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Abstract

Algebraic multigrid (AMG) preconditioners are considered for discretized systems of
partial differential equations (PDEs) where unknowns associated with different physi-
cal quantities are not necessarily co-located at mesh points. Specifically, we investigate
a Q2 –Q1 mixed finite element discretization of the incompressible Navier-Stokes equa-
tions where the number of velocity nodes is much greater than the number of pressure
nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial lo-
cations where there are no corresponding pressure dofs. Thus, AMG approaches lever-
aging this co-located structure are not applicable. This paper instead proposes an au-
tomatic AMG coarsening that mimics certain pressure/velocity dof relationships of the
Q2 –Q1 discretization. The main idea is to first automatically define coarse pressures in a
somewhat standard AMG fashion and then to carefully (but automatically) choose coarse
velocity unknowns so that the spatial location relationship between pressure and velocity
dofs resembles that on the finest grid. To define coefficients within the inter-grid trans-
fers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to
specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to
the proposed coarsening. Numerical results highlighting solver performance are given on
Stokes and incompressible Navier-Stokes problems.

1 Introduction

Multigrid methods are among the most efficient algorithms for solving sparse linear systems
arising from discretized elliptic partial differential equations (PDE)s [1, 2]. Rapid conver-
gence requires that the algorithm’s relaxation phase complement the coarse grid correction
phase. Relaxation focuses on reducing oscillatory error components, often via a simple it-
eration. The coarse phase projects a residual equation to a coarse space and interpolates
an associated coarse solution to correct the approximation. A hierarchy of resolutions result
when the coarse solution is approximated by a recursive multigrid invocation. This paper is
concerned with mixed finite element discretizations of PDE systems and an algebraic multi-
grid (AMG) method, which automatically constructs a mesh hierarchy and grid transfers.
For PDE systems, constructing AMG components with the desired complementary properties
is challenging, especially when there is strong coupling between different types of unknowns
(e.g., pressures and velocities). Matrices that result from PDE systems are frequently far
from the M-matrices that are generally more amenable to standard AMG methods. Among
applications involving PDE systems, the saddle point nature of incompressible flow problems
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introduces additional complications. Standard multigrid relaxation algorithms do not typically
smooth errors appropriately and algebraic multigrid procedures for generating grid transfers
that partially rely on positive-definite matrix properties (such as smoothed aggregation) have
difficulties as well. Further, traditional algebraic multigrid methods do not distinguish between
unknown types. Thus, they might produce odd interpolation operators with stencils that mix
unknown types, e.g., a fine pressure might interpolate from a set of coarse velocities.

Geometric multigrid methods have been developed for a range of PDE systems and dis-
cretizations (e.g., [2]). Much of this work has centered on effective relaxation techniques for
specific PDE systems and so ideally one would like to leverage these techniques within an
AMG approach. In geometric multigrid, inter-grid transfers are based on a geometrical rela-
tionship between meshes, such as using linear interpolation to transfer solutions across meshes.
AMG methods are an attractive alternative for applications with complex meshes or features
as formulating a mesh hierarchy and geometric inter-grid transfers is sometimes challenging.

One AMG approach (referred to as the point-based approach in [3]) for co-located PDE
systems centers on coarsening spatial locations. By co-located, we refer to discretizations
where degrees-of-freedom (dofs) associated with different physical quantities (e.g., pressures
and electric fields) are situated at the same spatial location. For a co-located representation
of the incompressible Navier-Stokes equations, each velocity dof is associated with a spatial
location where there is a corresponding pressure dof. The discretization matrix can be viewed
as a block operator with constant sized blocks, each corresponding to a unique spatial location.
Standard AMG coarsening constructs a graph where each vertex is associated with one block
matrix row and weighted edges between vertex i and j are defined based on some norm (or
quantity) corresponding to the sub-matrix in the ith block row and the jth block column.
Standard coarsening algorithms can then be employed accompanied by schemes (typically
modest modifications of AMG methods for scalar PDEs) to define coefficients for the grid
transfer operators such that coarse level dofs retain the co-located structure. Unfortunately,
this PDE system AMG approach is not possible for mixed finite element discretizations in
which fine level dofs are not co-located.

A second AMG approach (referred to as the unknown-based approach in [3]) also consid-
ers a block matrix representation, but now blocks are defined by different physical quantities
(e.g., pressures) and different equation types (e.g., Navier-Stokes momentum equations, incom-
pressibility condition, Maxwell-Faraday equations). Specifically, the matrix can be written as

A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk



u1

u2

...
uk

 =


f1

f2

...
fk

 , (1)

where each ui corresponds to a field (e.g., velocities in the x, y, and z directions).
An AMG algorithm can be developed by requiring that grid transfers have a block diagonal

form:

P =


P1

.
.
.
Pk

 . (2)

Thus, coarse unknowns of one type do not directly influence interpolated unknowns of another
type. The Pi can be produced by k separate invocations of an AMG method applied to
matrices Ãii. When Ãii = Aii, the AMG grid transfers ignore the PDE cross-coupling and
so this might be problematic when the coupling is relatively strong. For mixed finite element
representations that include an incompressibility condition, there is often a diagonal block of
the PDE system that is identically zero, and so Ãii must be defined in another way (e.g., using
Schur complement ideas).

2



This article follows a block interpolation approach. Our main innovation is to couple AMG
invocations in a limited way. This is done to mimic certain features of a Q2 –Q1 discretization
on coarse grids as Q2 –Q1 discretizations of the incompressible Navier-Stokes equations satisfy
inf-sup conditions needed to produce stable discretizations [4, 5, 6]. It is generally desirable
that all discretization operators within a multigrid method be stable as unstable coarse op-
erators typically pose multigrid convergence problems (e.g., relaxation schemes may diverge).
Obviously, geometric multigrid algorithms employing Q2 –Q1 discretizations on all levels sat-
isfy inf-sup conditions throughout the hierarchy. We seek to emulate this within an AMG
method by selecting coarse points in a fashion that loosely resembles coarse points within a
geometric multigrid method. In particular, the selection of coarse velocities (used to define
velocity interpolation) is obtained by first including velocities co-located with coarse pressures
determined during a prior pressure AMG invocation. The set of coarse velocity unknowns is
then augmented by velocity unknowns located at approximate mid-points between the coarse
pressure unknowns. Numerical results will be given to demonstrate the effectiveness of this
strategy when it is coupled to an energy minimization AMG algorithm [7], though the coarsen-
ing does not guarantee that resulting coarse discretizations satisfy inf-sup conditions. One key
idea is that it is relatively easy to employ fairly general coarsening and grid transfer patterns
within an energy minimization AMG (EMIN-AMG) framework. This is because this AMG
variant (unlike most others) is fairly flexible with respect to different coarsenings and sparsity
patterns. Other methods such as bootstrap AMG also have this property [8]. In addition to
addressing stability concerns, it is expected that a careful choice of coarse variables will en-
hance the use of physics-based relaxation methods that rely heavily on sub-matrices accurately
mirroring properties of associated PDE operators [6, 9].

The correlation of coarse unknowns between separate prolongator operators has been con-
sidered in different settings. In [10], multigrid transfers are motivated by recognizing that a
standard geometric coarsening of the velocity mesh associated with a P1isoP2 –P1 discretiza-
tion corresponds to the pressure mesh. This leads to a shift strategy whereby the first coarsen-
ing of the velocity mesh is given by the pressure mesh (and the first velocity grid transfer could
simply inject velocities located at nodes of the pressure mesh). Subsequent velocity grid trans-
fers to the `th multigrid level use the AMG generated pressure grid transfer operator to the
`−1th level. Coarse level stability is considered and alternative strategies retaining more fine
level velocities are also proposed for Q2 –Q1 discretizations. While good convergence rates are
obtained on several non-trivial problems, the approach uses a somewhat restrictive coarsening
procedure that can result in multigrid cycles with an expensive cost. Our proposed algorithm
seeks increased flexibility where one can use more aggressive coarsening rates to reduce the
number of levels and the number of nonzeros per row (i.e., fill in) of the coarse operators,
particularly important in a parallel setting.

Multigrid methods based on element agglomeration (AMGe) have also been considered for
mixed finite element problems and mimetic discretizations [11, 12, 13]. In AMGe methods,
additional topological information is maintained throughout all multigrid levels. While initially
providing and maintaining this topological information has some challenges, its presence on
coarse hierarchy levels can be leveraged in developing mixed fixed element AMG methods that
satisfy key topological properties. Additionally, special multigrid methods for solid mechanics
problems with contact and slide surfaces bear some resemblance to our proposed solver in
that the coarsening of constraints associated with contact are correlated to the coarsening
of displacement dofs [14]. As another example, AMG and fluid-structure interactions are
described in [15, 16].

Before describing our AMG approach, we note that physics-based preconditioners are an
alternative for PDE systems. These techniques also consider a block system such as (1) and
can be viewed as approximate block factorizations involving Schur complement approxima-
tions. Here, AMG is used to approximate sub-matrix inverses needed within the approximate
block factors. While physics-based preconditioners are effective and scalable, their convergence
behavior is tied to the Schur complement approximations. The current paper is motivated by
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situations where monolithic multigrid can outperform several approximate block factorization
preconditioners, though cases also exists where approximate block factorization precondition-
ers are better [17].

The paper is organized as follows. Section 2 briefly summarizes the considered PDEs and
the Q2 –Q1 discretization. Section 3 illustrates a potential multigrid stability pitfall when
velocity and pressure coarsenings are not correlated. Section 4 describes a new algorithm for
constructing grid transfers while Section 5 completes the AMG description by detailing the
multigrid relaxation. Numerical results are given in Section 6 followed by the conclusions in
Section 7.

While our focus is on Q2 –Q1 discretizations, it is hoped that the techniques in this paper
could be extended to other situations where one wishes to preserve specific properties of the
fine level PDE discretization (e.g., mimetic representations) throughout a multigrid hierarchy.

2 Problem formulation

2.1 Discretization of the Stokes equations

The Stokes equations describe a model of viscous flow. Given a two- or three-dimensional
domain Ω, let u be a vector-valued function representing velocity, p be a scalar function
representing pressure, and f be a forcing term. The Stokes system is written as

−∇2u +∇p = f in Ω,
∇ · u = 0 in Ω.

(3)

It is complemented by a set of boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD,
∂u

∂n
− np = s on ∂ΩN , (4)

where n is the outward-pointing normal to the boundary and both w and s are given. If the
velocity is specified on the whole boundary, i.e. ∂ΩD = ∂Ω, then the compatibility condition∫

∂Ω

w · n = 0 (5)

must be satisfied. In this case, pressure is unique only up to a constant.
A weak formulation of the Stokes equations is written as:
Find u ∈ H1(Ω) and p ∈ L2(Ω) such that∫

Ω

∇u : ∇v −
∫
Ω

p∇ · v =

∫
∂ΩN

s · v +

∫
Ω

f · v for all v ∈ H1
0(Ω),∫

Ω

q∇ · u = 0 for all q ∈ L2(Ω),
(6)

where
H1(Ω) =

{
u ∈ H1(Ω)d | u = w on ∂ΩD

}
,

H1
0(Ω) =

{
v ∈ H1(Ω)d | v = 0 on ∂ΩD

}
,

(7)

with d = 2 or d = 3 being the spatial dimension.
The weak formulation (6) is discretized using finite-dimensional subspaces Xh ⊂ H1(Ω),

Xh
0 ⊂ H1

0(Ω) and Mh ⊂ L2(Ω), and is written as:
Find uh ∈ Xh and ph ∈Mh such that∫

Ω

∇uh : ∇vh −
∫
Ω

ph∇ · vh =

∫
∂ΩN

s · vh +

∫
Ω

f · vh for all vh ∈ Xh
0 ,∫

Ω

qh∇ · uh = 0 for all qh ∈Mh.
(8)
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Figure 1: Q2 –Q1 pressure (left) and velocity (right) elements.

Assuming that all d components of velocity are approximated using the same scalar finite
element space, this leads to a discrete Stokes problem(

AS BT

B O

)(
u
p

)
=

(
fu
fp

)
. (9)

Matrices AS and B are block matrices, and have the following form for d = 2:

AS =

(
ÂS O

O ÂS

)
, B =

(
Bx By

)
and

ÂS = [aij ], aij =

∫
Ω

∇φi · ∇φj ,

Bx = [bx,ki], bx,ki =

∫
Ω

ψk
∂φi
∂x

,

By = [by,ki], by,kj =

∫
Ω

ψk
∂φj
∂y

,

(10)

where {(φ1, 0)T , . . . , (φm, 0)T , (0, φ1)T , . . . , (0, φm)T } is the basis of Xh
0 and {ψi} is the basis

of Mh. The case d = 3 is similar with the matrix AS being a 3× 3 block diagonal matrix with
matrix ÂS on the diagonal, and the matrix B having an additional directional component Bz
computed similarly to Bx and By. For both d = 2 and d = 3 there is no coupling between
velocity components for different directions.

Using a biquadratic approximation for velocity and a bilinear approximation for pressure
in two dimensions produces a stable mixed method called the Q2 –Q1 , Taylor-Hood [18],
approximation. The distribution of the dofs in the element is shown in Figure 1. One important
advantage of the Q2 –Q1 discretization is that it satisfies inf-sup or LBB stability conditions,
and thus yields a stable discretization [4]. Approximations that do not satisfy this condition
require the presence of an additional stabilization term, which introduces a stabilization matrix
that replaces the zero block in (9).

2.2 Discretization of the Navier-Stokes equations

The steady-state Navier-Stokes equation system

−ν∇2u + u · ∇u +∇p = f in Ω,
∇ · u = 0 in Ω,

(11)

with ν being a kinematic viscosity coefficient is complemented with boundary conditions given
by

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN . (12)

Linearization and discretization of this system using a Picard iteration produces the Oseen
system (

ANS BT

B O

)(
u
p

)
=

(
fu
fp

)
, (13)
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with ANS = νAS +K, where K is a block diagonal matrix with matrix K̂ on the diagonal,

K̂ = [kij ], kij =

∫
Ω

(uh · ∇φj) · φi. (14)

Here, uh is the current estimate of the discrete velocity and once again a biquadratic basis is
used for velocity while a bilinear basis is used for pressures to arrive at a Q2 –Q1 discretization
of the Navier-Stokes equations. A quantitative measure of the relative contributions of the
convection and diffusion terms is defined by the Reynolds number, which can be written as

R =
UL

ν
, (15)

where U (L) is the characteristic velocity (length).

3 Coarse level stabilization

Discretization stability gives some measure of how well-posed the discrete problem is in com-
parison with the original continuous problem. It is well known in numerical analysis that the
overall quality of a discretization can be expressed in terms of both consistency and stability.
Stability concerns arise in the multigrid context due to the construction of the discretization
operators associated with different resolutions within the hierarchy. Unfortunately, the sta-
bility of the finest level discretization does not guarantee that the coarse level operators of a
multigrid hierarchy will also be stable. Instability of any coarse level operator typically leads to
dramatic degradation in the overall multigrid convergence rates. This is often due to the fact
that standard multigrid smoothers frequently diverge when applied to an unstable operator.
Two well known areas where discretization stability concerns arise include PDEs with highly
convective terms (even scalar PDEs) and saddle point systems. One possible remedy for highly
convective systems lies in the use of Petrov-Galerkin style projections [19]. In this paper we
mimic this idea by employing two separate EMIN-AMG invocations to generate interpolation
and to generate restriction [7, 20]. To address saddle point stability concerns, which is the
focus of this paper, we seek to encourage a relationship between the grid transfers for velocities
and for pressures that mimics that of the Q2 –Q1 discretization.

The paper [10] discusses cases where instability of AMG coarse grid operators can appear
and how this instability can lead to significant multigrid convergence degradation. Here,
we give a rather elementary example to illustrate how easily instability can arise when the
coarsening strategy for pressures and velocities is somewhat inconsistent. Specifically, consider
the following simplified matrix which can be viewed as a marker-and-cell style approach [21]
to a one dimensional PDE: (

I BT

−B O

)(
u
p

)
=

(
f
0

)
, (16)

where

BT =


−1 1

. .
. .
. .
−1 1

−1 1

 . (17)

BT ∈ Rn×n−1 can be viewed as a discrete gradient operator and B as a divergence operator
where pressure (velocity) unknowns are defined at circles (vertical lines1) in the top image of
Figure 2. Here, n denotes the number of fine level pressure dofs. The Schur complement matrix,

1The two velocity end points correspond to Dirichlet boundary conditions that have been eliminated from
(16).
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Figure 2: One dimensional mesh. Top: fine pressure (velocity) unknowns denoted by circles
(vertical lines). Bottom: coarse pressure (velocity) unknowns denoted by filled circles (boxes).
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Figure 3: Eigenvector associated with second smallest eigenvalue of Schur complement of
projected system with coarse points as in Figure 2.

BBT , is identical to that obtained by a standard three point central difference discretization
of the Poisson operator with Neumann boundary conditions. Now consider a coarse mesh
(bottom image of Figure 2) in conjunction with linear interpolation2 operators: Pv and Pp.
Thus, Pp is a fairly standard geometric interpolation operator, and Pv is close to standard
geometric interpolation with the one exception that the choice of coarse points is somewhat
sub-optimal. In this case, the stencil of the projected gradient, PTv B

TPp, resembles a centered
difference scheme, and the resulting projected operator is(

PTv Pv PTv B
TPp

−PTp BPv O

)
. (18)

The interior stencil of the Schur complement of the projected operator, S = PTp BPv(P
T
v Pv)

−1PTv B
TPp,

only weakly couples even and odd coarse grid points. In fact, the related operator Ŝ =
PTp BPvP

T
v B

TPp has completely decoupled even and odd points, i.e. Ŝi,i±2 = −1, Ŝi,i±1 =

0, Ŝi,i = 2. Both S and Ŝ are unstable Laplacians as indicated by the highly oscillatory eigen-
vector associated with the second smallest eigenvalue of S shown in Figure 3. An oscillatory
mode associated with a small eigenvalue of S (or equivalently a large eigenvalue of S−1) is an
indication that we can generally expect S−1v to significantly amplify oscillatory components
of a vector v. This instability is purely a function of the poor choice for the velocity coarse
grid points. In fact, no instability is present in the resulting Schur complement if instead the
coarse velocities are associated with mid-points between the pressures and linear interpolation
is used.

S’s instability is likely to be problematic if AMG is applied to S to further coarsen pressures
and when a relaxation scheme is applied to (18). Further, we note that many specialized

2 Fine points between two coarse points use linear interpolation. Fine pressures at end points injection from
the closest coarse pressure (preserving constant null space). End point fine velocities use linear interpolation
with Dirichlet end point (assuming value of zero at Dirichlet point).
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Algorithm 1 setup hierarchy(A`, x`, `, `max)

S` = form relaxation(A`)
if ` < `max then

P` = form interpolation(A`, x`)
R` = form restriction(A`, x`, P`)
A`+1 = R`A`P`
x`+1 = project coordinates(x`, R`)
setup hierarchy(A`+1, x`+1, `+ 1, `max)

end if

relaxation schemes developed for PDE systems rely on sub-matrix properties mirroring those
of the corresponding PDE operators (e.g., PTv B

TPp mirroring a gradient operator). When
this no longer holds, the specialized relaxation schemes may not smooth errors as expected.

4 AMG Grid Transfers for Q2 –Q1 discretizations

This section proposes an algorithm for generating grid transfers while the next section describes
appropriate relaxation procedures. Together, these two components fully define an AMG
method when used in conjunction with a Petrov-Galerkin projection process. The specific
technique leverages the fact that a subset of the velocity unknowns are co-located with the
pressure unknowns for Q2 –Q1 discretizations, which would not be the case for all types of
mixed finite element discretizations. Let A be a given full system matrix, A = ANS for
concreteness. Algorithm 1 summarizes the setup of an AMG hierarchy given procedures for
generating grid transfers and relaxation operators. In Algorithm 1, `max is the number of
levels in a multigrid hierarchy, ` = 1 corresponds to the finest level, the matrix P` defines
interpolation from hierarchy level `+ 1 to level ` while R` defines restriction from ` to `+ 1.
A` is the “discretization” matrix on the `th level (with A0 = A being the finest level matrix),
and S` is the smoother that is used within a relaxation procedure of the form

uk+1
` = uk` + S`(b` −A`uk` ),

where uk` is an approximation to the solution on level `, and b` is the right hand side on the
same level. As our algorithms rely on coordinate locations x` (but not other mesh information),
this is illustrated in the code fragment.

The discussion focuses on construction of interpolation matrices as the procedure for gener-
ating restriction operators only includes some modest differences. We also center the exposition
on the principal themes while omitting some detailed graph heuristics. These details generally
involve tie-breaking and weighing tradeoffs between including additional coarse points that
might improve convergence, but increase iteration cost (and memory) due to increased coarse
level fill-in. Many AMG codes have similar types of heuristics, and these are not the focus of
this article. For the incompressible Navier-Stokes equations, our prolongators have the block
diagonal form

P` =

(
P

(v)
` O

O P
(p)
`

)
,

which is the same as (2) with slightly different notation to simplify the presentation. The basic

idea is to apply an AMG algorithm to first generate a pressure prolongator P
(p)
` followed by

a procedure that generates a velocity prolongator P
(v)
` using coarse points that are consistent

with those used for P
(p)
` . By consistent, we mean that any coarse pressure point has co-

located coarse velocity points as well as some notion of coarse velocity mid-points in between
the co-located coarse points. The initial focus in our discussion is on coarse point selection
and the choice of grid transfer sparsity patterns as these are the primary inputs to an energy
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Algorithm 2 P = form interpolation(A, x)[
Ã(v), Ã(p)

]
= form aux block diagonal(A)

C(p) = find coarse pressure(Ã(p))

N (p) = form pressure pattern(Ã(p), C(p))

P (p) = form pressure prolongator(Ã(p), C(p), N (p))

C(v) = form coarse velocities(Ã(p), C(p), N (p), x)

N (v) = form velocity pattern(Ã(v), C(v))

P (v) = form velocity prolongator(Ã(v), C(v), N (v))

minimization AMG algorithm. In addition to a consistent coarse point selection, we also aim
to produce a multigrid algorithm with relatively sparse coarse grid operators. That is, we want
coarsening rates and sparsity patterns to be defined in a way such that the matrix projection
R`A`P` is not significantly denser than A`. This requires some special considerations when
biquadratic basis functions are employed on the finest level.

Algorithm 2 illustrates a general strategy. To simplify notation, level sub-scripts are omit-
ted. First, submatrices Ã(v) and Ã(p) are formed corresponding to velocity-velocity and
presure-pressure coupling; subsequent AMG procedures will be applied to these matrices.
While ANS could be used for Ã(v), it may be advantageous to filter out weak couplings [22, 23].

Obviously, more care is required in defining Ã(p) as the (2, 2) block of the PDE system matrix
is identically zero. Coarse points are then defined. Specifically, C(p) and C(v) are sets of in-
dices corresponding to the fine level degrees-of-freedom (pressures and velocities respectively)
that will be represented on the next coarsest level. Formally, C(p) ⊂ Zn(p) and C(v) ⊂ Zn(v) ,
where n(p) (n(v)) is the number of fine grid pressures (velocities) and Zk denotes the set of
integers between 1 and k inclusive. Sparsity pattern matrices for the grid transfers are then

constructed. For example, N (p) is a binary matrix indicating that P
(p)
ij is nonzero only if N

(p)
ij

is one. Thus, the jth column of N (p) defines the support of the jth interpolating basis function.
Finally, actual interpolation weights must be calculated. Given that coarse points and spar-
sity patterns will be chosen in somewhat nonstandard ways to preserve certain discretization
features, it is important that a flexible algorithm is used to define interpolation weights. That
is, the algorithm must not rely on restrictive assumptions concerning the distances between
coarse points or the grid transfer sparsity patterns. For this, we employ an energy-minimizing
framework (EMIN-AMG) [7], which is described further below.

4.1 Coarse points and sparsity patterns for pressure grid transfers

The Ã(p) matrix must first be defined. A natural choice would be to take Ã(p) = BBT as this
leads to a pressure Poisson operator, which often plays a central role within incompressible
Navier-Stokes calculations. One complication, however, is that the stencil for this pressure
Poisson operator is somewhat non-standard. In particular, the use of biquadratic basis func-
tions for the velocities implies that stencils associated with ANS , B and consequently BBT

are wider/fuller than those obtained with standard first order finite differences, finite volumes,
or finite elements. First order schemes typically give rise to fairly compact stencils involving
only mesh points that immediately surround a central point. For example, the Q2 –Q1 interior
stencils associated with BBT are 25 point stencils (as opposed to standard nine point stencils)
when the mesh is a regular two-dimensional structured grid. To encourage stencil widths that
more closely resemble standard first order discretizations, Ã(p) is defined by dropping small
entries in Z = BBT and lumping dropped entries to the diagonal so the sum of matrix entries
within a row is preserved. This dropping essentially corresponds to removing nonzero entries

9



Algorithm 3 C(p) = find coarse pressures(A, x)

[V,E] = form graph(A) . A ∈ Rn×n, V is the set of vertices, E is the set of edges
C(p) = ∅ ; F (p) = ∅ . C(p)(F (p)) is a set of coarse (fine) vertices
S = {Si}i, Si = ∅ ∀i ∈ Zn
Cand = ∅
k = arbitrary vertex
while F (p) ∪ C(p) ( Zn do

D3 = { j | dist(Vk, Vj , E) ≤ 3 }
D4 = { j | dist(Vk, Vj , E) = 4 }
Sj = Sj ∪ k ∀j ∈ D3 . Sj updated to include all coarse points within distance 3 of Vj
D3 = D3 \ k
C(p) = C(p) ∪ k
F (p) = F (p) ∪D3

Cand = Cand ∪D4

Cand = Cand \ (F (p) ∪ C(p))
[h1, h2] = update heuristics(V,E, S, x, k, h1, h2)
k = arg minj∈Cand h1(j) . Best Cand or arbitrary unmarked

. vertex if Cand = ∅
end while
[C(p), F (p), S] = find extra dist3 Cpoints(V,E, S,C(p), F (p), x, h1, h2)

that satisfy

|zij | ≤ τ1
√
|ziizjj |, (19)

with τ1 being a user provided parameter.
The other non-standard aspect of our AMG procedure for P (p) is that we orient the al-

gorithm so that coarse pressure points are more distant than normal. In particular, classical
AMG targets a set of coarse points that are distance two from each other in the associated
matrix graph. Smoothed aggregation targets a set of aggregate root points (the aggregation
counterpart to coarse points) that are distance three from each other. In our algorithm, we

target distance four coarse points in the graph associated with Ã(p). This choice is again
driven by stencil widths within high order discretizations and avoiding excessive fill-in during
the Petrov-Galerkin projection, R`A`P`. When distance four coarse points are used in con-
junction with the sparsity pattern to be discussed, the projection of B (and ANS) to coarser
levels produce little additional fill-in (i.e. the average number of nonzeros per row does not
rise appreciably). However, more traditional coarsening rate of three might be worth further
exploration given the low complexity rates demonstrated in our numerical results with the
coarsening rate of four.

The general coarse point selection algorithm is given in Algorithm 3. The idea is to classify
all n(p) vertices as either coarse points (represented on next coarse grid) or fine points (not
represented on next coarse grid). In the AMG literature, these sets are respectively referred
to as the C- and F -point sets, and the classification as a C/F -splitting. In this paper, we
use C(p) and F (p) (C(v) and F (v)) to refer to these two sets for pressure (velocity) vertices.

Let G = (V,E) be a graph of matrix Ã(p). The classification is performed by first selecting
an initial vertex, k ∈ V , and including it in C(p). All vertices within distance three from k,
dist(Vk, Vj , E) ≤ 3, (excluding k) are added to F (p). Here, distance refers to the minimum
number of edge traversals (defined by E) required to travel from one vertex to another. A
candidate set, Cand, is also introduced to encourage future coarse points to be distance four
from existing C(p). Specifically, Cand is the set of all vertices that are distance four from any
C(p) and have not been already included in C(p) or F (p). The next C-point is selected giving
priority to vertices in Cand using heuristics that encourage the close packing of coarse points
(by choosing a vertex with the smallest average Euclidean distance to existing C(p) points).
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Figure 4: Left: Q2 –Q1 discretization where circles (boxes) are pressure and co-located velocity
(non-co-located velocity) dofs. Right: perfect pressure coarsening. Circles are coarse pressure
dofs. Dofs surrounded by gray rectangle belong to interpolation sparsity pattern associated
with middle coarse dof’s column.

The above procedure is repeated until all vertices are classified. Upon completion, all vertices
in C(p) are at least distance four from each other. All vertices in F (p) are within distance three
from at least one vertex in C(p). This may lead to situations where some F (p) vertices are not
well covered by C(p) vertices, e.g. only within distance three from just a single C(p). This type
of issue occurs in most algebraic multigrid codes (including our smoothed aggregation library)
and can degrade convergence rates. To minimize these effects, heuristics are generally used to
convert some F (p) vertices to C(p) vertices, targeting those not well covered by current C(p)

vertices, i.e. those with a small size of set Sj where for every j ∈ F (p) the set Sj corresponds
to all C(p) vertices that are within graph distance three from vertex Vj (j ∈ Zn). Specifically,
heuristics first convert j ∈ F (p) when |Sj | = 1 and the Euclidean distance to the one C(p) point
is large. Heuristics also examine points where |Sj | = 2 and converts them to C(p) vertices only
if the average Euclidean and the average graph distance to the C(p) vertices is large and if j
is far from the line segment connecting the two C(p) vertices. Typically, a small percentage
of C(p) vertices are chosen by this algorithm. Harmonic averages (and standard averages) of
Euclidean distances (and graph distances) to nearby C(p) vertices are stored in h1(j) (and
h2(j)). These are computed by update heuristics. Harmonic averages essentially favor
minimum distances.

To define P (p)’s sparsity pattern the sets Si are used.3 The sparsity pattern is then given
by

N
(p)
ij =

{
1, if j ∈ Si,
0, otherwise.

Figure 4 (right) illustrates a perfect coarsening of the pressure dofs for the discretization
depicted in Figure 4 (left). Here, all nearest neighbors to any coarse pressure are exactly

distance four away. This graph distance is in terms of the Ã(p) matrix.4 Such a perfect
coarsening would not generally occur, though our metrics encourage it. Consider, for example,
the situation where the p0,0 is the initial coarse vertex. Here, sub-script i, j refers to the
vertex that is i (j) horizontal (vertical) edges away from the lowest-leftmost vertex. The D4

3The Si sets are also used by find extra dist3 Cpoints.
4The figure displays the underlying mesh as opposed to the matrix graph. The Ã(p) matrix graph would

also include diagonal edges within each mesh box.
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Algorithm 4 C(v) = find velocity Cpoints(S,C(p))

C
(p)

= C(p)

for i ∈ F (p) do
Xi =

(∑
k∈Si

x
(p)
k

)
/|Si| . Barycenter of surrounding C-points

Bi = {j | j ∈ F (p) and Si ⊆ Sj} . All F -points that also interpolate from Si

ti =
(∑d

k=1

(
maxj∈Bi

x
(p)
jk −minj∈Bi

x
(p)
jk

))1/2

. Sum of box dimensions surrounding

Bi
m = arg mink∈Bi

‖x(p)
k −Xi‖∗ . Closest to target,Xi

if min
j∈Bi∩C

(p) ‖x(p)
j − x

(p)
m ‖∗ ≥ τ2 ti then . No nearby C

(p)
vertex

C
(p)

= C
(p) ∪ {m}

end if
end for
C(v) = find colocated velocities(C

(p)
)

and Cand sets would include all vertices along the line between p0,4 and p4,4 inclusive and
between p4,4 and p4,0 inclusive. To encourage perfect coarsening, the selection of a next C-
point should favor vertices spatially closest to the initial corner vertex so that either p0,4 or p4,0

is chosen next. However, encouraging perfect coarsening becomes complicated as additional
coarse vertices are chosen, and it is not necessary from a numerical convergence perspective.
Finally, the gray shaded region illustrates the interpolation sparsity pattern associated with
the p4,4 vertex. In particular, all vertices surrounded by the gray region are at most distance
three from p4,4. Thus, these degrees-of-freedom would be nonzero in the column of the matrix
interpolation operator associated with this p4,4 coarse pressure.

4.2 Coarse points and sparsity patterns for velocity grid transfers

Each velocity component (in the different coordinate directions) is coarsened in an identical
fashion and uses the same grid transfer sparsity pattern. The method for determining coarse
velocity vertices is given in Algorithm 4. The algorithm starts by taking pressure coarse

points, C(p), and adding pressure mid-points to define the set C
(p)

. The basic idea for mid-
points is to first compute a set of target spatial locations Xi. The number of unique target
locations is based on the number of unique Si sets. Recall, Si gives all coarse vertices used (i.e.
with nonzero interpolation weights) when interpolating to the ith fine pressure vertex. Each
target location corresponds to the geometric centroid (or barycenter) of the spatial locations
associated with Si’s coarse points. For each target location, we find the spatially closest fine
pressure vertex. The search for the closest pressure is limited to the set of vertices Bi which
corresponds to all F (p) points within distance three to all of Si’s vertices. Thus, the Bi vertices
define a small neighborhood surrounding the ith vertex. The closest pressure dof is chosen
as a pressure mid-point only if it is not too close to an already to an already chosen coarse

pressure in C
(p)

. Closeness is defined in a relative sense with respect to a box containing all Bi
and a tolerance, tol, shown in Algorithm 4. Further, the order in which our implementation
computes target mid-points (the for loop in Algorithm 4) is such that vertices with larger |Si|
are chosen before those with smaller |Si| (|Si| denotes the cardinality of the set Si). In the

final step, the coarse velocity points are taken to be velocities co-located with the chosen C
(p)

pressures.
Algorithm 4’s cost is clearly proportional to the number of fine mesh vertices, |F (p)|. Each

fine vertex (i.e, each i in the for loop) requires a constant amount of work, though this constant
is not small. Specifically, this consists of the computation of Xi and the set Bi followed by
calculations that are each proportional to the size of |Bi|. The Xi computation is proportional
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Figure 5: Two mid-point scenarios. Each ‘*’ vertex interpolates from the same subset of C(p),
the solid dots within the dashed region. The hexagon gives the target spatial location and
gray regions depict vertices that are searched to find a vertex near the target.

to the number of C(p) vertices that are used to interpolate to the ith fine vertex (at most 2d in
the ideal uniform case). The sizes of the Bi are bounded from above due to the PDE nature
of the problem (meaning that for every fine point there is a bounded number of coarse points
that are close) and the fact that coarse points interpolate to fine points only within distance
three. The Bi determination requires visiting a single coarse point from Si (any coarse point
from the set is suitable) and checking if any of the fine points that interpolate from it also
interpolate from all other points in Si. On regular grids with perfect distance-four coarsening
(e.g., Figure 4), the number of visited fine points is 7d − 1 and |Bi| is bounded by 3d−17d−1

(where again d is the problem dimension).
The velocity prolongator sparsity pattern N (v) is defined exactly in the same fashion as

for N (p) with the exception that each velocity component is treated separately. That is, a
fine grid velocity associated with a coordinate direction only interpolates from coarse grid

velocities associated with the same coordinate direction (i.e., P
(v)
` is block diagonal with each

block corresponding to a different coordinate direction). Specifically, nonzeros in the ith row
of N (v) are given by all C(v) vertices that are within distance three of vertex i within the
nodal graph of Ã(v). This Ã(v) is defined by dropping small entries from ANS as previously
discussed for Ã(p).

Figure 5 illustrates an ideal case where the original discretization is on a uniform regular
mesh and all C(p) vertices are equi-spaced. Specifically, the right image5 depicts three vertices
by a ‘*’. If we refer to these vertices as k, `, and m, then Sk ≡ S` ≡ Sm consists of two
vertices in the banana shaped region. The small hexagon gives the target spatial location
(Xk ≡ X` ≡ Xm) and vertices surrounded by the gray region define the Bk ≡ B` ≡ Bm, all
within distance three from both Sk/S`/Sm vertices. In this situation the target location is
exactly at the same location as a pressure vertex. The left image shows the same information
for a different mesh location. Figure 6 illustrates perturbed scenarios where the p7,7 vertex

is in C
(p)

as opposed to the p8,8 vertex. Thus, a heuristic has chosen a coarse point that
is a distance three (instead of four) from existing coarse points. In this case, p7,7 also lies
within the S sets associated with the ‘*’ vertices and the barycenters are offset. If p6,6 is first

added to C
(p)

(due to the left image computation), then after p5,6 might be added to C
(p)

(the right image calculation) or deemed too close to p6,6 depending on the value of a user

5Again, the image displays the underlying mesh as opposed to the matrix graph.
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Figure 6: Perturbed mid-point scenarios. Each ‘*’ vertex interpolates from the same subset of
C(p), the solid dots within the dashed region. The hexagon gives the target spatial location
and gray regions depict vertices that are searched to find a vertex near the target.

provided τ2. That is, the total number of mid-points might vary somewhat with either several
nearby mid-points or a sparser collection of mid-points. It is important to notice that even
if the mid-point selection has some irregularities, this does not directly propagate to coarser
levels. That is, coarse velocities at any given level are essentially a function of coarse pressures
on that level and not a function of coarse velocities from a preceding level. Thus, a less than
ideal mid-point selection does not have a direct influence on the coarsening of velocities on
even coarser levels. Finally, additional heuristics are used to convert some F (v) vertices to
C(v) vertices if some F (v) vertices are distant from all current C(v) vertices.

4.3 Determination of transfer coefficients using EMIN-AMG

There are several ways in which interpolation coefficients can be determined. Here, we use the
energy-minimizing framework, EMIN-AMG, proposed in [7], which is a generalization of ideas
in [24] and closely related to [25, 26, 27, 28, 29, 30, 31, 32]. We summarize only key features as
the details are not crucial to this paper. Flexibility is the most significant aspect of EMIN-AMG
for the present context. In particular, the EMIN-AMG algorithm does not make any implicit or
explicit assumptions about the selection of coarse points or grid transfer sparsity patterns. This
frees one to choose these components in a way to preserve important features. These features
might be discretization features (as in this paper) or they might be application features, such
as cracks or interfaces that one wishes to maintain throughout the multigrid hierarchy. This
flexibility is in contrast to popular AMG methods such as classical AMG [22, 23] or smoothed
aggregation AMG [33] where the choice of coarse points (or aggregates), interpolation sparsity
pattern, and interpolation coefficients is somewhat intermingled. Another AMG algorithm
with similar flexibility is given in [8].

The main idea of EMIN-AMG is as follows. Let N be a set of matrices with a specific
(previously specified) nonzero pattern and dimensions, and W be a set of fine level modes
(e.g., vectors) requiring exact interpolation. Prolongator coefficients are determined through
an approximate solution of a constrained minimization problem

P = arg min
P

∑
j

‖Pj‖2χ subject to P ∈ N , and W ∈ range(P ). (20)

Here, χ is some matrix norm, Pj is the jth column of P , and the sum is over all columns in P .
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For symmetric problems (e.g., AS and approximations to the pressure Schur complement), it
is natural to take χ to be the A-norm. Likewise, it is reasonable to take χ to be the ATA-norm
for non-symmetric systems. While the solution of an optimization problem may seem onerous
compared to the task of solving a linear system, only a rough approximate solution to (20)
is needed and an iterative process can be started with a simple but good initial prolongator
satisfying the constraints.

In our case, W is just a single vector of all ones when constructing P (p). This corresponds
to the requirement that a constant can be perfectly recovered by interpolation. For P (v), W
consists of two (three) vectors in two (three) dimensions. Each vector contains only zeros
and ones and corresponds to a constant for a velocity component in each of the different
coordinate directions. It follows that the constraint W ∈ range(P ) can be satisfied if the
sum of all nonzeros in each row of P is one (assuming that the sparsity pattern does not mix
different velocity direction components). That is, a coarse level constant interpolates to a
fine level constant. Thus, a simple initial feasible guess for an optimization algorithm applied
to (20) just takes the binary sparsity pattern matrix and divides each entry by the number
of nonzeros in each row. The minimization problem is solved iteratively, for instance, using
Algorithms 2 or 3 from [7]. These algorithms essentially correspond to applying a constrained
version of CG or GMRES to solve for a prolongator matrix. The key is that the overall cost of
the prolongator construction is only modestly higher than that of a more conventional AMG
procedure as only a couple of EMIN-AMG iterations are sufficient.

In symmetric cases, R is taken as PT . However, for the Navier-Stokes problem a Petrov-
Galerkin projection is employed, i.e. R 6= PT . An energy minimization procedure is also used
for determining the R matrix. This procedure employs the transposed sparsity pattern for P
and uses the AAT -norm for χ. This choice of R generally leads to projected discretization
operators with satisfactory stability properties even in the presence of strong convection. This
is discussed further in [7, 20]

5 Smoothers

Our choice of smoothers is somewhat restricted as typical AMG smoothers such as Jacobi
and Gauss-Seidel are ineffective on saddle-point systems due to their negative eigenvalues.
Relatively standard incomplete factorizations such as ILU(1) can be used for AMG smoothers.
As the sparsity pattern of the incomplete factors is closely connected to the sparsity pattern
of the original matrix (e.g. the ILU(0) factors have the same sparsity pattern as the initial
discretization matrix), the zero block in the discretization matrix can cause issues. In this
paper, our ILU(1) implementation treats the matrix diagonal (including those within the
zero block) as being nonzero to encourage fill-in within the part of the incomplete factors
associated with the zero block. In addition to ILU(1), we consider two families of smoothers
that specifically take advantage of the block structure: Vanka and Braess-Sarazin relaxation.

5.1 Vanka relaxation

Vanka smoothing was originally proposed in [34] for finite-difference schemes. Further analysis
of Vanka methods for finite-element discretizations of the Stokes equations has been done
in [35]. The Vanka scheme corresponds to an overlapping block Gauss-Seidel method. The
blocks are defined by partitioning all dofs into overlapping sets Ti, i = 1, . . . , n(p). The number
of sets is the same as the number of pressure dofs when Q2 –Q1 elements are employed. Each
Ti can be defined algebraically by taking all column indices corresponding to nonzero entries
in the ith row of B along with the n(v) + ith index. That is, each Ti consists of a single
pressure dof and all velocity dofs that are either co-located or adjacent (in the matrix graph)
to this single pressure dof. This choice of blocks is motivated by the saddle point nature of
the problem so that each block submatrix is also a saddle point matrix. To apply one step of
Vanka relaxation to a linear system, Ax = f where the current approximation is given by xk,
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one computes an update of the form

xk+1 = xk + ωRTi (RiAR
T
i )−1Ri

(
f −Axk

)
. (21)

Here, Ri is a binary projection operator restricting a global vector to a local one corresponding
to dofs in Ti, and ω is the under-relaxation parameter. The overall relaxation procedure is
done in a Gauss-Seidel manner cycling through all sets Ti.

5.2 Braess-Sarazin relaxation

Braess-Sarazin algorithms were originally considered as a relaxation scheme for Stokes prob-
lems [36, 37], and later applied to Navier-Stokes equations [38]. Compared to Vanka relaxation,
where the smoothing procedure relies on solving multiple local saddle-point problems, Braess-
Sarazin relaxation solves a global problem, though greatly simplified.

A single step of the relaxation procedure can be written as(
uk+1

pk+1

)
=

(
uk

pk

)
+

(
1
ωD BT

B O

)−1((
f
g

)
−
(
Â BT

B O

)(
uk

pk

))
, (22)

where Â is the velocity block of A, D is a suitable preconditioner for Â, and w is a relaxation
parameter. As(

1
ωD BT

B O

)−1

=

(
I 1

ωD
−1BT

O I

)−1(
ωD O
B − 1

ωBD
−1BT

)−1

, (23)

a solution of a Schur complement system, S = BD−1BT , is required. In our experiments, the
Schur complement is explicitly formed and solved approximately by a relaxation procedure, e.g.
via several Gauss-Seidel iterations. The Braess-Sarazin smoother requires a practical choice
of the matrix D. The original paper considered D = diag(Â). While that choice performed
reasonably well in our experiments, we found that faster convergence is achieved with D being
a diagonal matrix with entries dii =

∑
j |(Â)ij |. That is, dii is the sum of the absolute values

in the ith row of Â.

6 Numerical results

In this section, Stokes and Navier-Stokes problems are considered. Q2 elements are used to
discretize velocities and Q1 elements are used to discretize pressure. The discrete problems
were generated using the IFISS software package [39] (version 3.3) written in MATLAB.
The proposed algorithms were prototyped in MATLAB using the MueMat package [40], and
later implemented in C++ in the MueLu multigrid package [41]. All numerical results were
produced with MueLu (as of Trilinos version 12.6) with a single exception of the unstructured
circle-driven cavity problem that was solved with MueMat.

In all of our calculations, five Gauss-Seidel iterations are performed to approximate the
solution of the Schur complement system within the Braess-Sarazin smoother (BS), and the
relaxation parameter is set to 0.666. The Vanka smoother’s under-relaxation parameter is
fixed at 0.5, though it was observed in [34] that higher Reynolds numbers would benefit from
lower parameter values. Unless stated otherwise, GMRES is used as an iterative method
with the residual tolerance for the stopping criteria chosen to be 10−6. All results in this
section use τ1 = 0.06 in (19) for dropping small entries while constructing Ã(v) and Ã(p), and

τ2 =
√

1.5 · 10−3 in Algorithm 4 to decide whether a candidate coarse velocity mid-point is
sufficiently far from already chosen velocity coarse points so that it should be added as an
additional coarse point.
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Figure 7: Equally distributed streamlines for the Stokes lid-cavity problem.

Table 1: Number of iterations and multigrid run times for the Stokes lid-driven cavity.

Dofs Complexity `max
Vanka (1,1) BS (2,2) ILU(1) (1,1)

Its Setup Solve Its Setup Solve Its Setup Solve

659 1.08 2 11 0.02 0.06 9 0.01 0.02 6 0.02 0.01
2467 1.08 2 12 0.05 0.20 10 0.03 0.03 7 0.05 0.02
9539 1.08 3 14 0.21 1.02 14 0.09 0.10 9 0.19 0.06
37507 1.08 3 15 0.93 4.38 19 0.36 0.36 10 0.77 0.22
148739 1.11 4 19 5.11 22.31 27 2.17 2.19 13 4.08 1.16
592387 1.05 5 18 28.84 84.80 20 13.34 6.70 17 20.32 5.96

6.1 Stokes lid-driven cavity problem

We begin with a benchmark lid-driven cavity Stokes problem on a square Ω = (−1, 1)2 domain
with leaky boundary conditions. Specifically, the y component of velocity is zero on the
boundary, i.e. u(y)|∂Ω = 0. The x component of velocity is only nonzero on the top of the
cavity. In particular,

u(x) =

{
1, for y = 1;−1 ≤ x ≤ 1,

0, otherwise.
(24)

We consider a set of uniform meshes. The discrete system has one zero eigenvalue correspond-
ing to constant pressure. A typical solution on a 10 × 10 mesh is illustrated in Figure 7.
Prolongator coefficients are computed with a single EMIN-AMG CG step [7]. One iteration
of the Vanka smoother or two iterations of Braess-Sarazin smoother are considered as pre-
and post-smoothers in the multigrid hierarchy. Vanka relaxation is used on the coarsest grid
instead of a direct solver to avoid direct solver issues associated with the singularity of the
coarsest grid problem.

Table 1 summarizes the results, including number of iterations and run times using a
multigrid preconditioned GMRES solver. Our aggressive approach to coarsening (choosing
coarse pressure dofs that are distance four from each other) results in a modest number of
multigrid levels, where the coarsest hierarchy level for all examples has less than 205 total dofs.
Further, the multigrid operator complexities are very small. These operator complexities are
defined as the sum of the number of nonzeros of all discretization matrices on all levels divided
by the number of nonzeros for the finest level discretization matrix. As the table illustrates,
the number of additional nonzeros associated with the coarse level matrices is quite small and
one can expect that the storage and computational time associated with these coarse operators
is also quite modest. That is, the cost per iteration does not grow appreciably when more
levels are employed. It is also particularly important that coarse discretization stencil widths
do not grow too large on large scale parallel machines as large stencil widths imply longer
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distance communication.
Overall, the number of iterations remains relatively stable with Vanka and Braess-Sarazin

smoothing which suggests an h-independence property of our approach (i.e., the number of
iterations remains bounded as the mesh is refined). The generally well-behaved nature of
the convergence rates is an indication that the AMG hierarchy (generated by the proposed
coarsening, sparsity patterns, and EMIN-AMG) is suitable for this Stokes problem. Though
the iterations do grow slowly with ILU(1) relaxation, it does require the least time in the
solve phase for the meshes considered in this study. It is well known that the ordering of
unknowns can have a significant influence on the convergence behavior when ILU methods
are employed [42, 43]. For these Stokes experiments we found that a natural ordering (i.e.,
lexicographical starting from the lower-left corner) worked fine. However, a reverse Cuthill-
McKee (RCM) ordering is needed to obtain satisfactory convergence rates with ILU for all
the remaining Navier-Stokes examples shown in this paper. Overall, the Vanka run times are
noticeably slower than Braess-Sarazin run times even though the convergence rate is a bit
better. This iteration/run time behavior between Vanka and Braess-Sarazin has also been
observed in [44]. The Vanka smoother involves numerous dense matrix solves associated with
each Vanka block, which are of larger size due to the second order approximation in velocities.
Additionally, residual components associated with velocity are updated multiple times by the
Vanka smoother due to a significant overlap among Vanka blocks. It should be pointed out
that our smoothing code has not been fully optimized.

With our current implementation, the setup phase requires more time than the solve phase.
In general, the initialization time associated with the Braess-Sarazin smoother is small relative
to the total AMG setup time while the Vanka and ILU(1) setup times are large. Roughly, the
Vanka smoother setup time (or ILU(1) setup time) can be estimated by taking the difference
between the total AMG setup time using Vanka (or ILU) and the total AMG setup time
using Braess-Sarazin. Even with the Braess-Sarazin smoothing, the setup time is noticeable.
The overwhelming majority of this time is spent on graph distance calculations, used in the
coarsening and sparsity pattern calculation, and not in the EMIN-AMG algorithm. We believe
that the large time for distance calculations is due to a poor implementation as opposed
to intrinsic to the algorithm. While we have not further optimized this graph phase of the
algorithm, it is important to note that the graph calculation is easily amortized over a nonlinear
sequence of linear systems. That is, the graph coarsening can be performed just once over a
sequence associated with a nonlinear solve. For the finest mesh associated with Table 1, the
graph setup phase required 9.74 seconds. As this cost only needs to be incurred once, the
incremental setup cost for an additional linear system using Braess-Sarazin would only be 3.60
seconds, which is about half the time of the solve phase.

Let us now examine the effect of the parameters τ1 and τ2 on our results. The parameter
τ1 was introduced in Section 4.1. It is used for stencil reduction in matrices associated with
velocity and pressure blocks. From a convergence point of view, smaller values of τ1 correspond
to denser block matrices used in prolongators construction and thus result in more aggressive
coarsening. On the other hand, larger values of τ1 correspond to sparser matrices and poorer
approximations to the original matrices. Table 2 demonstrates the convergence for the lidcavity
problem on a fixed mesh with varying values of τ1 while τ2 is fixed. The number of iterations
reaches minimum at τ1 = 0.05 and increases thereafter. The size of the first coarse matrix
increases from 28088 rows for τ1 = 0 to 74428 for τ1 = 0.25. Therefore, the selected τ1 is
indeed a suitable choice for the problem. We expect it to be reasonable for Navier-Stokes
problems with low Reynolds numbers.

The parameter τ2 was described in Section 4.2. It is responsible for determining the distance
at which close points are considered to coincide. We found that our results are insensitive to
this parameter. For instance, we found that the number of iterations remained constant for
varying τ2 from 0.0 to 0.4. The parameter produced only a minor difference in the size of some
coarse level matrices (e.g., it slightly reduced the size of the level 2 matrix for the 592387 mesh
from 2739 for τ1 = 0.01 to 2199 for τ2 = 0.4).
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Table 2: Number of iterations for the Stokes matrix of size 592387 with Braess-Sarazin
smoother for varying values of τ1.

τ1 Number of iterations

0.00 100+
0.05 20
0.10 21
0.15 32
0.20 36
0.25 100+

Table 3: Smallest non-zero singular values of matrices B̃` for the Stokes matrix of size 592387.

` 0 1 2 3

σmin,` 1.54 1.56 1.56 1.07

We investigate the stability of the coarse grid operators by using a technique suggested
in [45] (section 3.4.3) where a relationship between the smallest non-zero singular value of an
off-diagonal matrix (in our case the scaled divergence operator) and the inf-sup constant β
is established. Instead of a looking at a sequence of matrices based on mesh refinement, we

consider a sequence matrices derived from coarse level operators. Specifically, let M
(p)
0 and

M
(v)
0 be pressure and velocity mass matrices associated with the fine level discretization. We

denote by M
(p)
` and M

(v)
` the projections of these matrices to coarse levels, i.e.

M
(p)
` = R

(p)
` M

(p)
`−1P

(p)
` , M

(v)
` = R

(v)
` M

(v)
`−1P

(v)
` , ` = 1, . . . , `max. (25)

Let us also denote by B` the (2,1) block of the coarse operator A`, corresponding to pressure
rows and column velocities. Clearly, B0 = B from equation (9). We then compute the smallest
non-zero singular values σmin,` of the matrices

B̃` = lump(|M (p)
` |)

− 1
2B` lump(|M (v)

` |)
− 1

2 . (26)

The results are shown in Table 3. The smallest singular values are clearly separated from
0 which suggests a similar stability of the operators, though the coarsest operator’s minimum
singular value is somewhat lower (due in part to the small size, 150 pressure dofs, of this
matrix). The singular values for finer level matrices are all very close to each other.

6.2 Stokes circle-driven cavity problem

To test the solution strategy on unstructured meshes, we consider a modified form of the
Stokes lid-driven cavity problem which we will call a circle-driven cavity problem. Specifically,
the problem domain now corresponds to a square with a hole removed from the center. Fig-
ure 8 illustrates one of the coarser meshes. This mesh was generated with the Cubit software
package [46]. While the mesh resembles a structured mesh near the domain corners, it is un-
structured near the circular boundary. For our experiments, both velocity components are set
to zero (via Dirichlet boundary conditions) along the box boundary. Additionally, Dirichlet
conditions are applied on the circle boundary such that the velocity along the circle has a
magnitude of one and is oriented in the clockwise tangent direction. That is, the horizontal
(vertical) velocity is 1 at the topmost (leftmost) side of the circle and −1 at the bottom (right-
most) side of the circle. Figure 9 illustrates the computed solutions on the mesh associated
with 7097 elements. The dark ring in the figure corresponds to the circle boundary for z = 0
(and is drawn to help clarify the plot). One can see that the horizontal and vertical prescribed
values on the circular boundary gradually decay as they approach the outer cavity boundary.
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Figure 8: Unstructured mesh for the Stokes circle-driven cavity problem containing 1756
quadrilateral elements.

Figure 9: Computed horizontal (left) and vertical (right) velocity components for the Stokes
circle-driven cavity problem. The rightmost portion of each figure corresponds to the top right
corner of the cavity.

Table 4 records the required number of GMRES iterations using the proposed multigrid
preconditioner with both Vanka and Braess-Sarazin smoothing. One can see that the iteration
count grows quite modestly with respect to increases in mesh resolution (corresponding to a
1000x increase in linear system size) similar to the structured grid tests with a slight uptick
for the largest mesh. The exception is the Braess-Sarazin result on the largest mesh which
we believe to be a result of a deficiency in Braess-Sarazin smoothing on steady problems. We
have noticed the same sort of behavior in conjunction with geometric multigrid for meshes
with irregular mesh spacing [44].

6.3 Navier-Stokes problems

Next, we consider the following problems for Navier-Stokes flow:

1. Lid-driven cavity problem

The lid-driven mesh and boundary conditions are identical to the Stokes setup. Two
values of ν are considered, ν = 0.01 and ν = 0.002 (corresponding to R = 200 and 1000,
respectively).

2. Backward facing step problem
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Table 4: Number of GMRES iterations for the Stokes circle-driven cavity problem.

Dofs Complexity `max Vanka (1,1) BS (2,2)

1045 1.10 2 12 9
4078 1.12 3 13 12
16539 1.11 4 13 14
65343 1.10 4 14 18
261074 1.10 4 17 22
1043963 1.10 5 28 62

Figure 10: Equally distributed streamlines for the Navier-Stokes backward-facing step problem.

An L-shaped domain is considered with a uniform mesh. A Poiseuille flow profile is
imposed on the inflow boundary (x = −1; 0 ≤ y ≤ 1), and a no-flow (zero velocity)
condition is imposed on the walls. The outflow boundary (x = L;−1 < y < 1) condition
is set to Neumann, which automatically adjusts the mean outflow pressure to zero. Two
values of ν are considered, ν = 0.02 and ν = 0.005 (corresponding to R = 100 and 400,
respectively). The longer channel length L = 10 is used for larger Reynolds numbers to
allow for the exit flow to become well-developed (i.e., to have an essentially parabolic
profile), while L = 5 is used for smaller R. Figure 10 demonstrates a typical solution for
ν = 0.02.

3. Obstacle problem

The obstacle problem has a similar setup to that of the backward facing step. In partic-
ular, L = 8 (for both ν = 0.02 and ν = 0.005) and a uniform mesh is used to represent
the domain. Additionally, a Poiseuille flow profile is imposed on the inflow boundary,
no-flow condition is imposed on the walls and the same outflow boundary condition is
imposed at the exit. Figure 11 demonstrates a typical solution for ν = 0.02.

As all of these problems are nonlinear, the matrix for AMG testing was chosen to be the
last linear system within a converged Picard sequence that is terminated when a 2-norm of
a nonlinear residual is less than 10−8. Prolongator coefficients and restriction coefficients are
each computed with a single EMIN-AMG GMRES step. One iteration of the Vanka smoother
as well as two iterations of Braess-Sarazin smoother are considered as a pre- and post-smoothers
in the multigrid hierarchy.

As the relative timing behavior is similar to the Stokes problem, we focus on convergence
results for the Navier-Stokes problems. These are summarized in Table 6, Table 5, and Table 7
for each of the studied problems. Overall, the most important aspect of the convergence
behavior is that the number of iterations is relatively stable with respect to mesh refinement,
though there is certainly variation across the methods/problems and occasionally some modest
growth. This generally gives us a certain level of confidence in the grid transfers and the overall
stability of the coarse grid operators produced by the proposed combination of coarsening, grid
transfer sparsity patterns and EMIN-AMG.

Similar to the Stokes problem, ILU smoothing generally leads to relatively consistent
growth in iterations as the mesh is refined, though iterations dropped for the finest mesh
lid-driven cavity problem when ν = 0.005. Some combinations of ν = 0.005 and coarse meshes
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Figure 11: Equally distributed streamlines for the Navier-Stokes obstacle problem.

Table 5: Number of iterations for the Navier-Stokes lid cavity.

Dofs
ν = 0.01 ν = 0.002

Vanka (1,1) BS (2,2) ILU(1) (1,1) Vanka (1,1) BS (2,2) ILU(1) (1,1)

659 20 19 6 38 44 8
2467 26 22 7 49 55 9
9539 22 26 9 53 60 13
37507 24 36 18 59 68 31
148739 32 46 22 48 78 23

are problematic with ILU smoothing. Though we have not performed a detailed study of
these cases, we do note that for these mesh sizes there are stability concerns for the finest level
Galerkin discretization when ν = 0.005. As with the Stokes problem, ILU smoothing often
leads to the fewest iterations, though Vanka smoothing leads to the most scalable method
with respect to iterations and mesh refinement. Interestingly, the number of iterations drops
steadily when AMG is used with Vanka smoothing for the ν = 0.005 obstacle, though in other
situations iterations are either nearly flat or rise modestly. While convergence rates are rela-
tively constant with respect to mesh refinement, there is sensitivity to the Reynolds number.
A noticeable Reynolds number dependence has been observed in other scalable solvers such
as those discussed in [6]. Overall, the Braess-Sarazin smoother requires more iterations than
the Vanka method as in the Stokes example. However, the gap between the two smoothers
is somewhat larger than on the Stokes example, which perhaps suggests larger sensitivity of
the Braess-Sarazin smoother to higher contributions of the convective terms. It should be
noted that limitations of the Braess-Sarazin method have lead to more modern physics-based
approaches such as the pressure convection-diffusion preconditioner and the least-squares com-
mutator preconditioner that better account for the convective term [6]. We hope to explore
this class of physics-based methods in the context of multigrid smoothers (as opposed to as
preconditioners).

7 Conclusion

A new AMG coarsening approach has been proposed for Q2 –Q1 mixed discretizations of
Stokes and Navier-Stokes equations. The advantage of the new method is in its preservation of
the spatial location relationship between pressure and velocity unknowns throughout multigrid
hierarchy, so that the qualitative structure of the finest level is preserved on coarse levels.
This is achieved by utilizing information gathered during pressure coarsening to guide the
construction of the velocity grid transfer. The determination of grid transfer coefficients is
then obtained by utilizing a flexible EMIN-AMG framework. A key feature of the proposed
approach is that it coarsens fairly aggressively. In this way, the resulting multigrid operator
complexity is quite low. This implies that the growth in the storage and in the V cycle cost
remains quite modest as the number of multigrid levels increases. Experiments have been

6ILU(1) + RCM did not converge in 100 iterations; instead, ILU(2) + RCM is run
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Table 6: Number of iterations for the Navier-Stokes backward-facing step.

ν = 0.02 ν = 0.005

Dofs Vanka (1,1) BS (2,2) ILU(1) (1,1) Dofs Vanka (1,1) BS (2,2) ILU(1) (1,1)

479 20 21 6 889 51 56 56

1747 22 26 8 3287 49 58 66

6659 25 24 11 12619 43 58 18
25987 26 32 17 49427 37 53 24
102659 26 47 25 195619 47 68 46

Table 7: Number of iterations for the Navier-Stokes obstacle.

Dofs
ν = 0.02 ν = 0.005

Vanka (1,1) BS (2,2) ILU(1) (1,1) Vanka (1,1) BS (2,2) ILU(1) (1,1)

660 23 28 8 70 63 296

2488 23 33 8 41 62 17
9512 26 28 12 41 65 19
37168 24 32 14 34 51 22
146912 36 50 24 30 56 30

conducted with three different smoothers to demonstrate the suitability of the AMG hierarchy
generated by the proposed procedures. Though there is some variation in iteration counts
needed for convergence, the overall iteration/convergence rate trends are well-behaved. In
several cases, the required number of iterations does not increase as the mesh is refined while
in some other cases there is some modest iteration growth. Additionally, two of considered
smoothers (Vanka and Braess-Sarazin) specifically target incompressible flow problems and
rely somewhat on sub-matrices capturing basic attributes of corresponding PDE operators,
which then must be maintained on coarse levels of the multigrid hierarchy.

The paper concentrated on the Q2 –Q1 approximation due to it simplicity. However, it is
hoped that the method can be extended to other mixed discretization methods based on the
key idea that the coarsening of one type of variable guide the coarsening of other variables.
One possible direction that we intend to explore are resistive magnetohydrodynamics (MHD)
systems which also include electro-magnetic effects.
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