24.500 -0.267 -0.535 -0.535 -0.535 -0.267

0.500 0.707 -0.000 -0.000 -0.000 -0.707

0.000 -0.073 0.618 -0.751 0.211 -0.067

Table 1: Eigenvalues and Eigenvectors of the Original Tensor in Example 1

Eigenvalues Eigenvectors

24.500 -1.000 0.000

0.500 -0.000 -1.000

0.000 -0.354 -0.935

Table 2: Eigenvalues and Eigenvectors of the Core Tensor in Example 1

Example 2. (Example 3.5 in [30])

Consider the symmetric tensor X ∈ R
n×n×n such that

X ijk =
(−1)i

i
+

(−1)j

j
+

(−1)k

k
(1 ≤ i, j, k ≤ n).

For the case n = 8, the dimension of the original tensor is 8 while the dimension of its core is 2.

The direct computation on the original tensor took 17670.71 seconds, and the computation on its

core took 2.66 seconds. The resulting eigenvalues and eigenvectors of the original tensor and its

core tensor are in Table 3 and Table 4 respectively.

Eigenvalues Eigenvectors

14.436 -0.687 -0.066 -0.411 -0.169 -0.356 -0.204 -0.332 -0.221

8.586 -0.225 0.579 0.132 0.445 0.203 0.400 0.234 0.378

0.000 -0.335 0.283 0.252 0.256 -0.030 -0.751 -0.013 0.337

-14.436 -0.687 -0.066 -0.411 -0.169 -0.356 -0.204 -0.332 -0.221

-8.586 -0.225 0.579 0.132 0.445 0.203 0.400 0.234 0.378

Table 3: Eigenvalues and Eigenvectors of the Original Tensor in Example 2

Example 3. (Example 4.14 in [8])
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Eigenvalues Eigenvectors

14.436 -0.985 -0.175

8.586 0.488 -0.873

-0.000 0.344 0.939

-14.436 -0.985 -0.175

-8.586 0.488 -0.873

Table 4: Eigenvalues and Eigenvectors of the Core Tensor in Example 2

Consider the symmetric tensor X ∈ R
n×n×n×n×n:

X i1i2i3i4i5 = ln(i1) + ln(i2) + ln(i3) + ln(i4) + ln(i5) (1 ≤ i1, i2, i3, i4, i5 ≤ n).

For the case n = 4, the dimension of the original tensor is 4 while the dimension of its core is 2.

The direct computation on the original tensor took 186.58 seconds, and the computation on its core

took 5.23 seconds. The eigenvalues and eigenvectors of the original tensor and its core tensor are

in Table 5 and Table 6 respectively.

Eigenvalues Eigenvectors

132.307 0.403 0.484 0.532 0.566

0.707 -0.905 -0.308 0.041 0.289

0.001 0.565 0.254 -0.022 -0.785

-132.307 0.403 0.484 0.532 0.566

-0.707 -0.905 -0.308 0.041 0.289

Table 5: Eigenvalues and Eigenvectors of the Original Tensor in Example 3

Eigenvalues Eigenvectors

132.307 1.000 -0.000

0.707 -0.329 -0.944

-0.000 0.127 -0.992

-132.307 1.000 -0.000

-0.707 -0.329 -0.944

Table 6: Eigenvalues and Eigenvectors of the Core Tensor in Example 3

Example 4. (Example 4.12 in [8]) Consider the symmetric tensor X ∈ R
n×n×n×n:

X i1i2i3i4 = sin(i1 + i2 + i3 + i4) (1 ≤ i1, i2, i3, i4 ≤ n).
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For the case n = 4, the dimension of the original tensor is 4 while the dimension of its core is 2.

The direct computation on the original tensor took 74.75 seconds, and the computation on its core

took 5.48 seconds. The eigenvalues and eigenvectors of the original tensor and its core tensor are

in Table 7 and Table 8 respectively.

Eigenvalues Eigenvectors

4.632 0.500 -0.133 -0.644 -0.563

2.991 -0.347 -0.766 -0.482 0.246

0.000 0.623 -0.587 0.512 0.068

-5.645 -0.629 -0.485 0.105 0.598

-2.525 0.083 -0.621 -0.755 -0.194

Table 7: Eigenvalues and Eigenvectors of the Original Tensor in Example 4

Eigenvalues Eigenvectors

4.632 -0.821 0.571

2.991 -0.485 -0.874

-5.645 0.195 -0.981

-2.525 -0.969 -0.247

Table 8: Eigenvalues and Eigenvectors of the Core Tensor in Example 4

To conclude, the computational time spent on finding the Z-eigenvalues and Z-eigenvectors of a

tensor can be substantially reduced if we turn to its Tucker core tensor instead. Table 9 summarizes

the recorded computational times for the above examples 1 – 5.

Acknowledgements. We would like to thank Chunfeng Cui for sharing with us the codes on

computing all Z-eigenvalues, and we thank Shmuel Friedland, Lek-Heng Lim, Jiawang Nie and
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Example Tensor Order Tensor Size Core Size CPU for Tensor CPU for Core

1 4 5 2 30.03s 3.29s

2 3 8 2 17670.70s 2.66s

3 5 4 2 186.58s 5.23s

4 4 4 2 74.75s 5.48s

Table 9: Computational Time Comparison
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