
PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS
AND COLUMNS VIA NULL SPACE METHODS

JASON S. HOWELL∗

Abstract. Several applied problems may produce large sparse matrices with a small number
of dense rows and/or columns, which can adversely affect the performance of commonly used direct
solvers. By posing the problem as a saddle point system, an unconventional application of a null
space method can be employed to eliminate dense rows and columns. The choice of null space basis
is critical in retaining the overall sparse structure of the matrix. A one-sided application of the null
space method is also presented to eliminate either dense rows or columns. These methods can be
considered techniques that modify the nonzero structure of the matrix before employing a direct
solver, and may result in improved direct solver performance.

Key words. null space method, saddle point problem, direct method, dense row, dense column,
bordered matrix

AMS subject classifications. 65F05, 65N22, 65F50

1. Introduction. Modern direct solvers for large sparse linear systems usually
consist of three phases: a symbolic analysis phase, a numerical factorization phase, and
a solution phase, with some approaches combining aspects of symbolic and numerical
factorization [19]. Much of the recent advancements in the efficiency of these solvers
can be attributed in no small part to advances in algorithms used in the symbolic
phase, which examines the structure of the coefficient matrix, i.e. the pattern of
zero/nonzero entries. A thorough analysis of the structure lends intelligence that helps
algorithms avoid numerical operations on zero entries, order rows and/or columns
for a more efficient numerical factorization, reduce the amount of fill (zero entries
being converted to nonzeros) in LU factorizations, and results in more efficient data
structures and memory allocation. Thus the structure of the coefficient matrix imparts
significant influence on the efficiency in solving a large sparse linear system via direct
methods.

This contrasts with iterative methods, the efficiency of which may be influenced
greatly by the condition number of the coefficient matrix. To improve the poten-
tial performance of iterative methods, preconditioning techniques have been studied
extensively [4]. In essence, preconditioning can be thought of as a modification of
the linear system prior to solution with the intention of improving iterative solver
performance.

A preconditioning analogue for direct solvers would be a technique that modifies
the nonzero structure of the coefficient matrix prior to entering the symbolic analysis
phase of a modern direct solver, with the intention of realizing gains in solver perfor-
mance. This sort of approach can be thought of as a prestructuring technique. One
potential pitfall encountered in the symbolic analysis phase of a direct solver is the
presence of one or more “dense” rows in an otherwise sparse coefficient matrix. Here
the definition of dense will be taken from [19]: a row of an n× n matrix is dense if it
contains more than 10

√
n entries. The work presented here develops a prestructuring

technique that may improve the performance of the direct solver by removing dense
rows (as well as a dense columns) from the structure of the matrix.

∗Department of Mathematics, College of Charleston, Charleston, SC, 29424, USA. email:
howelljs@cofc.edu

1

ar
X

iv
:1

50
8.

06
26

0v
1

 [
m

at
h.

N
A

]
 2

5
A

ug
 2

01
5

2 JASON HOWELL

The general approach to this technique will be derived from posing the linear
system as a saddle point system. Several applications of numerical methods result in
large, sparse systems of linear equations Mu = b where

M =

[
A BT1
B2 C

]
, u =

[
x
y

]
, b =

[
f
g

]
, (1.1)

where M ∈ R(n+m)×(n+m) is invertible, n ≥ m, A ∈ Rn×n, B1, B2 ∈ Rm×n, C ∈
Rm×m, x,f ∈ Rn, and y, g ∈ Rm. Matrices M with the structure in (1.1) with
B1 6= B2 are referred to as generalized saddle point matrices. Saddle point problems
arise in several contexts, including computational fluid dynamics and solid mechanics,
constrained optimization problems, optimal control, circuit analysis, economics, and
finance. Consequently, the numerical solution of saddle point problems is a rich field
of study - a comprehensive survey of methods for solving saddle point linear systems
is given in [5]. In several of the aforementioned applications, M and/or A often have
a structure that makes modern direct solvers a popular choice.

Most solution approaches for saddle point problems are designed to exploit the
structure of M and properties that A,B1, and B2 might also satisfy. Null space
methods, also known as reduced Hessian or force methods, constitute one class of
solution techniques for saddle point problems when C = 0. They have arisen in several
contexts, including constrained optimization [15], structural and fluid mechanics [54,
2], electrical engineering [13], and, more recently, mixed finite element approximation
of Darcy and Stokes problems [3, 49, 47, 48] and continuum models for liquid crystals
[58].

Of particular interest in the current context is the situation when n is large, A is
sparse, m is very small, rank(A) ≥ n −m, and one or both of B1, B2 contain dense
rows. In this caseM may be referred to as a “bordered” system [33, 34] as the possibly-
dense blocks B2 and BT1 border the sparse matrix A. This situation can occur in finite
element approximation of PDEs in which a constraint (such as a particular unknown
having zero mean over the spatial domain) is enforced on a subset of unknowns via a
global scalar Lagrange multiplier. Systems with this particular structure can also arise
in numerical continuation methods for large nonlinear systems of equations which are
parametrized with respect to a pseudo-arclength parameter [43, 44, 45, 46]. Other
applications that can result in the presence of at least one dense row and/or column
in a sparse matrix include optimization, least squares, and circuit analysis [50].

The general principle behind null space methods is to characterize the null space
of the constraint (off-diagonal) operators in a saddle point system and use that charac-
terization to reduce the saddle point system to two significantly smaller systems with
nice properties of size (n−m)× (n−m) and m×m. Thus, most applications of null
space methods are geared towards problems where n−m is small. Another particular
advantage of null space methods is that the matrix A need not be invertible. The
main drawback of a null space method is the work required to compute null bases for
the matrices B1 and B2. In general this can be a difficult problem [16, 17] and even
more so when the matrix Zk, whose columns form a basis for the null space of Bk, is
required to have additional properties, such as sparsity or orthogonality [29, 56]. The
null space method also requires C = 0.

The objective of this paper is to consider an unconventional application of a null
space method to (1.1) when m is small and at least one of B1 or B2 is dense. The
null space method can eliminate the dense row and column from the linear system
while retaining as much of the sparse structure in A as possible, thereby preserving

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 3

properties of A that make it attractive for direct linear solvers. With the right choice
of null bases (of dimension n−1) the resulting system can often be solved in a fraction
of the time of the original system using direct solvers. While a typical application of
the null space method is designed to significantly reduce the overall size of the linear
systems involved but requires significant overhead in computing the null basis, the
application of a null space method described here only reduces the size of the overall
system (1.1) by m + 1 equations and m + 1 unknowns and the null basis is easy to
compute. Therefore, the techniques developed here can be viewed as prestructuring
techniques for systems with dense rows or columns before solution with a direct solver.

The method presented here can also be applied when one of B1 or B2 is not
dense, and can be applied to matrices with dense rows and/or columns anywhere in
the matrix by first performing row or column interchanges to arrive at the structure
given in (1.1). A “one-sided” application of the null space method to systems with
C 6= 0 will also be developed which, when employed to remove dense rows, can increase
solver performance.

It should be noted that several numerical algorithms for bordered systems arising
in continuation methods and other applications have been studied [10, 8, 9, 12, 11,
32, 33, 7] and may be applied to (1.1) when B1 or B2 is dense. Several of these
bordering/block-elimination/deflation methods require finding bases of the left and
right null spaces of A, or require C 6= 0 in (1.1) and a (potentially dense) rank-1
update of A. Other techniques for dealing with dense rows that have arisen in the
study of solving linear least squares problems include splitting algorithms [60] as well
as matrix stretching [1, 35], which increases the size of the coefficient matrix to modify
the sparsity pattern, thereby reducing the effect of dense rows. However, no existing
methods for dealing with dense rows in sparse matrices are known to maintain or
reduce the overall size of the problem and retain the overall sparsity and structural
properties (such as bandedness) of the remainder of the coefficient matrix.

The rest of this paper is organized as follows. In Section 2, the mathematical
background is described, and an example of how a dense row can affect certain as-
pects of direct solver performance are explored. In Section 3, the general null space
method for reducing the system (1.1) is described, as well as a one-sided null space
method. In Section 4, the particular approach for constructing the null space basis is
given. Several numerical examples of the method applied to particular problems are
presented Section 5, which demonstrate the utility of the method to varying degrees,
and a brief summary is given in Section 6.

2. Background and Motivation.

2.1. Notation and Definitions. Throughout this paper, matrices and matrix
blocks will be represented with capital letters (including blocks that have only one
row or column), and vectors will be represented as block matrices or with boldface
lowercase letters. The matrix A is comprised of entries (aij), and the ith row of A is
given by Ai∗. The jth column of A is denoted by A∗j or aj . The Euclidean norm of
the vector x is ‖x‖ and the infinity norm is denoted ‖x‖∞. The number of nonzero
entries in a matrix or vector will be denoted by | · |. The rest of the paper will ignore
numerical cancellation, that is, the conversion of nonzero entries to zero entries via
numerical operations.

For a matrix A ∈ Rn×m, the range (column space) of A is

R(A) = {v ∈ Rn |v = Ax for some x ∈ Rm},

4 JASON HOWELL

and the null space of A is denoted by

N (A) = {v ∈ Rm |Av = 0}.

When the set of vectors in the range or null space come from a particular subspace V
of Rn or Rm, these will be denoted by R(A|V) or N (A|V), respectively.

An m× n matrix A with m ≥ n has the Hall property if every set of k columns,
1 ≤ k ≤ n, contains nonzeros in at least k rows, and A has the strong Hall property
when every set of k columns, 1 ≤ k ≤ n− 1, contains nonzeros in at least k+ 1 rows.

Graphs are defined by vertex and edge sets. Vertices will be denoted by number;
〈i, j〉 represents a directed or undirected edge between vertices i and j, in which case
vertices i and j are adjacent. The degree of a vertex i is the number of adjacent
vertices, which is also the number of edges that originate or terminate at vertex i.
The indegree and outdegree are the number of edges leading into and out of a vertex
of a directed graph, respectively.

It will be useful to describe the nonzero pattern of a matrix using a bipartite
graph: for a general m × n matrix A, the bipartite graph H(A) consists of row
vertices 1′, 2′, . . . ,m′, column vertices 1, 2, . . . , n, and edges 〈i′, j〉 when Aij 6= 0. In
this paper the convention will be to display row vertices along a horizontal line below
the horizontal line containing the column vertices. Additionally, with bipartite graphs,
the direction of edges are obvious so arrows will be suppressed.

The layered graph L(AB) of a matrix product AB is a graph with three rows of
vertices: it is the graph H(B) placed on top of the graph H(A) so that the column
vertices of A are the row vertices of B. The layered graph is easily generalized to
represent the product A1A2 · · ·Ar. There is a path from vertex i to vertex j in a
directed (or undirected) graph if there is a sequence of vertices (v1, v2, . . . , vk) such
that v1 = i, vk = j, and v` is adjacent to v`+1 for 1 ≤ ` < k.

To illustrate how the nonzero pattern of the product of sparse matrices is deter-
mined from the associated layered graph, the following result, adapted from Proposi-
tion 1 of [14], will be utilized.

Lemma 2.1. Let A ∈ Rm×n and B ∈ Rn×p. Assuming no numerical cancellation,
1. The number of nonzero entries in the ith row of AB equals the number of B

column vertices in the layered graph L(AB) of AB that the ith row vertex of
A reaches via directed paths.

2. The number of nonzero entries in the ith column of AB is equal to the number
of A row vertices in the layered graph L(AB) of AB that can reach the ith
column vertex of B.

An example of the application of Lemma 2.1 is illustrated below. In (2.1) the
nonzero entries of each of A and B are represented with ×, and Figure 2.1 gives the
layered graph L(AB). Each possible path from a row vertex of A on the bottom row
to a column vertex of B on the top row gives a nonzero entry in C = AB, provided
there is no numerical cancellation.

AB =


× ×

× × ×
×

× × ×
×



×
× ×
× ×
×

× ×

 =


× ×

× × ×
× ×

× × ×
×

 = C.

(2.1)

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 5

1′

1

2′

2

3′

3

4′

4

5′

5

A

B

r

r

c

c

Fig. 2.1: Illustration of the nonzero pattern of C = AB in (2.1) using the layered
graph L(AB).

2.2. Dense Rows/Columns and Direct Solvers. While a complete analysis
of the effect that a dense row and/or column has on all aspects of particular direct
solvers is beyond the scope of this work, a brief discussion and some examples of easily
observed phenomena will be presented.

During symbolic analysis, solvers typically employ directed and/or undirected
graph data structures and algorithms for analyzing the nonzero pattern of a sparse
matrix. This in turn is often used to allocate memory to store the L and U factors of
the matrix, as well as determine row or column orderings that may reduce the amount
of fill encountered during the numerical factorization. The reference [19] provides a
broad summary of data structures and graph algorithms for direct Cholesky, QR,
and LU factorization procedures. Summarizing several published theoretical results
[28, 25, 27], Theorems 6.1 and 6.2 of [19] specify the following about the strong Hall
matrix A, where PA = LU (with P determined by partial pivoting) and A = QR
(the QR factorization), assuming no numerical cancellation:

1. An upper bound for the structure of U is given by the structure of R.
2. An upper bound for the structure of L is given by the structure of V , the

lower trapezoidal matrix of Householder vectors used in the QR factorization
of A.

An elimination tree [59] is a data structure that is used in many aspects of direct
solvers, including storage, row and column ordering, and symbolic and numeric factor-
ization. For a matrix M satisfying the strong Hall property, the column elimination
tree [24, 57] of M is the elimination tree of MTM , and it can be used to predict
potential intercolumn dependencies. Recent work has pointed to the row merge tree
[53, 36, 37], based on the row merge matrix [26], as an alternative for structure pre-
diction and can be employed for matrices satisfying only the Hall property. These
trees and related structures are employed to develop upper bounds on the number of
nonzeros in Q,R,L, or U by various means.

However, the presence of a dense row in M could lead to significant, if not catas-
trophic, fill during the elimination process. In fact, the presence of a full row in a
matrix M implies that MTM is completely full, which results in a column elimination
tree of full height. Additionally, the row merge matrix of M will also be full. Together
these may lead to overestimates of column dependencies and the number of nonzeros
in the L and U factors of M and adversely affect several aspects of solver performance.
Additionally, dense columns may affect algorithms that are used to determine row and
column orderings that minimize fill [18, 19, 21, 22], especially when A is not SPD or
has some zero diagonal entries.

6 JASON HOWELL

2.3. Example of Symbolic Analysis with a Dense Row and Column.
The MATLAB computing environment, which utilizes the UMFPACK solver [18] for
sparse, square, nonsymmetric matrices, provides a symbolic factorization command
(symbfact(M,’col’)) that returns upper-bound estimates on the number of nonzeros
in the numerical factorization of a matrix, as well as the column elimination tree. Ad-
ditionally, MATLAB provides a spparms setting that can display detailed information
about the sparse matrix algorithms employed when the MATLAB linear solve (\) is
executed.

Assume m = 1. Here let M be a (lower-right pointing) arrowhead matrix, which
for m = 1 consists of a diagonal A, dense rows B1 and B2, and nonzero C. Ar-
rowhead matrices, which satisfy the Hall property, arise in several applications [51],
and one solution approach consists of transforming arrowhead matrices to tridiagonal
matrices via chasing algorithms [61, 52]. Set A = In in (1.1) and B2 to be a ran-
dom n-vector with entries between 0 and 1 (generated by the sprand() function) and
C = 1. The column BT1 is a full random n-vector (|B1| = n) stored in sparse for-
mat. The sparse matrix M is formed and then a symbolic factorization is computed.
The objective of this example is to demonstrate how the density of B2 affects the
upper-bound estimates for L and U formed in the numerical factorization of M , as
well as the height of the column elimination tree. All computations were performed
using MATLAB R2014a. Table 2.1 presents statistics reported by symbfact() and
spparms(’spumoni’,2) for n = 104. In the table

• “symb time” represents the time required for symbfact();
• h is the height of the column elimination tree;
• “|L+ U |” represents the symbolic upper bound on the number of nonzero

entries in L+ U ;
• “|L+U |” is the true number of nonzero entries once the actual LU factoriza-

tion in executed, and
• “solve time” is the time required to execute x=M\b, where b is a sparse random
n+ 1-vector.

All timing results are obtained using MATLAB’s tic and toc functions and reported
as seconds. It is observed that the symbolic factorization time, the height of the col-
umn elimination tree, and the upper bound on nonzeros in L+U grows in proportion
to |B2| and not |M |. As |B2| ranges from 0 to 104, the number of nonzeros in M
increases only by 50%, while the amount of storage allocated for LU factorization in-
creases by a factor of 2500, potentially affecting the performance of the direct solver.
In actuality, the time required for solving a linear system with coefficient matrix M
and the true number of nonzeros in |L + U | scale more closely with |M |. For much
larger n (as will be reported in Section 5) however, this may not be the case.

3. Null Space Methods. Here the general null space method for (1.1) is out-
lined. Further exposition and details can be found in [5] for the case B1 = B2 and
C = 0, and [38] for B1 6= B2. The first part of this section assumes C = 0, and
subsequently a variant of the null space method for C 6= 0 is described.

3.1. The Null Space Method for (1.1). The following result (Theorem 3.1 of
[38]) establishes the equivalence of certain requirements on the blocks of M in (1.1)
with the invertibility of M when C = 0.

Theorem 3.1. The matrix M =
[
A BT

1

B2 0

]
is invertible if and only if B1 has full

row rank,

N (A) ∩N (B2) = {0}, (3.1)

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 7

|M | |B2| symb time h |L+ U | |L+ U | solve time
20001 0 0.0018 2 20001 20001 0.00019
20002 1 0.0017 2 20002 20002 0.00036
20011 10 0.0016 11 20056 20011 0.00034
20100 99 0.0017 100 24951 20100 0.00038
20945 944 0.0182 945 466041 20945 0.00060
22211 2210 0.1059 2211 2463156 22211 0.00091
23905 3904 0.3796 3905 7642561 23905 0.00139
25956 5955 0.9637 5956 17753991 25956 0.00189
30001 10000 2.7159 10001 50025001 30001 0.00285

Table 2.1: Solver statistics for M with n = 104 and increasing density of B2.

and

R(A|N (B2)) ∩R(BT1) = {0}. (3.2)

As remarked in [38], if B1 ∈ Rm×n has full row rank, then dimR(BT1) = m,
so (3.2) implies dimR(A|N (B2)) ≤ n − m, and (3.1) implies dimR(A|N (B2)) =
dimN (B2) ≥ n−m, and thus dimN (B2) = n−m. This gives the following result.

Corollary 3.2. If M =
[
A BT

1

B2 0

]
is invertible, then B2 has full row rank.

The null space method requires
1. a particular solution x∗ of B2x = g;
2. a matrix Z1 ∈ Rn×(n−m) whose columns form a basis for N (B1);
3. a matrix Z2 ∈ Rn×(n−m) whose columns form a basis for N (B2).

The algorithm proceeds by setting

x := Z2v + x∗ (3.3)

so that

B2x = B2(Z2v + x∗) = B2Z2v +B2x
∗ = B2x

∗ = g,

as B2Z2 = 0. Substituting x into the first equation of (1.1) we have

AZ2v +BT1 y = f −Ax∗. (3.4)

Premultiply (3.4) with ZT1 to obtain

ZT1 AZ2v + ZT1 B
T
1 y = ZT1 (f −Ax∗),

which reduces to, as B1Z1 = 0,

ZT1 AZ2v = ZT1 (f −Ax∗), (3.5)

as B1Z1 = 0. This problem has a unique solution, as shown below.

Theorem 3.3. Let M =
[
A BT

1

B2 0

]
be invertible and let the columns of Z1 and Z2

span the null spaces of B1 and B2, respectively. Then ZT1 AZ2 is invertible.

8 JASON HOWELL

Proof. Let v ∈ Rn−m and assume that ZT1 AZ2v = 0. Then w = AZ2v ∈ R(BT1)
since ZT1 w = 0 implies w is in the row space of B1. Now, B2Z2v = (B2Z2)v = 0
implies Z2v ∈ N (B2), so it is also the case that w ∈ R(A|N (B2)). Thus w ∈
R(A|N (B2)) ∩ R(BT1), and therefore Theorem 3.1 implies (3.2), so w = AZ2v = 0.
This in turn implies Z2v ∈ N (A), and thus condition (3.1) implies Z2v = 0. Hence
ZT2 Z2v = 0, and since rank(ZT2 Z2) = rank(Z2) = dimN (B2) = n−m, the invertiblity
of ZT2 Z2 ∈ Rn−m guarantees v = 0, completing the proof.

Once v is found in (3.5), x is obtained via (3.3), and y is solved by premultipli-
cation of (3.4) by B1 to obtain the m×m system

B1B
T
1 y = B1 (f −A(Z2v + x̂)) , (3.6)

which has a unique solution as B1B
T
1 is invertible due to the fact that B1 has full row

rank. The null space method is summarized in Algorithm 3.4.
Algorithm 3.4 (Null Space Method for M).
1. Find Z1 whose columns form a basis for the null space of B1.
2. Find Z2 whose columns form a basis for the null space of B2.
3. Find x∗ such that B2x

∗ = g.
4. Solve ZT1 AZ2v = ZT1 (f −Ax∗) for v.
5. Set x = Z2v + x∗.
6. Solve B1B

T
1 y = B1 (f −A(Z2v + x∗)) for y.

It should be noted that when g = 0 (as is often the case in several applications),
the particular solution x̂ found in Step 3 of Algorithm 3.4 can simply be the trivial
solution. As remarked in the Introduction, the null space method is traditionally
attractive when n−m is small, as the systems in steps 4 and 6 of Algorithm 3.4 are
both much smaller than the (n + m) × (n + m) system (1.1). However, when m is
small, this method can be very efficient at transforming the (n+m)× (n+m) system
Mv = b (where at least one of B1 and B2 are dense) to a reduced system of size
(n − m) × (n − m) that retains the sparse structure of A, perhaps making it more
suitable for direct solvers.

3.2. A One-Sided Null Space Method For C 6= 0. As noted in [5], the null
space method cannot be applied directly to the situation when M has a nonzero (2, 2)
block, i.e., when C 6= 0 in (1.1). However, the null space method can be applied when
the system (1.1) is augmented with an auxiliary variable w to obtain

M̂ û =

 A BT1 0
B2 C 0
0 0 Im

xy
w

 =

fg
0

 . (3.7)

It is clear that the invertibility of M implies the invertibility of M̂ . As opposed to
eliminating both B1 and B2 from the system simultaneously, this can act as a “one-
sided” null space method to eliminate one of B1 or B2 in one execution of Algorithm
3.4. Rewriting (3.7) as  A BT1 0

0 0 Im
B2 C 0

xy
w

 =

f0
g

 , (3.8)

and setting

x̂ =

[
x
y

]
, f̂ =

[
f
0

]
, Â =

[
A BT1
0 0

]
, B̂T1 =

[
0
Im

]
, and B̂2 =

[
B2 C

]
,

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 9

(3.8) is represented by the system[
Â B̂T1
B̂2 0

] [
x̂
w

]
=

[
f̂
g

]
. (3.9)

Since the coefficient matrix in (3.9) is invertible, Theorem 3.3 applies and therefore
the null space method can be utilized. Note that the null basis Ẑ1 for B̂1 is simply

Ẑ1 =

[
In

0m×n

]
,

and premultiplication of Â by ẐT1 simply removes the m zero rows from the bottom

of Â. The null space matrix of B̂2 can be written as Ẑ2 =
[
ZT2 ZTC

]T
where

B2Z2 + CZC = 0. (3.10)

Algorithm 3.4 then produces a linear system ẐT1 ÂẐ2v̂ = ẐT1 (f̂ − Âx̂∗) that reduces
to (

AZ2 +BT1 ZC
)
v̂ = f −Ax∗ −BT1 y∗, (3.11)

where x̂∗ =
[
x∗ y∗

]T
is the particular solution to B̂2x̂ = g. with coefficient matrix

ẐT1 ÂẐ2 where B2 and C have been eliminated. Note that when C is invertible,
(3.10) implies ZC = −C−1B2Z2 and the coefficient matrix in (3.11) is just the Schur
complement of C in M times Ẑ2. When this is the case, Z2 can be chosen such that
B2Z2 = 0, thereby implying ZC = 0 and reducing (3.11) to

AZ2v̂ = f −Ax∗ −BT1 y∗, (3.12)

While this one-sided approach may not be practical when m � 1, when m is
small this can be easily be employed to eliminate a small number of dense rows or
columns. Also note that there is no need to solve for w. A summary of the procedure
is given below:

Algorithm 3.5 (One-Sided Null Space Method for M).

1. Find Ẑ2 =

[
Z2

ZC

]
whose columns form a basis for the null space of

[
B2 C

]
.

2. Find x∗ and y∗ such that B2x
∗ + Cy∗ = g.

3. Solve ÂẐ2v̂ =
(
AZ2 +BT1 ZC

)
v̂ = f −Ax∗ −BT1 y∗ for v̂.

4. Set x = Z2v̂ + x∗, y = ZC v̂ + y∗.

Alternatively, if the objective is to eliminate the column BT1 in (3.7), permute the
last two columns of M̂ so that B̂1 =

[
B1 CT

]
.

4. The Null Space Method for Dense Rows and Columns. In this section
the null space method to eliminate a dense row and/or column from M in (1.1) will be
described. Here it is assumed that M is invertible and B1 = B2 = B. The algorithm
for constructing Z developed here can certainly be applied to the case B1 6= B2 for
the null space method described in Algorithm 3.4.

4.1. Constructing Z for m = 1. To clearly illustrate the construction of the
null space basis, in this section it will be assumed that m = 1. The task is to compute
a basis for the (n − 1)-dimensional subspace of Rn that is the null space of the row

10 JASON HOWELL

vector B. For any m, a standard choice for Z (from [5]) is to permute the columns of
B by multiplication of a suitable permutation matrix P to obtain BP =

[
Bb Bn

]
,

where Bb is m×m and nonsingular, and then construct Z as

Z = P

[
−B−1

b Bn
In−m

]
. (4.1)

This ensures that BZ = 0. Such a Z is known as a fundamental basis [55], and it is
clearly desirable for Bb to be easy to invert or factor. As mentioned previously, this
may be a difficult task for a larger m, however, for the case m = 1 considered here
the construction of Z can be computed in O(n) time.

As there must be at least one nonzero entry in B =
[
b1 b2 · · · bn

]
, without

loss of generality assume b1 6= 0. Since the rank of B is 1, Bb in (4.1) can simply be
set to b1 and subsequently −B−1

b Bn is the 1× (n− 1) vector given by

B−1
b Bn =

[
b2/b1, b3/b1, b4/b1, · · · , bn/b1

]
.

However, this seemingly natural choice for Z is not practical. While this con-
struction is sparse (with exactly (|B| − 1) + (n− 1) = n+ |B| − 2 nonzero entries) it
has a severe disadvantage when employing a null space method, as a dense B implies
the first row of Z is also dense, which can have a drastic effect on the sparsity of
products of the form ZTAZ. In fact, if |B| = n, the product ZT InZ = ZTZ will be
completely full, as is illustrated in Figure 4.1. Since the outdegree of vertex 1′ in Z
is n, the layered graph L(ZTZ) contains a path from every row index of ZT to every
column index of Z. Thus, the only situation in which ZTAZ will not be a full matrix
is when there are no nonzero entries in the first column of A.

× × × × × ×
×
×
×
×
×
×




Z

ZT

Z

L(ZTZ)

r

r

c

c

Fig. 4.1: Illustration of Z and ZTZ in (4.1) when |B| = n.

Thus, an alternate method for constructing the null space basis Z that allows
ZTAZ to retain as much of the original sparse structure of A as possible is desired.
To achieve this, Z should be constructed so that the outdegree of all rows of Z is as
small as possible. Following the general principle that each column zj of Z must be
constructed so that Bzj = 0, an alternate approach can be derived from using only
a single nonzero entry in B to eliminate a subsequent nonzero entry. Again, without
loss of generality, assume that b1 6= 0, and also let bm represent the last nonzero entry
in B (m ≤ n). The first step is to find the next nonzero entry in B, as it will be used
with b1 to produce a null vector. Starting with j = 1 + 1, if bj = 0, then column
zj of Z will simply be set to ej ∈ Rn (the elementary basis vector for index j), as
this will imply Bzj = 0. If a nonzero bj is found, then the first column z1 of Z is all
zeros with the exception of a 1 in entry 1 and −b1/bj in entry j. This ensures that

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 11

Bz1 = 0. The algorithm resumes by setting i equal to j and then seeking the next
nonzero entry in B. The above procedure is repeated until the last nonzero entry bm is
encountered. At this point, m− 1 linearly independent columns zk, k = 1, . . . ,m− 1,
have been constructed, and Bzk = 0 for each k. It remains to add n−m more linearly
independent columns to Z. Since the n − m entries bm+1 = bm+2 = · · · = bn = 0,
simply add the elementary basis vector ek, m+1 ≤ k ≤ n to complete the construction
of Z. The procedure, which requires O(n) operations, is summarized in Algorithm
4.1. In the algorithm, ε represents the smallest number that is to be treated as a
numerical nonzero. Depending on the programming environment and sparse data
structures employed, the algorithm can be executed very quickly, for example using
the find() function and vectorized computations in MATLAB.

Algorithm 4.1 (Construct Z).

1: Z ← 0n×(n−1)

2: i← 1
3: while i < m do
4: Zi,i ← 1
5: j ← i+ 1
6: while |bj | < ε do
7: Zj,j ← 1
8: j ← j + 1
9: end while

10: Zj,i ← −bi/bj
11: i← j
12: end while
13: for i = m to n do
14: Zi+1,i ← 1
15: end for

The result of the preceding discussion is summarized below.

Lemma 4.2. For any B ∈ R1×n with at least one nonzero entry, the columns of
Z produced by Algorithm 4.1 form a basis for the (n − 1)-dimensional null space of
B. The number of nonzero entries in Z is |B|+ n− 2.

While the Z constructed by Algorithm 4.1 has exactly the same number of nonzero
entries as the Z given by (4.1), the important characteristic of this Z is that each
row and each column have at most 2 nonzero entries. An example of a B and its
corresponding Z is given in (4.2), and the general form of Z and L(ZTZ) when
|B| = n are given in Figure 4.2.

BT =



0
1
−3
0
−1
2
0
0

 =⇒ Z =



1
1
1
3

1
1

−3 1
1
2

1
1


. (4.2)

12 JASON HOWELL

×
× ×
× ×
× ×
× ×
× ×
×




Z

ZT

Z

L(ZTZ)

r

r

c

c

Fig. 4.2: Illustration of Z and ZTZ given by Algorithm 4.1 when |B| = n.

Remark 4.3. The maximum degree of any row or column vertex in H(Z), where
Z is generated by Algorithm 4.1, is 2.

Figure 4.3 gives an example of how the nonzero pattern of ZTAZ is determined
when B is full. In this worst-case situation, while ZTAZ may have as many as 4
times as many nonzero entries as A, the product retains the overall sparse structure
of A and the dense row and column are eliminated from the system.

r

r

r

c

c

c

ZT

A

Z

L(ZTAZ)

· · ·

Fig. 4.3: The layered graph L(ZTAZ) for Z constructed by Algorithm 4.1 when
|B| = n and a random A.

Theorem 4.4. Assume m = 1, C = 0, and B1 = B2 = B in (1.1). Let
Z ∈ Rn×(n−1) be given as in Algorithm 4.1. Then ZTAZ in Step 4 of Algorithm 3.4
satisfies |ZTAZ| ≤ 4|A|.

Proof. The result is shown by bounding the number of nonzero entries in row i of
ZTAZ and then summing over the rows. Let i ∈ 1, . . . , n− 1 be a row vertex of ZT .
The construction of Z guarantees that the outdegree of vertex i at most 2. Assume
the outdegree is 2 and let ji,1, ji,2 be the column vertices of ZT reached by vertex i
in H(ZT). These column vertices of ZT correspond to the row vertices ji,1, ji,2 of A,
which have outdegree |Aji,1∗|, |Aji,2∗| respectively. Each column vertex of row ji,1,
ji,2 of A corresponds to a row vertex of Z, all of which have an outdegree of at most
2. Thus, the number of possible paths originating from row vertex i in the layered
graph of ZTAZ is bounded by

|(ZTAZ)i∗| ≤ 2|Aji,1∗|+ 2|Aji,2∗|.

Using part 1 of Lemma 2.1 and summing over the rows of ZT gives the bound

|ZTAZ| ≤
n−1∑
i=1

(
2|Aji,1∗|+ 2|Aji,2∗|

)
. (4.3)

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 13

However, the indegree of any column vertex of ZT is at most 2 as well, which guaran-
tees that the indices ji,1 and ji,2 appear at most twice in the right hand side of (4.3).
Thus we have

|ZTAZ| ≤
n−1∑
i=1

(
2|Aji,1∗|+ 2|Aji,2∗|

)
≤

n∑
j=1

2 · 2|Aj∗| = 4|A|, (4.4)

which completes the proof.

Remark 4.5. The maximum inflation, i.e. |ZTAZ|/|M | when |B| = n is 4 −
8n/|M |. For example, if A = In, |M | = 3n which results in a maximum inflation of
4− 8/3 = 4/3.

Recalling the one-sided null space method in Section 3.2, a similar argument to
Theorem 4.4 leads to the following result. Note that the last row of Ẑ2 produced by
Algorithm 4.1 contains only one nonzero entry.

Theorem 4.6. Let B̂2 =
[
B2 C

]
in (1.1). Let Ẑ2 ∈ Rn+1×n be given as in

Algorithm 4.1. Then ÂẐ2 in Step 3 of Algorithm 3.5 satisfies |ÂẐ2| ≤ 2|A|+ |B1|.

4.2. Conditioning vs. Sparsity. As remarked in [5], there is a trade-off be-
tween good conditioning properties of Z and sparsity. While Algorithm 4.1 can easily
be modified so that each column is normalized as it constructed, any orthogonaliza-
tion process such as Gram-Schmidt on the columns of Z will induce significant fill
above (or below) the diagonal. While it is possible to construct an orthogonal basis
for N (B) from the last n − 1 columns of Q in the QR factorization of B, in general
this is impractical when B is merely a single row and n is large.

However, as the intent of this null space method is to prepare a matrix for a
direct solver, conditioning may not necessarily be as significant of a concern as it is
when an iterative solver is employed. It is still important to understand the general
conditioning properties of Z. For the moment, assume B is full, and let αi = −bi/bi+1

(i.e., the subdiagonal entries of Z). A simple upper bound estimate for the largest
singular value σ1(Z) of Z can be found using Corollary 2.4.4 of [31]. Writing Z =
In×(n−1) + Zα, we have

σ1(Z) = σ1(In×(n−1) + Zα) ≤ ‖In×(n−1)‖2 + σ1(Zα) = 1 + max
1≤i≤n−1

{|αi|},

where ‖ · ‖2 is the matrix 2-norm. This indicates that the relative sizes of successive
nonzero entries in B play a major role in the conditioning of Z, and suggests that
permuting the rows/columns of M to achieve a smaller maximum |α| would be advan-
tageous. However, such an approach could destroy any desirable structure properties
that A enjoys, such as a small bandwidth.

Lower bounds for the smallest singular value σn−1(Z) are not as easy. While
several bounds exist in the current literature, the seemingly sharpest bounds to date
[63, 62] require quantities raised to powers on the order of n, which is not feasible for
large sparse problems. Of course, conditioning is a well-studied problem, therefore
an efficient and reliable condition estimator such as MATLAB’s condest() applied
to ZTZ should be utilized to gauge the potential impact of the null space method on
ZTAZ. When the condition number of ZTAZ is very large, gains in solver perfor-
mance may still be realized by employing the one-sided null space method in Algorithm
3.5.

14 JASON HOWELL

4.3. Extension to m > 1. The following slight generalization of Theorem 6.4.1
in [31] allows for an easy extension of Algorithm 4.1 to the case m > 1.

Lemma 4.7. Let B1 ∈ Rm1×n and B2 ∈ Rm2×n have full row rank. As-
sume the columns of Z1 ∈ Rn×(n−m1) span N (B1), and assume the columns of
Z2 ∈ R(n−m1)×(n−m1−m2) span N (B2Z1). Then the columns of Z1Z2 form a basis for

the null space of

[
B1

B2

]
.

The nested construction of Zn×(n−m) is given in the algorithm below where Bi is
the ith row of the m× n block B.

Algorithm 4.8 (Construct Z for m > 1).

1: Construct Z1 for B1 using Algorithm 4.1.
2: for i = 2 to m do
3: Construct Z ∈ R(n−i+1)×(n−i) for BiZi−1 ∈ R1×(n−i+1) using Algorithm 4.1.
4: Zi ← Zi−1Z
5: end for

Algorithm 4.8 constructs Z in m applications of Algorithm 4.1, m − 1 matrix-
vector products, and m− 1 matrix multiplications, each of which are the product of
two lower triangular matrices.

5. Applications of the Method. Here several applications of the null space
method for systems with dense rows and columns are described. In these applications,
the null space basis matrix Z is constructed as given in Section 4.1. Numerical results
that compare the performance of the null space method versus the standard direct
solver are given.

All computations were performed on a Mac Pro with a 3.33 GHz 6-core processor
and 32 GB of memory. All matrices arising in finite element methods were assembled
using the FreeFEM++ environment [39]. All linear systems were solved using MAT-
LAB R2014a. Compiled statistics include the number of nonzeros in M , B2 (unless
obvious), and ZT1 AZ2, as well as

• infl, the inflation, which is |ZT1 AZ2|/|M |;
• diff, which is ‖x − x∗‖∞/‖x‖∞, where x is the solution computed by the

standard solution x=M\b and x∗ is the solution computed by the null space
method;

• Ztime, which is the time required to construct Z1 and Z2;
• NStime, which is the time required for the null space method set up and

solution (includes Ztime);
• Stime, which is the time required to execute the direct solve x=M\b;
• and speedup, which is Stime/NStime.

The MATLAB tic and toc functions were used to capture all timing data.

5.1. Arrowhead Matrices and the One-Sided Null Space Method. In
Section 2.3 arrowhead matrices were employed to demonstrate the impact of a dense
row on direct solver heuristics. Let m = 1, A = In, B1 and B2 be full vectors (in
sparse format) with random entries between 0 and 1, and C = 1. The right-hand side
vector b is also full (in sparse format) with random values between 0 and 1. When
the one-sided null space method described in Algorithm 3.5 using the null space basis
given in Algorithm 4.1 is applied, the (n+1)×(n+1) arrowhead matrix is transformed
into an n×n upper triangular matrix, which can be solved very efficiently. Table A.1
in Appendix A gives statistics obtained for increasing n, while the plot on the left
in Figure 5.1 shows the run times of both methods. Similar to the example shown

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 15

104.5 105 105.5

10−1

100

101

102

n

ti
m

e
(s

ec
)

NStime
Stime
slope 1

10−5 10−4 10−3 10−2 10−1 100

10−1

100

101

|B|/n

ti
m

e
(s

ec
)

NStime
Stime

Fig. 5.1: Log-scale plot of running times for the one-sided null space method and the
standard direct solve for arrowhead matrices for increasing n with |B1| = n (left) and
increasing |B|/n with n = 250000 (right) .

in Section 2.3, the effect on the increasing density of a row was also analyzed for
both methods. Again, A = In and C = 1, however here B1 = B2 = B is a sparse
random vector with entries between 0 and 1 with a varying number of nonzero entries.
Results for n = 250000 are given in Table A.2, and a plot of the running times for both
methods vs. increasing |B|/n is given on the right in 5.1. The standard direct solve
time begins to increase sharply when around 10% of the entries in B are nonzero and
experiences an overall increase in running time of more than two orders of magnitude
over the range of |B|. In contrast, the one-sided null space method run times increase
less than one order of magnitude over the entire range of |B|.

5.2. Elimination of Mean Zero Constraints in Finite Element Approx-
imations. Variational problems arising from PDEs often require unknowns to be in
specific subspaces of function spaces in order to be well-posed. A very common ex-
ample of this is the condition that the mean value of the unknown over the spatial
domain is zero. When the finite element method is employed to approximate solutions
to these problems, conditions such as the mean zero constraint must also be imposed
on the finite element subspaces used for approximating the unknowns.

Several software packages and environments are available to implement the finite
element method. In many of the more recent packages, the end user merely needs to
specify the computational mesh, specify which finite element spaces will be used, and
provide the variational form of the problem. While software with these capabilities
allows for great flexibility in a very short development time frame, it places certain
limitations on the control available to the user. For example, it may be difficult to
specify that an unknown is to be restricted to a subspace with a mean zero constraint,
and it may be tedious or inefficient to modify the linear systems assembled by the
software. Thus, it is often the case that the best way to implement a condition such
as the mean zero constraint is via the use of a scalar Lagrange multiplier. In this case,
it is straightforward to augment the original linear system produced by the method
with an additional row and column that represent the additional degree of freedom
and the constraint it represents. In many cases these augmented rows and columns
are dense (if not full).

Typically Ω will represent a spatial domain with boundary Γ. Other notation

16 JASON HOWELL

used in this section includes the usual L2(Ω) label for the Lebesgue space of square-
integrable functions defined on a spatial domain Ω ⊂ Rd (d = 2, 3) with Lipschitz
continuous boundary Γ, and H1(Ω) for those in L2(Ω) with gradients also in (L2(Ω))d.
The space H(div,Ω) represents the functions in (L2(Ω))2 with divergence in L2(Ω).
A subscript of zero on a space indicates that it is the subspace of functions with zero
mean. The pairing (·, ·) represents the L2 inner product.

Three examples are presented, each demonstrating a different aspect of the be-
havior of the method. First, the performance of the null space method is compared
to the standard solve for a problem with |B| = n and two different nonzero patterns.
Subsequently, a comparison of the null space method’s performance on the Stokes and
Navier-Stokes problems on the same domain and mesh is given (with |B| around 11%
of n). Finally, a comparison of the null space method’s performance on a dual-mixed
problem with a regular nonzero pattern is compared to similar systems with an ir-
regular nonzero pattern (with |B| around 40% of n). A summary of the comparisons
between the null space method and the standard direct solve for largest problem of
each of the different examples in given in Table 5.1.

Problem Domain n + 1 Inflation NStime Stime Speedup

Poisson Square 303602 1.57 4.717 108.684 23.04
Poisson Ring-like 473786 1.96 36.037 60.448 1.68

Mixed Stokes Square 394189 1.33 81.795 1349.064 16.49
Mixed Navier-Stokes Square 394189 1.21 136.018 1357.513 9.98

Dual-Mixed Stokes Square 720961 1.03 105.158 2926.810 27.83
Dual-Mixed Stokes Irregular 656314 1.03 38.662 1604.043 41.49

Table 5.1: Comparison of standard direct solve and null space method for largest
problem of each type.

5.2.1. Poisson Problem with Pure Neumann Conditions. When the Pois-
son problem −∆u = f in Ω is augmented with a pure Neumann boundary condition
∇u · n = g on Γ, it is only well-posed provided the solution has mean zero over
the spatial domain [6]. Employing a scalar Lagrange multiplier to enforce this, the
variational problem results in the system[

A BT

B 0

] [
u
λ

]
=

[
f
0

]
,

where A is large and sparse with a (usually small) bandwidth, and B ∈ R1×n is dense,
representing

∫
Ω
u dΩ. In this example, two different spatial domains Ω are used: the

first is the unit square in R2 and the finite element mesh is regular, while the second
is a ring-like domain with a Delaunay mesh. Representatives of both meshes are
given in Figure 5.2, and example sparsity plots for both problems are given in Figure
5.3. Continuous piecewise linear finite elements were employed to approximate u, and
|B| = n (completely full).

Results of both the standard solve and null space method are presented in Table
B.1 in Appendix B. For problems of increasing size, using the null space method as
a prestructuring technique produces a significant speedup over the original system.
A visualization of the performance of both the null space method and the standard
solve is given in Figure 5.4.

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 17

Fig. 5.2: Example meshes used for Poisson problem with square domain (left) and
ring-like domain (right).

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 6603

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 5955

Fig. 5.3: Example sparsity plots for M in Poisson problem with square domain (left)
and ring-like domain (right).

To investigate how varying nonzero patterns in A may influence the performance
of the null space method, the problem was also solved on a ring-like domain that
consists of a circle with an elliptic section removed from the center. The null space
method and the standard solve are compared in Tables B.2 in Appendix B. In this
case, the inflation induced by the null space method is significantly higher than the
square domain, almost doubling the number of nonzero entries in M . For this mesh,
the number of neighboring elements is generally higher than that of the square mesh,
as A averages around 8 nonzero entries per row for the ring-like domain, compared to
an average of around 6 nonzero entries per row for the square domain. The problem
on the square domain also enjoys a more uniform nonzero pattern than the ring-like
domain. Overall, prestructuring the system on the ring-like domain with the null
space method does not give much of an improvement over the direct solve of the
original system.

5.2.2. Mixed Stokes and Navier-Stokes Problems. The Navier-Stokes equa-
tions model the flow of an incompressible fluid in a spatial domain. The problem with
pure Dirichlet conditions is: given f ∈ (L2(Ω))d, find (u, p) satisfying

−div
(
ν(∇u+∇uT)

)
+ (u · ∇)u+∇p = f in Ω,

div(u) = 0 in Ω, (5.1)

u = uΓ on Γ.

Here u is velocity, p is pressure, and ν ≥ 0 is the kinematic viscosity. Let L2(Ω)0

represent the functions in L2(Ω) with zero average. The classical mixed finite element

18 JASON HOWELL

104.5 104.6 104.7 104.8 104.9 105 105.1 105.2 105.3 105.4 105.5 105.6 105.7

100

101

102

n

ti
m

e
(s

ec
)

Square NStime
Square Stime
Ring-like NStime
Ring-like Stime

Fig. 5.4: Log-scale plot of running times for the null space method and the standard
direct solve for the pure Neumann problem on a square domain and ring-like domain.

method for (5.1) poses the following variational problem: find (u, p) ∈ (H1(Ω))d ×
L2

0(Ω) such that

ν(∇u,∇v) + ((u · ∇)u, v)− (p,div(v)) = (f, v) ∀v ∈ (H1(Ω))d, (5.2)

(div(u), q) = 0 ∀q ∈ L2
0(Ω). (5.3)

The Stokes problem is represented by (5.1) without the nonlinear (u · ∇)u term. To
implement the mean zero constraint on p and q, a scalar Lagrange multiplier λ can
be introduced, and (5.2)–(5.3) is augmented by adding λ

∫
Ω
q dΩ to the left hand side

in (5.3) and the equation µ
∫

Ω
p dΩ = 0.

Table C.1 gives the results of the Stokes problem using the standard Taylor-
Hood finite elements for velocity and pressure on a rectangular domain [30]. This
results in a dense B with around 0.11n nonzero entries. Results obtained for the
same computations for the fully nonlinear Navier-Stokes equations are displayed in
Table C.2. An absence of data in the “diff” and “Stime” columns indicates that the
standard direct solve was not attempted. In Table C.1 it is observed that the null
space method can solve a system with n+ 1 = 736030 in less time than the standard
direct solve in a system around one fourth of the size (n+ 1 = 183076). An example
of the sparsity pattern of both M and ZTAZ for the Navier-Stokes problem is given
in Figure 5.5 and the comparison of times is given in Figure 5.6. While the null
space method does not in general demonstrate as much speedup for Navier-Stokes as
it does Stokes, it is important to note that several Navier-Stokes systems must be
solved during an iterative nonlinear solve, so the speedup will be repeatedly realized.

5.2.3. Dual-Mixed Stokes Problems. While the velocity and pressure are
the primary unknowns in the classical mixed method for the Stokes and Navier-
Stokes equations, the dual-mixed method [40, 41, 42] for Stokes and Navier-Stokes
approximates the fluid stress (S), velocity (u), and velocity gradient (G) directly.
Specifically, the variational problem is: given f ∈ (L2(Ω))d and g ∈ (H1/2(Γ))d, find

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 19

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 60270

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 72686

Fig. 5.5: Example sparsity plot of M (left) and ZTAZ (right) for the Navier-Stokes
problem.

104 105 106
10−2

10−1

100

101

102

103

n

ti
m

e
(s

ec
)

Stokes NStime
Stokes Stime
Navier-Stokes NStime
Navier-Stokes Stime

Fig. 5.6: Log-scale plot of running times for the null space method and the standard
direct solve for Stokes and Navier-Stokes.

(G, u, S) ∈ (L2(Ω))d×d × (L2(Ω))d × S satisfying

ν(G,H)− (1/2)(u⊗ u,H)− (S,H) = 0, ∀H ∈ (L2(Ω))d×d,

(1/2)(Gu, v)− (div(S), v) = (f, v), ∀v ∈ (L2(Ω))d, (5.4)

(G,T) + (u,div(T)) =

∫
Γ

uΓ · Tn dΓ, ∀T ∈ S,

where

S =

{
T ∈ (H(div,Ω))d×d |

∫
Ω

tr(T) dΩ = 0

}
.

The mean trace zero constraint on (H(div,Ω))d×d can be relaxed by incorporating a
scalar Lagrange multiplier λ ∈ R, yielding the linear system

AG AGu BT1 0
AuG 0 BT2 0
B1 B2 0 CT

0 0 C 0



G
u
S
λ

 =


0
F
g
0

 , (5.5)

20 JASON HOWELL

Fig. 5.7: Example sparsity plots of dual-mixed stokes system on square domain (left)
and irregular-shaped domain (center), and irregular-shaped domain mesh (right).

104 105 106

10−1

100

101

102

103

n

ti
m

e
(s

ec
)

Square NStime
Square Stime
Irregular NStime
Irregular Stime

Fig. 5.8: Log-scale plot of running times for the null space method and the standard
direct solve for dual-mixed Stokes on square and irregular domains.

where C is the dense row that represents
∫

Ω
tr(S) dΩ. Linear systems for the dual-

mixed Stokes problem (without the AGu and AuG blocks in (5.5)) were constructed
for two different spatial domains in R2: a unit square and an irregular-shaped do-
main. First-order Raviart-Thomas elements for S and discontinuous piecewise linear
elements for G and u were employed, resulting in |B| ≈ 0.4n. Comparisons of the
sparsity plots for the two different domains are presented in Figure 5.7. Results from
the full null space method and the standard direct solve are given in Tables D.1 and
D.2, and the comparisons are summarized in Figure 5.8. The speedup exhibited by
the null space method is even greater for the irregular domain, suggesting that the
removal of the dense row and column allows the algorithms in the direct solver to take
a greater advantage of the lack of structure in the irregular domain problem. This can
be observed by examining the supernodal column elimination tree [23] (obtained us-
ing the symbolic factorization option of the umfpack2 routine provided by SuiteSparse
[20]) of both M and ZTAZ given for n + 1 = 139616 in Figure 5.9. Prestructuring
M with the null space method effectively reduces the height of the tree from 23220
to 98, vastly reducing the intercolumn dependencies.

6. Summary. The null space methods presented here can provide end users of
direct solvers a means to avoid decreases in solver performance primarily due to the
presence of dense rows. The methods are easy to implement, and the construction

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 21

height = 23220

Supernodal Column Elimination Tree for M

height = 98

Supernodal Column Elimination Tree for Z
T
AZ

Fig. 5.9: Plots of supernodal column elimination tree for M (left) and ZTAZ (right)
for the dual-mixed stokes problem on irregular-shaped domain with n+ 1 = 139616.

of the null space basis can be done in a fraction of the time required by the linear
solver. Several examples demonstrate significant speedup in solving the prestructured
system over the original system, however the performance of the methods appears to
be limited when the inflation is significant. More investigation is required to determine
under what conditions systems with the two-sided or one-sided null space method
are more likely to be beneficial. While improvements in direct solver performance
are continually advancing the state of the art, the techniques described here will
currently allow end users of direct solvers to solve a larger class of problems with
existing resources.

Appendix A. Tables For Arrowhead Matrices.

n + 1 |M | |ZT
1 AZ2| infl diff Ztime NStime Stime speedup

25001 75001 74998 1.00 3.357E-13 0.013 0.070 0.392 5.63
50001 150001 149998 1.00 3.387E-12 0.018 0.125 1.499 11.99
75001 225001 224998 1.00 2.649E-12 0.027 0.199 3.318 16.67

100001 300001 299998 1.00 2.140E-12 0.037 0.271 5.858 21.60
125001 375001 374998 1.00 1.008E-11 0.048 0.339 9.066 26.74
150001 450001 449998 1.00 8.477E-12 0.056 0.410 12.999 31.67
175001 525001 524998 1.00 3.956E-12 0.065 0.467 17.649 37.80
200001 600001 599998 1.00 3.743E-12 0.077 0.568 23.021 40.53
225001 675001 674998 1.00 4.426E-12 0.089 0.631 29.107 46.13
250001 750001 749998 1.00 1.796E-11 0.100 0.688 35.874 52.16
275001 825001 824998 1.00 2.039E-11 0.114 0.752 43.379 57.70
300001 900001 899998 1.00 2.273E-12 0.125 0.855 51.612 60.36
325001 975001 974998 1.00 1.068E-11 0.138 0.914 60.450 66.15
350001 1050001 1049998 1.00 3.340E-11 0.151 0.999 70.263 70.34
375001 1125001 1124998 1.00 3.683E-12 0.161 1.072 80.487 75.05
400001 1200001 1199998 1.00 2.944E-11 0.173 1.138 91.617 80.54
425001 1275001 1274998 1.00 4.299E-12 0.193 1.223 103.670 84.78
450001 1350001 1349998 1.00 6.231E-11 0.199 1.276 116.110 91.03
475001 1425001 1424998 1.00 3.010E-12 0.214 1.364 129.052 94.62
500001 1500001 1499998 1.00 3.455E-11 0.224 1.427 143.563 100.57

Table A.1: Comparison of standard direct solve and one-sided null space method for
arrowhead matrices for increasing n and |B1| = n.

22 JASON HOWELL

|M | |B| |ZTAZ| infl diff Ztime NStime Stime speedup

250007 4 250004 1.00 2.79E-16 0.0085 0.104 0.269 2.60
250051 26 250048 1.00 1.44E-15 0.0079 0.111 0.292 2.63
250501 251 250498 1.00 1.04E-13 0.0079 0.107 0.278 2.59
254979 2490 254976 1.00 7.64E-13 0.0080 0.114 0.297 2.61
262349 6175 262346 1.00 7.35E-12 0.0101 0.122 0.344 2.82
274437 12219 274434 1.00 1.68E-12 0.0120 0.139 0.478 3.45
297581 23791 297578 1.00 4.27E-10 0.0245 0.165 0.965 5.86
340627 45314 340624 1.00 6.71E-11 0.0330 0.219 2.312 10.58
414717 82359 414714 1.00 2.29E-10 0.0449 0.284 5.621 19.82
446653 98327 446650 1.00 5.93E-11 0.0508 0.353 7.558 21.44
475367 112684 475364 1.00 2.16E-10 0.0567 0.373 9.339 25.05
501603 125802 501600 1.00 1.20E-09 0.0593 0.440 11.422 25.97
525071 137536 525068 1.00 5.00E-10 0.0649 0.448 13.299 29.70
566043 158022 566040 1.00 2.95E-09 0.0725 0.524 16.871 32.17
750001 250001 749998 1.00 8.54E-10 0.1028 0.722 38.479 53.32

Table A.2: Comparison of standard direct solve and one-sided null space method for
arrowhead matrices, n = 250000 and increasing |B|.

Appendix B. Tables for Poisson Problem.

n + 1 |M | |ZTAZ| infl diff Ztime NStime Stime speedup

40402 282003 442788 1.57 1.88E-12 0.025 0.506 2.097 4.14
51077 356628 560013 1.57 7.02E-12 0.022 0.715 3.048 4.26
63002 440003 690988 1.57 7.39E-12 0.035 0.711 5.347 7.52
76177 532128 835713 1.57 8.49E-12 0.032 1.088 6.551 6.02
90602 633003 994188 1.57 9.03E-11 0.038 1.275 9.513 7.46

106277 742628 1166413 1.57 7.63E-11 0.050 1.295 14.402 11.12
123202 861003 1352388 1.57 2.00E-10 0.060 1.804 19.159 10.62
141377 988128 1552113 1.57 3.11E-10 0.071 2.223 24.801 11.16
160802 1124003 1765588 1.57 4.59E-10 0.081 2.448 29.365 12.00
181477 1268628 1992813 1.57 5.90E-10 0.084 3.155 37.912 12.02
203402 1422003 2233788 1.57 3.61E-10 0.096 3.538 47.218 13.35
226577 1584128 2488513 1.57 2.85E-10 0.104 4.138 59.386 14.35
251002 1755003 2756988 1.57 6.12E-10 0.119 4.055 88.812 21.90
276677 1934628 3039213 1.57 5.25E-09 0.131 4.351 99.339 22.83
303602 2123003 3335188 1.57 3.92E-09 0.139 4.717 108.684 23.04

Table B.1: Comparison of standard direct solve and null space method for pure Neu-
mann problem on square domain.

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 23

n + 1 |M | |ZTAZ| infl diff Ztime NStime Stime speedup

99384 890697 1704464 1.91 1.13E-09 0.035 2.282 3.514 1.54
114923 1030248 1964071 1.91 3.90E-09 0.040 2.523 4.476 1.77
132370 1186971 2368424 2.00 1.46E-09 0.048 4.978 5.797 1.16
153152 1373709 2771042 2.02 3.49E-09 0.055 6.977 7.604 1.09
175003 1570068 3003661 1.91 8.42E-09 0.064 4.266 9.805 2.30
199825 1793166 3446905 1.92 1.60E-09 0.073 5.255 12.430 2.37
217959 1956072 3753307 1.92 2.18E-08 0.081 5.826 14.788 2.54
259022 2325325 4482611 1.93 2.79E-08 0.098 13.900 19.218 1.38
263442 2364819 4756114 2.01 3.78E-08 0.104 16.351 21.262 1.30
292019 2621712 5146773 1.96 1.17E-08 0.108 16.301 25.134 1.54
327209 2938122 5844671 1.99 7.83E-10 0.124 21.092 31.279 1.48
350997 3151912 6041955 1.92 3.96E-08 0.138 10.586 35.733 3.38
387725 3482160 6644983 1.91 5.75E-08 0.152 12.487 42.870 3.43
408972 3673087 7302360 1.99 7.88E-09 0.164 31.150 47.195 1.52
473786 4256110 8353485 1.96 1.24E-08 0.194 36.037 60.448 1.68

Table B.2: Comparison of standard direct solve and null space method for pure Neu-
mann problem on ring-like domain.

Appendix C. Tables for Mixed Stokes and Navier-Stokes.

n + 1 |M | |B| |ZTAZ| infl diff Ztime NStime Stime speedup
2188 38576 257 50992 1.32 3.72E-15 0.0003 0.033 0.040 1.20
4729 84820 546 112226 1.32 4.14E-15 0.0004 0.084 0.084 1.00
8305 149502 950 198222 1.33 4.97E-15 0.0005 0.229 0.333 1.46

12772 231004 1453 305296 1.32 9.84E-15 0.0008 0.369 1.474 3.99
18517 337682 2098 447860 1.33 1.56E-14 0.0016 0.652 2.802 4.30
26854 489294 3031 646072 1.32 1.38E-14 0.0018 0.996 6.770 6.79
32995 602306 3720 796240 1.32 2.67E-14 0.0023 1.235 9.262 7.50
43078 786882 4847 1036976 1.32 4.76E-14 0.0032 1.866 15.819 8.48
51460 941098 5785 1246734 1.32 1.82E-14 0.0040 2.551 26.073 10.22
62722 1150150 7043 1523614 1.32 1.77E-14 0.0039 3.498 42.820 12.24
73372 1346148 8233 1795402 1.33 2.36E-14 0.0050 4.545 41.384 9.11
86866 1593288 9739 2121702 1.33 3.34E-14 0.0052 6.509 77.948 11.98
99460 1825198 11145 2431356 1.33 2.86E-14 0.0058 6.811 74.425 10.93

117391 2151318 13144 2859160 1.33 2.97E-14 0.0066 9.315 127.044 13.64
132352 2429104 14813 3233876 1.33 3.00E-14 0.0076 11.119 116.803 10.51
145864 2668852 16321 3543900 1.33 4.65E-14 0.0103 12.530 193.427 15.44
183076 3362662 20469 4473160 1.33 5.89E-14 0.0126 17.807 375.890 21.11
207226 3807856 23159 5056400 1.33 3.51E-14 0.0141 22.549 411.158 18.23
221359 4080710 24736 5423956 1.33 4.35E-14 0.0154 25.953 360.559 13.89
243286 4476336 27179 5959142 1.33 4.98E-14 0.0173 64.222 377.703 5.88
322522 5937362 36003 7907618 1.33 6.25E-14 0.0238 62.839 1206.523 19.20
358489 6593518 40006 8741244 1.33 5.94E-14 0.0259 132.936 1296.813017 9.76
374179 6886288 41756 9182944 1.33 8.30E-14 0.0280 74.996 1292.916187 17.24
394189 7267594 43986 9675046 1.33 7.21E-14 0.0284 72.277 1226.410117 16.97
466663 8584006 52052 11442590 1.33 0.0384 118.439
527122 9703388 58783 12932988 1.33 0.0636 136.858
590380 10854476 65825 14401620 1.33 0.0729 144.462
649570 11977796 72415 15900372 1.33 0.0787 211.806
736030 13549470 82035 18021144 1.33 0.0936 279.488

Table C.1: Comparison of standard direct solve and null space method for Stokes
problem.

24 JASON HOWELL

n + 1 |M | |B| |ZTAZ| infl diff Ztime NStime Stime speedup
2188 60270 257 72686 1.21 1.77E-15 0.0003 0.039 0.027 0.70
4729 132406 546 159812 1.21 5.06E-15 0.0004 0.092 0.104 1.13
8305 233862 950 282582 1.21 8.31E-15 0.0005 0.201 0.244 1.21

12772 361190 1453 435482 1.21 1.01E-14 0.0007 0.312 0.703 2.25
18517 526936 2098 637114 1.21 2.10E-14 0.0013 0.560 1.151 2.05
26854 765634 3031 922412 1.20 1.28E-14 0.0023 0.952 2.327 2.44
32995 941480 3720 1135414 1.21 6.35E-12 0.0017 1.126 9.156 8.13
43078 1231012 4847 1481106 1.20 1.73E-14 0.0026 1.679 8.072 4.81
51460 1471656 5785 1777292 1.21 1.74E-14 0.0034 2.476 13.421 5.42
62722 1797106 7043 2170570 1.21 1.84E-14 0.0038 2.863 18.841 6.58
73372 2103260 8233 2552514 1.21 3.64E-12 0.0046 4.036 27.165 6.73
86866 2490402 9739 3018816 1.21 3.07E-14 0.0054 5.286 63.046 11.93
99460 2852024 11145 3458182 1.21 2.03E-10 0.0063 11.722 64.718 5.52

117391 3366344 13144 4074186 1.21 1.57E-11 0.0071 8.681 109.731 12.64
132352 3798722 14813 4603494 1.21 8.35E-12 0.0080 10.859 145.626 13.41
145864 4177670 16321 5052718 1.21 3.55E-14 0.0098 12.294 144.746 11.77
183076 5255710 20469 6366208 1.21 4.28E-14 0.0123 38.428 206.909 5.38
207226 5956162 23159 7204706 1.21 7.68E-11 0.0140 21.910 1089.682 49.73
221359 6370840 24736 7714086 1.21 4.76E-14 0.0148 47.819 310.419 6.49
243286 6994304 27179 8477110 1.21 1.97E-12 0.0159 30.516 530.607 17.39
322522 9280664 36003 11250920 1.21 5.57E-14 0.0223 124.250 2475.251 19.92
358489 10323538 40006 12471264 1.21 6.25E-14 0.0253 126.839 958.905 7.56
394189 11350622 43986 13758074 1.21 6.91E-14 0.0275 136.018 1357.513 9.98
466663 13424512 52052 16283096 1.21 0.0343 268.038
527122 15174044 58783 18403644 1.21 0.0629 147.946
590380 16981372 65825 20528516 1.21 0.0439 324.469
649570 18703960 72415 22626536 1.21 0.0493 448.260

Table C.2: Comparison of standard direct solve and null space method for Naiver-
Stokes.

Appendix D. Tables for Dual-Mixed Stokes.

n + 1 |M | |B| |ZTAZ| infl diff Ztime NStime Stime speedup
5081 66946 2045 68764 1.03 1.48E-14 0.0017 0.108 0.124 1.15

20161 267284 8078 274932 1.03 1.72E-14 0.0092 0.430 1.542 3.58
45241 601830 18067 619310 1.03 3.05E-14 0.0098 1.186 8.180 6.90
80321 1069456 32022 1101006 1.03 8.01E-14 0.0169 2.676 29.369 10.98

125401 1671120 49850 1720576 1.03 1.17E-13 0.0203 5.600 60.643 10.83
180481 2403874 70517 2476998 1.03 1.24E-13 0.0302 10.759 134.263 12.48
245561 3274472 97532 3371716 1.03 2.84E-13 0.0452 16.867 213.088 12.63
320641 4278110 126891 4406728 1.03 4.89E-13 0.0593 25.349 488.083 19.25
405721 5410736 161950 5570722 1.03 2.45E-13 0.0846 44.851 818.019 18.24
500801 6691372 199948 6890864 1.03 5.73E-13 0.1006 55.618 1138.317 20.47
605881 8088772 242266 8326976 1.03 3.75E-13 0.1305 83.160 1657.527 19.93
720961 9622302 284017 9913640 1.03 7.89E-13 0.1520 105.158 2926.810 27.83

Table D.1: Comparison of standard direct solve and null space method for dual-mixed
Stokes on a square domain.

REFERENCES

[1] M. Adlers and A. Björck, Matrix stretching for sparse least squares problems, Numerical
Linear Algebra with Applications, 7 (2000), pp. 51–65.

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 25

n + 1 |M | |B| |ZTAZ| infl diff Ztime NStime Stime speedup
11359 148566 4668 152454 1.03 4.01E-13 0.0021 0.156 0.299 1.91
26265 346440 10680 356004 1.03 1.95E-12 0.0057 0.517 2.141 4.14
46421 614610 18767 631998 1.03 7.36E-12 0.0101 0.854 6.046 7.08
72727 965192 29323 992846 1.03 1.80E-11 0.0129 1.402 14.981 10.68

106360 1413945 42803 1454811 1.03 2.17E-11 0.0189 2.617 42.199 16.12
139616 1857691 56146 1911593 1.03 5.05E-11 0.0234 3.889 66.351 17.06
186072 2478247 74740 2550511 1.03 6.20E-11 0.0334 6.124 143.892 23.50
234428 3124189 94049 3215679 1.03 8.54E-11 0.0458 8.915 248.958 27.93
288984 3853383 115940 3966367 1.03 1.34E-10 0.0528 10.886 303.924 27.92
359490 4796221 144148 4937215 1.03 3.78E-10 0.0694 15.655 430.508 27.50
411446 5490449 164916 5652063 1.03 3.41E-10 0.0844 24.274 635.733 26.19
490102 6542539 196409 6735371 1.03 4.32E-10 0.0979 24.919 1099.457 44.12
567858 7582451 227499 7806219 1.03 4.86E-10 0.1194 27.873 1281.732 45.99
656314 8765865 262910 9024771 1.03 5.87E-10 0.1399 38.662 1604.043 41.49

Table D.2: Comparison of standard direct solve and null space method for dual-mixed
Stokes on an irregular domain.

[2] M. Arioli and G. Manzini, Null space algorithm and spanning trees in solving darcy’s equa-
tion, BIT Numerical Mathematics, 43 (2003), pp. 839–848.

[3] M. Arioli, J. Maryška, M. Rozložńık, and M. Tůma, Dual variable methods for mixed-
hybrid finite element approximation of the potential fluid flow problem in porous media,
Electron. Trans. Numer. Anal., 22 (2006), pp. 17–40.

[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418–477.

[5] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[6] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15
of Texts in Applied Mathematics, Springer-Verlag, New York, second ed., 2002.

[7] D. Calvetti and L. Reichel, Iterative methods for large continuation problems, Journal of
Computational and Applied Mathematics, 123 (2000), pp. 217–240. Numerical Analysis
2000. Vol. III: Linear Algebra.

[8] T. F. Chan, Deflated decomposition of solutions of nearly singular systems, SIAM J. Numer.
Anal., 21 (1984), pp. 738–754.

[9] , Deflation techniques and block-elimination algorithms for solving bordered singular
systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 121–134.

[10] , Techniques for large sparse systems arising from continuation methods, in Numerical
methods for bifurcation problems (Dortmund, 1983), vol. 70 of Internat. Schriftenreihe
Numer. Math., Birkhäuser, Basel, 1984, pp. 116–128.

[11] T. F. Chan and D. C. Resasco, Generalized deflated block-elimination, SIAM J. Numer.
Anal., 23 (1986), pp. 913–924.

[12] T. F. Chan and Y. Saad, Iterative methods for solving bordered systems with applications to
continuation methods, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 438–451.

[13] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill
Book Company, 1987.

[14] E. Cohen, Structure prediction and computation of sparse matrix products, Journal of Com-
binatorial Optimization, 2 (1998), pp. 307–332.

[15] T. F. Coleman, Large Sparse Numerical Optimization, Springer-Verlag New York, Inc., New
York, NY, USA, 1984.

[16] T. F. Coleman and A. Pothen, The null space problem. I. Complexity, SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 527–537.

[17] , The null space problem. II. Algorithms, SIAM J. Algebraic Discrete Methods, 8 (1987),
pp. 544–563.

[18] T. A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Softw., 30 (2004), pp. 196–199.

[19] , Direct methods for sparse linear systems, vol. 2 of Fundamentals of Algorithms, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

[20] , Algorithm 915, suitesparseqr: Multifrontal multithreaded rank-revealing sparse qr fac-

26 JASON HOWELL

torization, ACM Trans. Math. Softw., 38 (2011), pp. 8:1–8:22.
[21] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse lu fac-

torization, SIAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 140–158.
[22] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, A column approximate minimum

degree ordering algorithm, ACM Trans. Math. Softw., 30 (2004), pp. 353–376.
[23] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal

approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.
[24] S. Eisenstat and J. W. H. Liu, The theory of elimination trees for sparse unsymmetric

matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 686–705 (electronic).
[25] A. George and E. Ng, An implementation of Gaussian elimination with partial pivoting for

sparse systems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 390–409.
[26] , Symbolic factorization for sparse Gaussian elimination with partial pivoting, SIAM J.

Sci. Statist. Comput., 8 (1987), pp. 877–898.
[27] J. Gilbert and E. Ng, Predicting structure in nonsymmetric sparse matrix factorizations, in

Graph Theory and Sparse Matrix Computation, A. George, J. Gilbert, and J. Liu, eds.,
vol. 56 of The IMA Volumes in Mathematics and its Applications, Springer New York,
1993, pp. 107–139.

[28] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl, 15 (1994), pp. 62–79.

[29] J. R. Gilbert and M. T. Heath, Computing a sparse basis for the null space, SIAM J.
Algebraic Discrete Methods, 8 (1987), pp. 446–459.

[30] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer,
Berlin, 1986.

[31] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, fourth ed., 2013.

[32] W. Govaerts, Stable solvers and block elimination for bordered systems, SIAM J. Matrix Anal.
Appl., 12 (1991), pp. 469–483.

[33] W. Govaerts, Solution of bordered singular systems in numerical continuation and bifurcation,
Journal of Computational and Applied Mathematics, 50 (1994), pp. 339–347.

[34] W. J. F. Govaerts, Numerical methods for bifurcations of dynamical equilibria, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[35] J. F. Grcar, Matrix Stretching for Linear Equations, ArXiv e-prints, (2012).
[36] L. Grigori, M. Cosnard, and E. Ng, On the row merge tree for sparse lu factorization with

partial pivoting, BIT Numerical Mathematics, 47 (2007), pp. 45–76.
[37] L. Grigori, J. R. Gilbert, and M. Cosnard, Symbolic and exact structure prediction for

sparse gaussian elimination with partial pivoting, SIAM Journal on Matrix Analysis and
Applications, 30 (2009), pp. 1520–1545.

[38] J. Haslinger, T. Kozubek, R. Kučera, and G. Peichl, Projected Schur complement method
for solving non-symmetric systems arising from a smooth fictitious domain approach, Nu-
mer. Linear Algebra Appl., 14 (2007), pp. 713–739.

[39] F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251–265.
[40] J. S. Howell, Approximation of generalized Stokes problems using dual-mixed finite elements

without enrichment, Int. J. Numer. Meth. Fluids, 67 (2011), pp. 247–268.
[41] J. S. Howell and N. J. Walkington, Inf-sup conditions for twofold saddle point problems,

Numer. Math., 118 (2011), pp. 663–693.
[42] , Dual-mixed finite element methods for the Navier-Stokes equations, ESAIM: Mathe-

matical Modelling and Numerical Analysis, 47 (2013), p. 789805.
[43] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Ap-

plications of Bifurcation Theory, P. Rabinowitz, ed., Academic Press, New York, 1977,
pp. 359–384.

[44] , Global homotopies and Newton methods, in Recent Advances in Numerical Analysis,
C. de Boor and G. H. Golub, eds., Academic Press, New York, 1978, pp. 73–94.

[45] , Practical procedures in path following near limit points, in Computing Methods in
Applied Sciences and Engineering, R. Glowinski and J. L. Lions, eds., Amsterdam, 1982,
Norh Holland.

[46] H. B. Keller, The bordering algorithm and path following near singular points of higher
nullity, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 573–582.

[47] S. Le Borne, Block computation and representation of a sparse nullspace basis of a rectangular
matrix, Linear Algebra and its Applications, 428 (2008), pp. 2455–2467.

[48] , Preconditioned nullspace method for the two-dimensional oseen problem, SIAM J. Sci-
entific Computing, 31 (2009), pp. 2494–2509.

[49] S. Le Borne and R. Kriemann, The nullspace method for the three-dimensional stokes prob-

PRESTRUCTURING SPARSE MATRICES WITH DENSE ROWS 27

lem, PAMM, 7 (2007), pp. 1101101–1101102.
[50] F. Najm, Circuit Simulation, Wiley, 2010.
[51] D. P. O’Leary and G. W. Stewart, Computing the eigenvalues and eigenvectors of symmetric

arrowhead matrices, J. Comput. Phys., 90 (1990), pp. 497–505.
[52] S. Oliveira, A new parallel chasing algorithm for transforming arrowhead matrices to tridi-

agonal form, Math. Comp., 67 (1998), pp. 221–235.
[53] , Exact prediction of QR fill-in by row-merge trees, SIAM J. Sci. Comput., 22 (2000),

pp. 1962–1973 (electronic).
[54] R. J. Plemmons and R. E. White, Substructuring methods for computing the nullspace of

equilibrium matrices, SIAM Journal on Matrix Analysis and Applications, 11 (1990), pp. 1–
22.

[55] A. Pothen, Sparse Null Bases and Marriage Theorems, PhD thesis, Cornell University, Ithaca,
New York, 1984.

[56] A. Pothen, Sparse null basis computations in structural optimization, Numer. Math., 55
(1989), pp. 501–519.

[57] A. Pothen and S. Toledo, Elimination Structures in Scientific Computing, Chapman and
Hall/CRC, 2015/07/01 2004, pp. 59–1–59–29.

[58] A. Ramage and J. Eugene C. Gartland, A preconditioned nullspace method for liquid crystal
director modeling, SIAM Journal on Scientific Computing, 35 (2013), pp. B226–B247.

[59] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), pp. 256–276.

[60] C. Sun, Dealing with dense rows in the solution of sparse linear least squares problems, tech.
report, Cornell University, 1995.

[61] H. Y. Zha, A two-way chasing scheme for reducing a symmetric arrowhead matrix to tridiag-
onal form, J. Numer. Linear Algebra Appl., 1 (1992), pp. 49–57.

[62] L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), pp. 625–629.
[63] L. Zou and Y. Jiang, Estimation of the eigenvalues and the smallest singular value of matrices,

Linear Algebra Appl., 433 (2010), pp. 1203–1211.

