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SUMMARY

We derive nonlinear acceleration methods based on the limited memory BFGS (L-BFGS) update formula
for accelerating iterative optimization methods of alternating least squares (ALS) type applied to canonical
polyadic (CP) and Tucker tensor decompositions. Our approach starts from linear preconditioning ideas
that use linear transformations encoded by matrix multiplications, and extends these ideas to the case
of genuinely nonlinear preconditioning, where the preconditioning operation involves fully nonlinear
transformations. As such, the ALS-type iterations are used as fully nonlinear preconditioners for L-BFGS, or,
equivalently, L-BFGS is used as a nonlinear accelerator for ALS. Numerical results show that the resulting
methods perform much better than either stand-alone L-BFGS or stand-alone ALS, offering substantial
improvements in terms of time-to-solution and robustness over state-of-the-art methods for large and
noisy tensor problems, including previously described acceleration methods based on nonlinear conjugate
gradients and nonlinear GMRES. Our approach provides a general L-BFGS-based acceleration mechanism
for nonlinear optimization. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simple nonlinear iterative optimization methods like alternating least squares (ALS) and coordinate
descent (CD) are widely used in a variety of application domains, including tensor decomposition,
image processing, computational statistics and machine learning [1, 2]. These methods solve large-
scale unconstrained nonlinear optimization problems

min f(x), (1)

by fixing, in each iteration, most components of the variable vector x at their values from the current
iteration, and approximately or exactly minimizing f(x) with respect to the remaining components.
These simple methods are competitive with more sophisticated approaches in a variety of contexts
[1, 2].

As an example in point, methods of ALS type are workhorse algorithms for canonical polyadic
(CP) or Tucker tensor decompositions [1, 3], which have applications in multimodal data analysis
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2 H. DE STERCK AND A.J.M. HOWSE

and compression. For the Tucker decomposition, the standard alternating algorithm is the higher-
order orthogonal iteration (HOOI) [4]. It is not an ALS method per se, but is of a similar
nature: it maximizes in an alternating fashion quadratic objectives that are obtained by fixing
most components of the variable to be optimized. For ease of exposition we will refer to HOOI
as an ALS-type method. These methods of ALS type, for CP and Tucker, are widely used, but
by themselves may converge too slowly when problems become ill-conditioned or when accurate
solutions are required, even though they are under those circumstances often still more efficient than
more advanced alternatives like the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
quasi-Newton method or nonlinear conjugate gradient (NCG) method [3].

For these situations where convergence is slow, nonlinear acceleration mechanisms for the simple
optimization methods are of significant interest.

In previous work it was shown that the NCG method and a nonlinear GMRES (NGMRES)
optimization method can be used as nonlinear convergence accelerators for ALS-type methods in
tensor decomposition problems, substantially improving convergence and leading to state-of-the-art
methods for tensor decomposition in terms of performance [5, 6, 7].

However, as the most efficient quasi-Newton (QN) method for optimization, the performance
of L-BFGS is expected to be superior to NCG and NGMRES, and this naturally suggests to use L-
BFGS as a nonlinear convergence accelerator, with the promise of improved performance compared
to acceleration by NCG or NGMRES. In this paper we derive two approaches for using L-BFGS as
a nonlinear convergence accelerator for ALS-type optimization methods, and show numerically that
nonlinear acceleration of ALS-type methods for tensor decomposition by L-BFGS indeed leads to
substantial performance gains compared to other leading methods for tensor decomposition, when
problems are ill-conditioned or accurate solutions are required.

The derivation of our method for nonlinear acceleration by L-BFGS is rooted in the case of
minimizing convex quadratic functionals that correspond to solving symmetric positive definite
(SPD) linear systems. It has long been known that iteration growth resulting from ill-conditioning
can in this case be combated in highly efficient manners by preconditioning the problem, where
linear transformations are used to improve conditioning and reduce iteration counts. Preconditioning
using linear transformations encoded by matrix multiplications has been generalized to NCG and
L-BFGS beyond the convex quadratic case, and the resulting linearly preconditioned methods for
nonlinear optimization are well-known in the optimization community [8, 9]. However, in order
to use L-BFGS as a nonlinear acceleration mechanism for methods such as ALS, one has to
extend the notion of preconditioning by linear transformations to the case of genuinely nonlinear
preconditioning, where the preconditioning operation involves fully nonlinear transformations, as
opposed to linear transformations encoded by matrix multiplications. This was done in [5, 6, 7] for
the NCG and NGMRES methods, in ways that reduce to the linearly preconditioned case for convex
quadratic objectives, and it is our goal to do this in this paper for L-BFGS. When applying the
resulting methods, e.g., to ALS-type iterations for tensor decomposition, one can view ALS as the
fully nonlinear preconditioner for L-BFGS, or, equivalently, one can view L-BFGS as a nonlinear
acceleration mechanism for ALS.

These methods derived from nonlinear preconditioning ideas can be situated in the broader
context of the current extensive research interest in nonlinear preconditioning for solving systems
of nonlinear equations g(x) = 0 [10], as summarized in the review paper by Brune et al. [11]. Ideas
on nonlinear preconditioning date back to the 1960s [12, 13, 14], but they remain underexplored in
theory and in practice [11], especially in comparison to linear preconditioning. We extend some
of the strategies used in [11] and in other papers on nonlinear preconditioning [5, 6, 7] to L-
BFGS in the optimization context. We also derive nonlinearly preconditioned versions of the limited
memory Broyden (L-Broyden) QN method. Without preconditioning, L-Broyden is often inferior to
L-BFGS, but, interestingly, we find that, with nonlinear preconditioning, L-Broyden can sometimes
be competitive with leading methods.

We consider two strategies for extending nonlinear preconditioning to L-BFGS. The first
approach is based on the general idea of left preconditioning, which is commonly used when solving
linear systems, and has been generalized to the case of nonlinear preconditioners for nonlinear
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NONLINEAR ACCELERATION BY L-BFGS 3

systems of equations, see, e.g., the review paper [11]. We refer to this approach as the LP approach
(for Left Preconditioning). Nonlinear left preconditioning of L-BFGS has been considered before
in [11] in the context of nonlinear systems solvers for partial differential equations (PDEs), and in
this paper we investigate how the idea of left preconditioning applies to the optimization context,
using ALS-type preconditioners.

Our second approach is inspired by a linear change of variables x = Cz in optimization problem
(1). It is derived by applying the optimization method to f̂(z) = f(Cz), and transforming back to
the x variables. The resulting linearly preconditioned methods are well-known in the optimization
community [8, 9], but in this paper we generalize this approach to the case of fully nonlinear
preconditioners using nonlinear transformations (i.e., not encoded by matrix multiplications).
We refer to this second approach as the TP approach (for Transformation Preconditioning).
The resulting TP form of nonlinearly preconditioned L-BFGS has, to our knowledge, not been
considered before.

Both the LP and TP approaches were explored implicitly in the previous work on nonlinearly
preconditioned NCG optimization methods [6, 7]. In that context, the two approaches arise naturally
and have a simple interpretation. However, in the case of L-BFGS, the situation is much more
intricate, and in this paper we present a framework that explicitly formalizes the LP and TP
approaches for general optimization methods, which allows us to derive nonlinearly preconditioned
versions of the L-BFGS and L-Broyden methods.

We first illustrate the main ideas in the simplified context of linear preconditioning for convex
quadratic optimization problems that correspond to solving SPD linear systems. This allows
us to explain and interpret the LP and TP approaches in relation to well-known ideas for
linear preconditioning. Some preliminary numerical tests will illustrate the two preconditioning
approaches and will provide some initial numerical justification. We then extend the formalism
to nonlinear preconditioning for general nonlinear objective functions f(x), and provide extensive
numerical tests illustrating and comparing the merits of the two approaches.

To demonstrate the efficacy of the proposed nonlinearly preconditioned quasi-Newton (NPQN)
algorithms we use them to solve approximate tensor decomposition problems: decomposition of a
multidimensional array into a sum and/or product of multiple components (for example, vector outer
products) to reduce storage costs and simplify further data analysis. Such problems are typically cast
as minimizing the approximation error in a given norm. Specifically, we consider decompositions
into CP and Tucker tensor formats, the former representing a tensor as a sum of rank-one terms
and the latter as a multilinear tensor-matrix product. Background material on computing tensor
decompositions are presented in Appendix A. Both of these tensor formats have standard iterative
algorithms of ALS type for computing decompositions, which can be slow to converge when used
independently, but can be useful as nonlinear preconditioners, resulting in significant acceleration.
The resulting methods combine L-BFGS with ALS, and are much more efficient than either of
ALS or L-BFGS by themselves, offering substantial improvements in terms of time-to-solution and
robustness over state-of-the-art methods for large and noisy tensor problems.

As stated before, NGMRES [5] and NCG [6] methods were used before to accelerate ALS for the
CP decomposition problem, where the resulting combined methods are currently among the fastest
available for noisy problems and when high accuracy is required. The nonlinearly preconditioned
NCG (NPNCG) and nonlinearly preconditioned NGMRES (NPNGMRES) algorithms were
extended to the Tucker decomposition problem in [7], which involved the use of matrix manifold
optimization to handle lack of uniqueness and equality constraints required for decomposition
into a particular subtype of Tucker tensor called the higher order singular value decomposition
(HOSVD). The details of adapting our proposed NPQN algorithms to the required manifold
structure are provided in Appendix B. Several other matrix manifold optimization strategies for
Tucker decompositions have been proposed. Newton’s method was considered by Eldén and Savas
in [15], followed by adaptation of the BFGS QN method, as well as L-BFGS, by Savas and Lim [16].
Manifold NCG [17], a Riemannian trust-region method [18], and a differential-geometric Newton’s
method [19] have been developed by Ishteva et al. In [7], the NGMRES- and NCG-accelerated
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4 H. DE STERCK AND A.J.M. HOWSE

ALS-type approaches were compared with these methods, and showed substantial improvements in
performance for difficult problems.

The remainder of the paper is organized as follows. In Section 2 we describe the optimization
methods that are used as building blocks in subsequent discussion. Section 3 recalls linear
preconditioning strategies in the context of minimizing quadratic objective functions which
guide our nonlinear method development, and in Section 4 we describe our new QN nonlinear
preconditioning/nonlinear acceleration strategies, including how such methods can be informed
by the linear case. In Section 5 we provide numerical results for tensor decomposition problems,
illustrating the improvements offered by the proposed methods, and finally in Section 6 we
summarize our results and discuss future work.

2. OPTIMIZATION METHOD BUILDING BLOCKS

2.1. Nonlinear Conjugate Gradient Method

The conjugate gradient (CG) method [20] is an iterative solver for linear systems Ax = b with
symmetric positive definite (SPD) matrices A; or equivalently, a solver that minimizes convex
quadratic objective functions

f(x) = 1
2xᵀAx− bᵀx. (2)

Starting from initial guess x0 with initial search direction and residual p0 = r0 = b−Ax0. CG is
based on the conjugacy of the sequence of search directions pk with respect to A, and generates
an orthogonal sequence of residual vectors rk [20]. In addition to the low storage requirements, we
only require the means to compute the matrix-vector product Apk; storage of A is unnecessary.

The nonlinear conjugate gradient (NCG) iteration (Algorithm 1) arose as an adaptation of CG
for minimizing general nonlinear objective functions f(x) [20]. NCG generalizes CG as follows:
(i) we replace the residual rk with the gradient of the objective function, g(x) = ∇f(x), (ii) the step
length αk must be determined by a line-search, and (iii) the search direction update parameter βk
can be specified by a number of different formulas. Three of the most successful are

Polak-Ribière [21]: βPR
k =

gᵀ
kyk−1

gᵀ
k−1gk−1

, (3)

Hestenes-Stiefel [22]: βHS
k =

gᵀ
kyk−1

pᵀ
k−1yk−1

, (4)

Hager-Zhang [23]: βHZ
k =

(
yk−1 − 2pk−1

‖yk−1‖2

pᵀ
k−1yk−1

)ᵀ
gk

pᵀ
k−1yk−1

, (5)

where gk = g(xk) and yk−1 = gk − gk−1. One iteration of NCG is described in Algorithm 1. Like
the linear version, NCG enjoys the benefits of very low storage requirements.

Algorithm 1 Nonlinear Conjugate Gradients Iteration

1: procedure NCG(g(·),xk,pk,gk)
2: xk+1 = xk + αkpk . αk determined by line-search
3: gk+1 = g(xk+1)
4: Compute βk by one of (3–5)
5: pk+1 = −gk+1 + βkpk
6: return xk+1, pk+1, gk+1

7: end procedure

In the linear case, the αk and βk parameters are given by

αk = (rᵀkrk)/(pᵀ
kApk)
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NONLINEAR ACCELERATION BY L-BFGS 5

and
βk = (rᵀk+1rk+1)/(rᵀkrk).

2.2. Limited Memory QN Methods

QN methods [24] are iterations based on the standard Newton-Raphson iteration for solving
nonlinear systems g(x) or minimizing nonlinear functions f(x), depending on the context. The
expensive evaluation of the Jacobian or Hessian matrix at each iteration is replaced with a low-rank
update of a matrix approximation based on a secant condition. The quadratic rate of convergence
of Newton’s method is traded for super-linear convergence, with the hope that the approximation
results in a significantly lower per iteration cost.

Limited memory QN iterations aim for further savings in storage requirements and work per
iteration by expressing the matrix approximation in terms of an initial matrix (often diagonal) and
at most m vector pairs. In this way the full matrix approximation does not need to be formed or
stored to compute matrix-vector products. We describe two limited memory QN methods in the
remainder of this subsection: one based on the good Broyden update for solving nonlinear systems
(L-Broyden), and one based on the BFGS update for minimizing nonlinear objective functions (L-
BFGS).

2.2.1. The L-Broyden Update We first describe the general good Broyden update for standard QN
methods, and then give the limited memory variant. When considering a nonlinear system g(x) = 0,
we denote an approximation to the Jacobian matrix by Ak, and define the vectors sk = xk+1 − xk
and yk = gk+1 − gk [24]. Broyden’s good update minimizes the change in the affine model

Mk+1(x) = gk+1 + Ak+1(x− xk+1)

between iterations, subject to the secant equation

Ak+1sk = yk.

The resulting rank-one update is

Ak+1 = Ak +
(yk −Aksk)sᵀk

sᵀksk
, (6)

which, by applying the Sherman-Morrison-Woodbury formula [25, 26, 27], gives the inverse matrix
update

A−1k+1 = A−1k +
(sk −A−1k yk)sᵀkA

−1
k

sᵀkA
−1
k yk

. (7)

An example of one QN iteration in this context is given in Algorithm 2.

Algorithm 2 Quasi-Newton Iteration for Nonlinear Systems

1: procedure QN(g,xk, A−1k )
2: pk = −A−1k g(xk)
3: xk+1 = xk + αkpk . αk determined by line-search
4: sk = xk+1 − xk
5: yk = g(xk+1)− g(xk)
6: A−1k+1 = U(A−1k , sk,yk) . U update formula (7).
7: return xk+1, A−1k+1

8: end procedure

In the limited memory context, where only a window of m previous vector pairs are retained, a
compact, non-recursive representation of update (7) derived in [28] is

A−1k =
[
A

(k)
0

]−1
−
([

A
(k)
0

]−1
Yk − Sk

)(
Mk + Sᵀ

k

[
A

(k)
0

]−1
Yk

)−1
Sᵀ
k

[
A

(k)
0

]−1
(8)
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6 H. DE STERCK AND A.J.M. HOWSE

where

Sk = [sk−m | sk−m+1 | · · · | sk−1], (9)
Yk = [yk−m |yk−m+1 | · · · |yk−1], (10)

and

(Mk)i,j =

{
−sᵀi−1sj−1 if i > j

0 otherwise
. (11)

For the initial Jacobian approximation A
(k)
0 we will typically use a scaled identity matrix, A

(k)
0 =

ηkI. It is this representation that we will use in the L-Broyden iteration.

2.2.2. The L-BFGS Update In the optimization context we use Bk to denote an approximation to
the Hessian and Hk for an approximation to the inverse of the Hessian. Arguably the most successful
QN update for nonlinear optimization is the BFGS update, which, in addition to enforcing the secant
equation, ensures that Bk is SPD provided sᵀk−1yk−1 > 0 and Bk−1 is SPD [24]. This is a rank-two
update given by

Bk+1 = Bk +
yky

ᵀ
k

yᵀ
ksk
− Bksk(Bksk)ᵀ

sᵀkBksk
, (12)

with inverse update

Hk+1 = Hk +
(sk −Hkyk)sᵀk + sk(sk −Hkyk)ᵀ

yᵀ
ksk

−
〈sk −Hkyk,yk〉sksᵀk

(yᵀ
ksk)2

. (13)

In the limited memory case, given initial Hessian approximation B
(k)
0

(
or H

(k)
0

)
and at most m

vector pairs yk, sk, compact versions of (12) and (13) are [28]:

Bk = B
(k)
0 −

[
B

(k)
0 Sk Yk

] [
Sᵀ
kB

(k)
0 Sk Lk

Lᵀ
k −Dk

] [
Sᵀ
kB

(k)
0

Yᵀ
k

]
(14)

and

Hk = H
(k)
0 +

[
Sk H

(k)
0 Yk

] [
R−ᵀk (DkY

ᵀ
kH

(k)
0 Yk)R−1k −R−ᵀk

−R−1k 0

] [
Sᵀ
k

Yᵀ
kH

(k)
0

]
, (15)

where Sk and Yk are as in (9) and (10), and

Dk = diag[sᵀk−myk−m, . . . , s
ᵀ
k−1yk−1], (16)

(Lk)i,j =

{
(sk−m−1+i)

ᵀ(yk−m−1+j) if i > j

0 otherwise
, (17)

(Rk)i,j =

{
(sk−m−1+i)

ᵀ(yk−m−1+j) if i ≤ j
0 otherwise

. (18)

It is common to set H
(k)
0 = γkI, where

γk =
sᵀk−1yk−1

yᵀ
k−1yk−1

. (19)

This choice of γk is a scaling factor which attempts to make the size of H
(k)
0 similar to that of the

true Hessian inverse ∇2f(xk−1)−1 along the most recent search direction, which helps ensure the
search direction pk is scaled so that a unit step length αk is acceptable in more iterations [20]. (This
is, in fact, a rudimentary form of preconditioning, using a simple linear transformation, on which we
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NONLINEAR ACCELERATION BY L-BFGS 7

will improve below.) When working with the inverse L-BFGS update, the product −Hkgk defining
the QN direction pk (similar to Algorithm 2) can be efficiently computed by a two-loop recursion,
described in Algorithm 3. The L-BFGS update formula is then given by

xk+1 = xk + αkpk,

where αk is determined by a line-search.

Algorithm 3 L-BFGS Two-Loop Recursion

1: procedure 2LOOP(H(k)
0 ,gk,Sk,Yk)

2: q = gk

3: for i = k − 1, k − 2, . . . , k −m do
4: ρi = (yᵀ

i si)
−1

5: αi = ρis
ᵀ
i q

6: q = q− αiyi
7: end for
8: r = H

(k)
0 q

9: for i = k −m, k −m+ 1, . . . , k − 1 do
10: β = ρiy

ᵀ
i r

11: r = r + (αi − β)si
12: end for
13: return r . Contains Hkgk
14: end procedure

In situations where sᵀk−1yk−1 ≤ 0, there is a damped BFGS variant that ensures the updated
Hessian is SPD [20] by defining

θk =

{
1 if sᵀkyk ≥ 0.1sᵀkBksk

(0.9sᵀkBksk)/(sᵀkBksk − sᵀkyk) if sᵀkyk < 0.1sᵀkBksk

and setting
yk = θkyk + (1− θk)Bksk,

which reduces to the standard update for sᵀkyk ≥ 0.1sᵀkBksk. We use this damping step in our L-
BFGS implementations.

2.2.3. Relationship of BFGS to CG There are some noteworthy similarities between the CG
and BFGS methods being considered, both for the convex quadratic objective function (2) and
more general nonlinear objective functions. It has been shown for convex quadratic objective
functions that the CG and BFGS iterations are identical when exact line-searches are used [29, 30].
Furthermore, the “memory-less” BFGS method (L-BFGS withm = 1), in conjunction with an exact
line-search, applied to a general nonlinear objective function is equivalent to using NCG with the
Hestenes-Stiefel (HS) or Polak-Ribière (PR) β formulas (which are equivalent since gᵀ

k+1pk = 0
by the exact line-search) [20, 9].

3. LINEARLY PRECONDITIONED METHODS FOR CONVEX QUADRATIC OBJECTIVE
FUNCTIONS

In this section we discuss the use of linearly preconditioned iterations for the minimization of the
convex quadratic objective function (2). The optimality equations of this problem are given by

g(x) = Ax− b = 0.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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8 H. DE STERCK AND A.J.M. HOWSE

We consider optimization methods that solve g(x) = 0 by some form of fixed-point iteration.
For example, one of the simplest choices for solving g(x) = Ax− b = 0 is Richardson iteration
[31, 32]:

xk+1 = xk − g(xk) = xk − (Axk − b).

This is, in fact, equivalent to steepest descent with unit step length, and converges if ‖I−A‖ < 1.
Two different preconditioning strategies are described in subsections 3.1 and 3.2: we may

either (i) apply a left-preconditioning matrix P to the optimality equations and solve the left-
preconditioned system PAx = Pb; or (ii) introduce a change of variables x = Cz and solve the
transformed optimization problem with f̂(z) = f(Cz). In Sections 3.3–3.5 we discuss how these
strategies define preconditioned CG, L-BFGS, and L-Broyden iterations, and we extend them to
nonlinear preconditioners in Section 4.

3.1. Linear Left Preconditioning (LP)

Instead of solving the optimality equations g(x) = 0, we can apply Richardson iteration to the left-
preconditioned optimality equations

Pg(x) = P(Ax− b) = 0,

to obtain
xk+1 = xk −P(Axk − b). (20)

Here P could be chosen to be the matrix from any of the stationary linear iterations commonly
used as preconditioners, such as Gauss-Seidel (GS); successive over-relaxation (SOR); or, since we
assume A to be SPD, symmetric GS (SGS) and symmetric SOR (SSOR). Using the matrix splitting
A = D + L + U, SOR is equivalent to (20) with

P = ω (D + ωL)
−1
,

where ω ∈ (0, 2) and GS corresponds to the particular choice of ω = 1. Similarly, the preconditioner
matrix for SSOR is

P =

[
(D + ωUᵀ)

1

ω(2− ω)
D−1 (D + ωU)

]−1
, (21)

with ω = 1 corresponding to SGS.
In the preconditioned update formula (20), we take a step in direction Pg(x) instead of the

gradient direction g(x), and we can interpret Pg(x) as the preconditioned gradient direction.
In the context of optimization problems, this form of left preconditioning works in general by
replacing any occurrence of the gradient g(x) in the fixed-point iteration (such as Richardson) by
the preconditioned gradient Pg(x) (we are applying the fixed-point iteration to Pg(x) = 0 instead
of g(x) = 0).

3.2. Linear Transformation Preconditioning (TP)

By defining a linear change of variables x = Cz for some nonsingular matrix C, we may rewrite
the optimization problem (1) for

f̂(z) = f(Cz). (22)

We then apply our original optimization method (e.g., Richardson, CG or L-BFGS) to (22), and
transform back to the x variables. In doing so, we employ

∇zf̂(z) = ∇zf(Cz) = Cᵀ∇xf(x),

and observe that in the resulting iteration formula for x, matrices C and Cᵀ will appear along with
∇xf(x) = g(x). In particular, any products gᵀ(x)g(x) in the iteration formula will be transformed
to gᵀ(x)CCᵀg(x).

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



NONLINEAR ACCELERATION BY L-BFGS 9

For the specific example of the convex quadratic minimization problem (2) and Richardson
iteration, the transformed objective and gradient functions are

f̂(z) =
1

2
zᵀCᵀACz− (Cᵀb)

ᵀ
z and ĝ(z) = CᵀACz−Cᵀb,

with corresponding iteration

zk+1 = zk − (CᵀACzk −Cᵀb) ,

which gives, upon transforming back to x,

xk+1 = xk −CCᵀ (Axk − b) . (23)

If we call the SPD matrix CCᵀ the preconditioner matrix P and take it to be the SGS or SSOR
matrix, we get, for Richardson, the same result as the LP formula (20).

An important observation is that for more elaborate optimization methods such as L-BFGS, the
LP and TP approaches may give different results. For example, any scalar product gᵀ(x)g(x)
in the iteration formula will be transformed to gᵀ(x)Pg(x) in the TP approach, whereas it will
become gᵀ(x)PᵀPg(x) in the LP approach. This difference may appear subtle, and intuitively the
TP approach may appear preferable since it is more closely aligned with the original optimization
problem, but we will see in the preliminary numerical results for the convex quadratic case, and in
the general results after extending the approaches to nonlinear preconditioning, that both approaches
may have their merits (corresponding also to the findings for nonlinearly preconditioned NCG in
[6, 7]).

3.3. Linearly Preconditioned CG

Given that CG with the LP strategy would require the matrix PA to be SPD for defining the weighted
norm in which the error is minimized, the LP strategy is inappropriate for CG, and thus we only
consider the use of TP for CG. This derivation is well-documented in the literature; see, for instance,
[8]. Writing the CG iteration in terms of z,

zk+1 = zk + α̂kd̂k,

d̂k+1 = −ĝk+1 + β̂kd̂k, d̂0 = −ĝ0,

then converting back to xk, we obtain

xk+1 = xk + αkdk,

dk+1 = −Pgk+1 + β̂kdk, d0 = −Pg0,
(24)

as

α̂k = −
d̂ᵀ
k ĝk

d̂ᵀ
kC

ᵀACd̂k
= −

dᵀ
kC
−ᵀCᵀgk

dᵀ
kC
−ᵀCᵀACC−1dk

= −
dᵀ
kgk

dᵀ
kAdk

= αk,

and

β̂k =
ĝᵀ
k+1ĝk+1

ĝᵀ
k ĝk

=
gᵀ
k+1Pgk+1

gᵀ
kPgk

.

3.4. Linearly Preconditioned L-BFGS

The LP version of preconditioned L-BFGS is obtained by the direct replacement of each gradient
gk with the left-preconditioned gradient Pgk in the components Yk, Dk, Rk, and γk of (15), and
in computing the QN direction pk.

To derive TP L-BFGS, we write (15) for f̂(z) as

Ĥk = Ĥ
(k)
0 +

[
Ŝk Ĥ

(k)
0 Ŷk

] [
R̂−ᵀk (D̂k + Ŷᵀ

kĤ
(k)
0 Ŷk)R̂−1k −R̂−ᵀk

−R̂−1k 0

][
Ŝᵀ
k

Ŷᵀ
kĤ

(k)
0

]
,

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



10 H. DE STERCK AND A.J.M. HOWSE

where Ĥ
(k)
0 = γ̂kI. By examining definitions (9), (10), (16), (18), and (19), we obtain the following

relationships between original and transformed quantities:

Ŝk = C−1Sk, Ŷk = CᵀYk, D̂k = Dk, R̂k = Rk,

and

γ̂k =
sᵀk−1yk−1

yᵀ
k−1Pyk−1

. (25)

The QN update equation
zk = zk−1 + αkĤkĝ(zk−1)

transforms to
xk = xk−1 + αkCĤkC

ᵀg(xk−1).

Computing Hk := CĤkC
ᵀ, we have

Hk = γ̂kP +
[
Sk γ̂kPYk

] [R−ᵀk (Dk + γ̂kY
ᵀ
kPYk)R−1k −R−ᵀk

−R−1k 0

] [
Sᵀ
k

γ̂kY
ᵀ
kP

]
. (26)

Minimizing the preconditioned objective f̂(z) using L-BFGS is equivalent to applying L-BFGS to
f(x) where H

(k)
0 = γ̂kP, which is essentially the same preconditioning strategy described for BFGS

in [9, § 10.7], except they omit the scaling factor γ̂k.

3.5. Linearly Preconditioned L-Broyden

Similar to L-BFGS, the LP L-Broyden update is obtained by the replacement of each gradient gk
with the left-preconditioned gradient Pgk in the component Yk of (8) and in computing the QN
direction pk.

To derive the TP L-Broyden update we write (7) in terms of z to obtain:

Â−1k =
[
Â

(k)
0

]−1
−
([

Â
(k)
0

]−1
Ŷk − Ŝk

)(
M̂k + Ŝᵀ

k

[
Â

(k)
0

]−1
Ŷk

)−1
Ŝᵀ
k

[
Â

(k)
0

]−1
,

with
[
Â

(k)
0

]−1
= η̂kI, where we take η̂k = γ̂k as in (25). Recalling the definition (11) for i > j

(M̂k)i,j = −ŝᵀi−1ŝj−1 = −sᵀi−1 (CCᵀ)
−1

sj−1 = gᵀ
i−1sj−1,

where the last equality follows from (23). As before,

xk = xk−1 + αkCÂ−1k Cᵀg(xk−1),

thus the inverse matrix update is

A−1k := CÂ−1k Cᵀ = γ̂kP− (γ̂kPYk − Sk)
(
M̂k + γ̂kS

ᵀ
kYk

)−1
Sᵀ
k γ̂k. (27)

Compared to the L-BFGS case, this is not a full replacement of
[
Â

(k)
0

]−1
by γ̂kP: only two of the

instances involve P, the remaining two only require γ̂k.

3.6. Numerical Results for linear LP and TP methods for Convex Quadratic Functions

To illustrate the different preconditioning possibilities, we solve (2) corresponding to a finite
difference discretization of the 2D Poisson equation

uxx + uyy = 2[(1− 6x2)y2(1− y2) + (1− 6y2)x2(1− x2)], (x, y) ∈ [0, 1]× [0, 1],
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NONLINEAR ACCELERATION BY L-BFGS 11

with homogeneous Dirichlet boundary conditions and mesh spacing dx = dy = 10−2, resulting
in a problem with 9801 unknowns. We solve this problem using CG, L-BFGS, L-Broyden, and
their preconditioned variants using SGS or SSOR, the latter with ω = 1.9. The QN methods use
a window size of m = 5. For all methods we use the exact step length for quadratic problems
αk = (rᵀkrk)/(pᵀ

kApk). To precondition L-BFGS and L-Broyden we consider both LP and TP
strategies. These results are presented in Figures 1 and 2, the former containing results for SGS
preconditioning and the latter for SSOR preconditioning.

Non-preconditioned CG and L-BFGS have essentially identical convergence histories, as
expected from the discussion of § 2.2.3, whereas L-Broyden in fact does not converge for
this problem, illustrated by the irregular oscillations of the scaled residual norm value. For
preconditioned methods, the TP-L-BFGS overlap the PCG plots for both SGS and SSOR. Larger
differences are observed for the LP-L-BFGS methods, more-so for SGS than SSOR, indicating that
preconditioning based on variable transformation is the more effective approach. For L-Broyden it is
interesting to observe that preconditioning enables the iterations to converge, although the residual
curve is still very oscillatory for SGS based preconditioning. When using SGS the TP-BROY
method is somewhat more effective than the LP version, whereas for SSOR this is reversed, with
LP-LBROY coming close to the PCG results. Finally, echoing the fact that the SSOR convergence
rate is provably better than the convergence rate of SGS [33, 34], we see that SSOR is clearly a
better choice of preconditioner.

0 20 40 60 80 100 120 140 160 180 200
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-7
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-5

-4

-3

-2

-1

Figure 1. Results for CG and QN methods using SGS based preconditioners.

4. NONLINEAR PRECONDITIONING STRATEGIES

We now consider how to generalize the linear LP and TP strategies to nonlinear preconditioners for
general nonlinear optimization problems (1). We first discuss nonlinear preconditioning in general,
before describing nonlinearly preconditioned NCG, NGMRES, and QN methods.
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Figure 2. Results for CG and QN methods using SSOR based preconditioners.

4.1. Nonlinear left preconditioning (LP)

To generalize the linear LP approach to nonlinear preconditioning, we replace the optimality
equation g(x) = 0 with a nonlinearly preconditioned optimality equation

P(g; x) = 0.

We require solutions of g(x) = 0 to also be solutions of P(g; x) = 0. The notation P(g; x)
emphasizes that P is related to solving g(x) = 0. In the convex quadratic case, P(g; x) = Pg(x) =
P(Ax− b). In the nonlinear case, P(g; x) is generally derived from a nonlinear fixed-point
equation x = Q(g; x), in which case we write

P(g; x) := x−Q(g; x). (28)

Given an iteration xk+1 = Q(g; xk) = xk − P(g; xk), we see that

P(g; xk) = xk − xk+1

is the (negative) update direction provided by the iteration, which, for a suitable preconditioner
should be an improvement on the direction provided by the gradient, g(x). In analogy with the linear
case where P(g; x) = Pg(x), we interpret P(g; x) as the preconditioned gradient direction. By
applying an optimization method with iteration xk+1 =M(g; xk) to P(g; x) = x−Q(g; x) = 0
instead of to g(x) = 0, we obtain the nonlinearly left-preconditioned optimization update

xk+1 =M(P(g; ·); xk).

This means, in practice, that all occurrences of g(x) in M are replaced by P(g; x) in the LP
approach, as in the case of nonlinear left-preconditioning for nonlinear equation systems [11]. An
important difference in the optimization context, however, is that we continue using the original f(x)
and g(x) in determining the line-search step α for methods like CG or L-BFGS, so the gradients
g(x) used in the line-search are not replaced by P(g; x).
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NONLINEAR ACCELERATION BY L-BFGS 13

4.2. Nonlinear transformation preconditioning (TP)

To extend linear transformation preconditioning to nonlinear preconditioning, consider the iteration
formulas derived in Section 3 using the linear change of variable x = Cz. All occurrences of
P = CCᵀ in the resulting iteration formulas for x appear in front of g(x), and we simply replace
the linearly preconditioned gradients Pg(x) by the nonlinearly preconditioned gradients P(g; x).
This is a natural extension of linear TP to the nonlinear case, with the nonlinear extension reducing
to the usual linear preconditioning for nonlinear optimization when P(g; x) is chosen as Pg(x) =
CCᵀg(x) [9, 8], and, in the specific case of the NCG method, to the well-known formulas for
linearly preconditioned CG for SPD linear systems when the objective function is convex quadratic
[6].

Our approach of nonlinear transformation preconditioning for optimization is based on a change
of variables for the solution variable of the nonlinear problem, which is the same general idea
behind the nonlinear right-preconditioning method discussed in [11] and the related nonlinear
elimination preconditioning for the (inexact) Newton method from [35, 36]. In the specific context
of optimization problems, one could consider the change of variables x(z) for the solution variable
x in minimizing f(x), and then directly minimize f(x(z)) for z, but this would require computing
the Jacobian ∂x/∂z in ∇zf(x(z)) = ∂x/∂z∇xf(x), which would in most cases be prohibitively
expensive. Instead, in our nonlinear TP approach, we first derive update formulas for the case of a
linear change of variables x(z) = Cz, and then, with P = CCᵀ, replace the linearly preconditioned
gradients Pg(x) by the nonlinearly preconditioned gradients P(g; x). In this way, we avoid the
costly computation of the Jacobian ∂x/∂z. Nonlinear right preconditioning [11] and nonlinear
elimination preconditioning [35, 36] avoid or reduce the extra cost in computing derivatives
for the nonlinearly transformed problem in different ways. Also, our nonlinear TP approach
results in nonlinearly preconditioned update formulas that, in the case of a linear preconditioning
transformation x = Cz, reduce to well-known linearly preconditioned optimization methods such
as PCG for SPD linear systems and linearly preconditioned L-BFGS for nonlinear optimization
problems, whereas nonlinear right-preconditioning applied to a linear problem results in a new
linear system that is different from the system obtained when applying linear right preconditioning
[11]. The specific details of our nonlinear transformation preconditioning approach for optimization
are, thus, different from nonlinear system solvers using nonlinear right-preconditioning as in [11]
and nonlinear elimination preconditioning as in [35, 36], but these methods are all based on the
same idea of modifying the variable of the nonlinear problem.

4.3. Nonlinearly-Preconditioned NCG (NPNCG)

Ideas of using a nonlinear preconditioner with NCG have been around since the 1970s [13, 14, 37],
but it has not been widely explored. The paper [6] systematically studied NPNCG iteration in
the optimization context, which has since been extended to the matrix manifold setting [7]. In
the nonlinear LP framework (as in [11]), given the preconditioning iteration xk+1 = Q(g; xk), we
define

gk := P(g; xk) = xk −Q(g; xk),

and replace every instance of gk by gk to obtain the LP NPNCG iteration

xk+1 = xk + αkpk,

pk+1 = −gk+1 + βk+1pk, p0 = −g0.
(29)
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14 H. DE STERCK AND A.J.M. HOWSE

The corresponding β formulas are:

β̃PR
k+1 =

gᵀ
k+1yk
gᵀ
kgk

, (30)

β̃HS
k+1 =

gᵀ
k+1yk
yᵀ
kpk

, (31)

β̃HZ
k+1 =

(
yk − 2pk

‖yk‖
2

yᵀ
kpk

)ᵀ
gk+1

yᵀ
kpk

, (32)

where yk = gk+1 − gk.
To obtain the TP NPNCG iteration, we replace each Pgk in (24) with our preconditioner direction

gk, obtaining (29) again. To obtain the TP β formulas corresponding to (3–5), we recall that the
products of gᵀg transform to gᵀCCᵀg under the linear transformation x = Cz. This becomes gᵀg
when using the nonlinear TP preconditioner, resulting in the following alternatives to (30–32) which
incorporate both gk and gk:

β̂PR
k+1 =

gᵀ
k+1yk
gᵀ
kgk

, (33)

β̂HS
k+1 =

gᵀ
k+1yk
yᵀ
kpk

, (34)

β̂HZ
k+1 =

gᵀ
k+1yk
yᵀ
kpk

− 2pᵀ
kgk+1

yᵀ
kyk

(yᵀ
kpk)2

. (35)

The LP and TP versions of NPNCG have been considered previously in [6]. It was observed there
numerically that the TP β̂ update formulas tend to give better results than the LP β̃ formulas obtained
from nonlinear left-preconditioning.

4.4. Nonlinearly Preconditioned L-BFGS

The LP NPQN iteration is obtained by applying the L-BFGS update formula to P(g; x) = 0.
We continue to use (15) as our inverse Hessian approximation and define gk = P(g; xk) and
yk = gk+1 − gk. We replace each instance of gk with gk and each instance of yk with yk, which
preserves the symmetry of Hk, to obtain

H̃k = γ̃k +
[
Sk γ̃kYk

] [R−ᵀk (Dk + γ̃kY
ᵀ
kYk)R

−1
k −R

−ᵀ
k

−R
−1
k 0

][
Sᵀ
k

γ̃kY
ᵀ
k

]
, (36)

where

Yk = [yk−m |yk−m+1 | · · · |yk−1], (37)

Dk = diag[sᵀk−myk−m, . . . , s
ᵀ
k−1yk−1], (38)

(Rk)i,j =

{
(sk−m−1+i)

ᵀ(yk−m−1+j) if i ≤ j
0 otherwise

(39)

and

γ̃k =
sᵀk−1yk−1
yᵀ
k−1yk−1

. (40)

If we instead start from the linear TP L-BFGS update (26) and replace each Pgk with gk and each
Pyk with yk, we obtain for the TP NPQN iteration

Ĥk(gk) = γ̂kP(g; xk) +
[
Sk γ̂kYk

] [R−ᵀk (Dk + γ̂kY
ᵀ
kYk)R−1k −R−ᵀk

−R−1k 0

] [
Sᵀ
k

γ̂kY
ᵀ
k

]
gk, (41)
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where

γ̂k =
sᵀk−1yk−1

yᵀ
k−1yk−1

. (42)

The nonlinearly preconditioned quasi-Newton search directions are

pk = −H̃kgk

for LP, and
pk = −Ĥk(gk)

for TP.
Adding nonlinear preconditioning to an L-BFGS implementation is relatively straightforward.

Once the nonlinear preconditioner P(g; xk) is defined, the L-BFGS QN update step using Hk as in
(15) is replaced by either of the nonlinearly preconditioned updates (36) or (41). In particular, when
using the LP variant (36), we can still make use of the two-loop recursion in Algorithm 3, replacing
each gk and yk by their nonlinearly preconditioned analogue. This form of left-preconditioned L-
BFGS (equivalent to (36)) has been considered before in [11] in the context of nonlinear systems
solvers for PDEs. The nonlinearly transformation-preconditioned form of L-BFGS as in (41) has,
to our knowledge, not been considered before.

Note that, due to the nonlinear preconditioning, the search directions pk are no longer obtained
by forming the product of a matrix approximating the inverse Hessian of the objective function,
and the gradient gk of the objective function, as in non-preconditioned L-BFGS. The search
directions are, instead, formed using the nonlinear expressions −H̃kgk and −Ĥk(gk). As such,
the nonlinearly preconditioned L-BFGS formulas (36) and (41) can no longer exactly satisfy a
secant property and do not maintain the SPD nature of an approximate inverse Hessian, as in non-
preconditioned L-BFGS. Instead, the resulting nonlinear update formulas derive their motivation
from the property that they reduce to well-established linearly preconditioned L-BFGS methods in
the case of linear preconditioners P(g; x) = Pg(x). As indicated in our numerical results of Section
5, the nonlinearly preconditioned L-BFGS methods provide robust and highly efficient optimization
methods for difficult tensor problems that substantially outperform the leading existing methods.

4.5. Nonlinearly Preconditioned L-Broyden

To simplify equations we assume the initial approximation of the inverse Jacobian has the form
[A

(k)
0 ]−1 = ηkI, for some scaling factor ηk. Similar to L-BFGS, the nonlinear LP variant is obtained

by replacing gk with gk = P(g; xk) throughout (8) and Algorithm 2, resulting in

Ã−1k = ηk

(
I−

(
ηkYk − Sk

) (
Mk + Sᵀ

kηkYk

)−1
Sᵀ
k

)
. (43)

The idea of applying Broyden’s method to a fixed point equation has previously been discussed in
[38], though in the context of nonlinear systems of equations rather than optimization.

If we instead take the linear TP L-Broyden update (27) into consideration and replace Pgk with
gk and Pyk with yk, we obtain the operator

Â−1k (gk) = ηk

(
P(gk; xk+1)−

(
ηkYk − Sk

) (
Mk + ηkS

ᵀ
kYk

)−1
Sᵀ
kgk

)
, (44)

where

(Mk)i,j =

{
gᵀ
i−1sj−1 if i > j

0 otherwise
. (45)

As a final note, both TP formulas (41) and (44) combine information from the gradient and
preconditioner directions, resulting in some additional storage and computational costs when
compared to the LP approaches of (36) and (43).
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5. NUMERICAL RESULTS

To compare the nonlinearly preconditioned L-BFGS and L-Broyden NPQN methods with existing
NPNCG and NPNGMRES algorithms from [5, 6, 7] we consider problems of approximating tensors
by computing tensor decompositions. We discuss tensor approximation problems based on two
commonly used decompositions: the CP decomposition and the Tucker format HOSVD. Details on
tensor decompositions are provided in Appendix A.

Both of these decompositions can be formulated as optimization problems, and both have an
ALS-type fixed point iteration for computing optimal points. As discussed in [5, 6] for CP tensors
and [7] for Tucker tensors, these fixed point iterations can serve as effective preconditioners P(g; x)
for NPCG and NPNGMRES, and we shall show this is also the case for NPQN methods.

All of the following experiments were implemented on a MacBook Pro (2.5 GHz Intel Core i7-
4770HQ, 16 GB 1600 MHz DDR3 RAM) using MATLAB R2016b with the Tensor Toolbox (V2.6)
[39, 40] to handle tensor computations.

5.1. CP Decomposition

The rank-R CP decomposition of X ∈ RI1×···×IN is

JA(1),A(2), . . . ,A(N)K ≡
R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (46)

where A(n) ∈ RIn×R for n = 1, . . . , N . To compute a CP decomposition we solve

min
{A(n)}

1
2

∥∥∥X− JA(1),A(2), . . . ,A(N)K
∥∥∥2
F
. (47)

The standard approach is an alternating least squares (ALS) type iteration [41, 42]. One iteration of
CP-ALS consecutively updates each of the factor matrices A(i) with the solution of a least-squares
problem while keeping the other factors fixed, as summarized in Algorithm 4.

Algorithm 4 CP-ALS

1: procedure CP-ALS(X,A(1), . . . ,A(N))
2: for n = 1, . . . , N do
3: ΓΓΓ(n) = (A(1)ᵀA(1)) ∗ · · · ∗ (A(n−1)ᵀA(n−1)) ∗ (A(n+1)ᵀA(n+1)) ∗ · · · ∗ (A(N)ᵀA(N))

4: A(n) = X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)ᵀ (
ΓΓΓ(n)

)†
5: end for
6: return A(1), . . . ,A(N)

7: end procedure

5.1.1. CP Decomposition Results We consider standard L-BFGS and L-Broyden, their left
preconditioning (LP) variants (36) and (43), and their variable transformation preconditioning (TP)
variants (41) and (44). For the preconditionerQwe use either one forward sweep (F) or occasionally
one forward-backward sweep (FB) of CP-ALS (Algorithm 4, lines 2–5 with either n = 1, . . . , N
or n = 1, 2 . . . , N − 1, N,N − 1, . . . , 2, 1). The forward-backward sweeps of ALS are inspired by
SGS and SSOR for the convex quadratic functional, which are forward-backward versions of GS
and SOR, respectively. For the CP decomposition problem we set ηk = 1 for preconditioned L-
Broyden methods and ηk = γk as prescribed in (19) for non-preconditioned L-Broyden, as these
were observed to give the best results.

Before comparing to the existing methods for CP decompositions, we first test to determine the
best window size m ∈ {1, . . . , 10} and line-search method for subsequent experiments. Two line-
searches are considered. The first is the Moré-Thuente (MT) algorithm from the Poblano Toolbox
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(v1.1) [43, 44]. As in [5, 6], we use the default parameters: 10−4 for the sufficient decrease condition
tolerance, 10−2 for the curvature condition tolerance, an initial step length of 1, and a maximum of
20 iterations.

The second, which we refer to as modified backtracking (modBT), is an attempt at imposing
a “relaxed” line-search condition on the QN step, based on the observation that in certain cases
the NPQN methods (and also some of the other methods we compare with) converged faster with a
fixed unit step length instead of a line-search. In such cases the sequence of objective values was not
monotonic, hence modBT does not require the objective value to decrease at every iteration, but only
not to increase too much, with the increase tolerated decreasing as iteration count increases. Step
lengths of 1, 1/2, and 1/4 are considered, accepting the step as soon as growth is small enough; and
if all three are rejected, it takes a step of length 1/8 in the preconditioner direction. This is a feasible
approach if methods work with unit step length close to convergence, such as QN, but not for those
requiring an accurate line-search, such as NCG. This algorithm is summarized in Algorithm 5. The
while statement condition assumes our objective values will be non-negative, which is the case for
the CP decomposition problem.

Algorithm 5 Modified Backtracking Line-Search

1: procedure MODBT(xk,fk,gk,pk,iter)
2: αk = 1, flag = 0
3: xk+1 = xk + αkpk
4: fk+1 = f(xk+1)
5: while fk+1 > (1 + e−2·iter)fk && flag < 4 do
6: flag = flag + 1
7: if flag == 3 then
8: Sk = [ ],Yk = [ ]
9: pk = −gk

10: else
11: αk = 0.5αk
12: end if
13: xk+1 ← xk + αkpk
14: fk+1 ← f(xk+1)
15: end while
16: return xk+1, fk+1, αk
17: end procedure

Both line-searches have a reset condition to recover from bad steps. If the search fails to produce
an acceptable step length the QN approximation is reset by clearing Sk and Yk, following which we
either take a step in the preconditioner direction or, in the case of the not preconditioned methods,
take a step in the steepest descent direction. For MT we repeat the search in this new direction,
whereas for modBT we simply take a step of length 1/8.

To compare these algorithms we compute CP decompositions of an order-3 tensor, as in [5, 45, 3],
which is a standard test problem. We form a pseudo-random test tensor of size (I × I × I) for
I = 100, with known rank R = 5 and specify the collinearity C of the factors in each mode to be
0.9, meaning that

a
(n)ᵀ
r a

(n)
s∥∥∥a(n)

r

∥∥∥∥∥∥a(n)
s

∥∥∥ = C (48)

for r 6= s, r, s = 1, . . . , R, and n = 1, 2, 3. Highly collinear columns in the factor matrices indicates
an ill-conditioned problem, with slow convergence for ALS and other methods.

The methodology for creating such a tensor is described in [45]. To this tensor of known rank
we add homoskedastic noise (noise with constant variance) and heteroskedastic noise (noise with
nonconstant variance). As in [6, 7], given N1 and N2 with entries from the standard normal
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distribution, homoskedastic and heteroskedastic noise are added by

X′ = X +

√
`1

100− `1
‖X‖F
‖N1‖F

N1 and X′′ = X′ +

√
`2

100− `2
‖X′‖F

‖N2 ∗ X′‖F
N2 ∗ X′ (49)

respectively. Parameters `1 and `2 control noise levels: `i = 0 corresponding to no noise and `i = 50
corresponding to noise of the same magnitude as X. For this test we take `1 = 10 and `2 = 1.

Line-Search MT modBT
Window Size (m) 1 2 10 1 2 10

Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter
L-BFGS 5.2 941 4.9 835 4.0 664 *3.1 1000 *3.1 1000 *3.2 1000
L-BFGS-LP-F 2.2 156 1.3 88 1.8 112 0.7 67 0.9 85 0.8 72
L-BFGS-TP-F 1.2 102 1.1 84 1.8 124 0.8 79 0.8 77 0.8 72
L-BROY *5.5 1000 *6.8 1000 6.0 933 *3.3 1000 *4.7 1000 *4.6 1000
L-BROY-LP-F 1.8 142 1.9 140 2.6 183 0.7 68 0.7 68 1.0 95
L-BROY-TP-F 1.9 164 1.5 115 1.7 131 0.7 72 0.8 83 0.9 84

Independent of Window Size
Time Iter Time Iter

CP-ALS *58.5 10000 *58.5 10000
NPNGMRES 1.6 100 8.9 452
NPNCG β̂HS 3.2 144 5.0 612
NPNCG β̃HS 2.1 107 5.9 708

Table I. Results comparing MT and modBT line-searches and different window sizes for a small, low-noise
CP decomposition problem. Asterisks denote runs which failed to converge. Entries in bold indicate the best

time for a given value of m.

For each combination of window size m, solver, and line-search we ran ten trials, each
corresponding to a different random initial guess for the same random tensor, recording the mean
time-to-solution and number of iterations required. The same set of ten initial guesses were used for
all test combinations. The iterations ran until a maximum of 1,000 iterations was reached, 10,000
function evaluations had been computed, or ‖gk‖ / numel(x) decreased below a tolerance of 10−7,
where numel(x) = 3IR is the number of unknowns in our decomposition. Results for this test are
recorded in Table I for MT and modBT. Entries in bold indicate the lowest time for a given value of
m, and entries with asterisks denote a method that failed to converge to the stated tolerance.

First, it is clear that standard L-BFGS and L-Broyden fail to converge within the limits imposed
in the vast majority of cases. This agrees with previous experiments which observed that L-BFGS
and NCG without preconditioning do not improve upon ALS in terms of time-to-solution [3].
In comparison, NCG, NGMRES, and L-BFGS methods nonlinearly preconditioned by the ALS
iteration perform much better when accurate solutions are desired.

A general trend observed is that NPQN methods using MT tend to require more time to converge
compared to those using modBT, whereas the existing NPNCG and NPNGMRES iterations perform
better with the MT line-search. Increasing window size m may also result in a small increase in
computation time. Based on these observations, we will restrict further consideration to NPQN
methods using the modBT line-search, NPNCG and NPNGMRES using MT, and window sizes of
m = 1 and m = 2.

Before comparing the selected NPQN methods to NPNCG and NPNGMRES, we provide
implementation details for these algorithms, see also [5, 6, 7]. The NPNGMRES least squares
system grows until a maximum of m = 20 past iterates is reached. If NPNGMRES produces an
ascent search direction, we restart by discarding all past iterates. NPNCG is restarted by setting
β = 0 every 20 iterations. We use the two HS β formulas from (31) and (34). Successful termination
occurs when ‖gk‖F / numel(x) < 10−7. Note that NPNCG convergence stalls when ‖g‖F ≈ 10−7,
a well-known phenomenon for NCG that can be explained by a loss of accuracy in the linesearch
step, where the Wolfe sufficient decrease condition is checked [46, 6, 23].

As a basis of comparison we again use the previous method to form a test tensor with specified
collinearity and noise levels. We decompose an order-3 tensor of size (I × I × I) for I = 200 with
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Algorithm Time Iter

CP-ALS *123.9 10000

NPNCG β̂HS 5.5 91

NPNCG β̃HS *26.5 212

NPNGMRES 4.3 80

m = 1

L-BFGS *11.8 1000

L-BFGS-LP-F 2.0 68

L-BFGS-TP-F 1.9 68

L-BROY *1.5 900

L-BROY-LP-F 1.7 58

L-BROY-TP-F 1.6 59

m = 2

L-BFGS *11.7 1000

L-BFGS-LP-F 2.3 72

L-BFGS-TP-F 1.9 60

L-BROY *16.7 917

L-BROY-LP-F 1.8 60

L-BROY-TP-F 2.4 74
Table II. Results for computing CP decomposition of a synthetic (200× 200× 200) rank-5 tensor with high
collinearity (C = 0.9) and with significant heteroskedastic (`1 = 20) and homoskedastic (`2 = 10) noise.
Results correspond to the average of 10 trials. Asterisks denote algorithms which failed to converge at least

once. The bold entry indicates the best average time out of all methods tested.

known rank R = 5, collinearity C = 0.9, and set noise parameters `1 = 20 and `2 = 10. For this
problem we run ten trials, with each trial corresponding to a different random initial guess. The
results for this test are recorded in Table II. The best time for each trial is indicated in bold.

For this problem we observe that the CP-ALS algorithm fails to converge to the desired tolerance
for each trial, and that NPNCG fails twice for β̃. Of the pre-existing methods NPNGMRES
converged consistently and in most cases exhibited the quickest time-to-solution. For the newly
proposed methods, we observed that all NPQN methods tested outperformed the pre-existing
methods in terms of solution time in nearly all cases, with improvements of more than 50% for
the best new method. The results indicate increasing window size generally increased the time-to-
solution, though there are some exceptions. Overall, the lowest times for the majority of trials are for
m = 1. It is interesting to observe that the nonlinearly preconditioned L-Broyden iterations typically
gave the best performance in this case, rather than L-BFGS.

5.2. The Tucker HOSVD

A tensor X is expressed in Tucker format as (A(1), . . . ,A(N)) · S, where S is a smaller tensor. If
we further require that each A(n) ∈ RIn×Rn is orthogonal we obtain a Tucker HOSVD. The best
approximate HOSVD of a given X can be determined by solving

min
{A(n)}

− 1
2

∥∥∥(A(1)ᵀ, . . . ,A(N)ᵀ
)
· X
∥∥∥2
F

subject to A(n) ∈ RIn×Rn and A(n)ᵀA(n) = IRn ,

(50)

where S =
(
A(1)ᵀ, . . . ,A(N)ᵀ

)
· X, see Appendix A. The workhorse algorithm for solving (50) is

the higher-order orthogonal iteration (HOOI), first proposed in [4], which alternatingly updates the
matrices A(i) and is summarized in Algorithm 6.

As mentioned in the introduction, the existing NPNCG and NPNGMRES algorithms of [7] for
the Tucker HOSVD problem involve matrix manifold optimization techniques. A brief discussion
of matrix manifolds and a manifold NPQN algorithm are given in Appendix B.
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Algorithm 6 HOOI

1: procedure HOOI(X,A(1), . . . ,A(N))
2: for n = 1, . . . , N do
3: Y← (A(1)ᵀ, . . . ,A(n−1)ᵀ, I,A(n+1)ᵀ, . . . ,A(N)ᵀ) · X
4: A(n) ← Rn leading left singular vectors of the matricization Y(n) of Y
5: end for
6: S← (A(1)ᵀ, . . . ,A(N)ᵀ) · X
7: return S,A(1), . . . ,A(N)

8: end procedure

5.2.1. Tucker HOSVD Results We perform three sets of tests for the Tucker HOSVD problem: the
first to determine combinations of methods, line-searches, and parameters which work best, and
the remaining two to compare existing and newly proposed methods for synthetic and real-life data
tensors of different sizes and noise levels.

We first considered all possible combinations of L-BFGS and L-Broyden with left
preconditioning, transformation preconditioning, or no preconditioning; this time using HOOI
(Algorithm 6, lines 2–5 with either n = 1, . . . , N or n = 1, 2 . . . , N,N − 1, . . . , 1) as Q(g; x). For
L-Broyden we set ηk to use the γk formula corresponding to the equivalent L-BFGS variant because
this gave the best results. To narrow down the set of variants, we compared all methods in terms
of choice of line-search and the L-BFGS and L-Broyden methods in terms of window parameter
m ∈ {1, 2}.

We again consider MT and modBT, using the same parameters as for the CP problem. The
same reset conditions are used for MT, and for modBT the while condition now uses fk+1 >
(1− e−2·iter)fk, as objective values are negative for the Tucker HOSVD problem. In both cases the
QN approximation is reset by clearing Sk and Yk. The NPNGMRES system grows to a maximum
of m = 25. If NPNGMRES produces an ascent search direction pk, we discard all past iterates
and search in the direction −pk. NPNCG methods are restarted every 50 iterations. We again
use the two HS β update parameters from (31) and (34). Successful termination occurs when
‖gk‖F /|f(xk)| < 10−7.

The first tests involved decomposing a medium-size order-3 tensor of size 28× 28× 2500 into a
rank (14, 14, 100) approximation. This tensor was formed using a subset of the MNIST Database of
Handwritten Digits [47], previously used for Tucker decomposition tests in [48, 49, 7], which is a
collection of 70,000 images of digits centered in a 28× 28 pixel image. Our test tensor consisted
of 2500 images of the digit 5 with significant additive noise from a uniform distribution over [0, 1]:
X′ = X + 2.5 ‖X‖‖N‖N.

Ten trials were ran for each combination, with each trial corresponding to a different tensor N.
HOSVD truncation (Algorithm 7 in Appendix A) was used to generate the initial point for each trial,
and iterations ran until reaching a maximum of 250 iterations, a total execution time greater than
1500 seconds, or ‖gk‖ /|f(xk)| < 10−7. When recording computation time, we omitted time spent
checking the termination condition as less expensive stopping criteria may be used in practice. The
mean time-to-solution and iterations required for each test case are recorded in Table III. Entries
in bold denote the lowest time for a given window size, and asterisks indicate runs that did not
converge.

When working in a manifold framework, we may or may not use a vector transport operation
when updating the Hessian approximation between iterations (as explained in Appendix B). These
tables contain results for both of these possibilities, from which it is clear that omitting this vector
transport step results in faster methods, in particular when the modBT line-search is used. Because
of this, we exclude the vector transport option from further consideration. Next, note that the non-
preconditioned methods again failed to converge within the maximum number of steps in every
case, which was expected based on the CP results. When comparing the line-search methods, MT
results in slower convergence for all but the NPNCG algorithms. With respect to window sizem, we
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Line-Search MT modBT
Window Size (m) 1 2 1 2

Hessian Update without Vector Transport
Time Iter Time Iter Time Iter Time Iter

L-BFGS *155.0 251 *193.6 251 *61.7 251 *65.2 251
L-BFGS-LP-F 98.7 67 133.1 95 31.6 50 33.2 51
L-BFGS-TP-F 85.1 54 93.8 50 28.0 39 31.0 42
L-BROY *250.1 251 *270.3 251 *60.4 251 *62.7 251
L-BROY-LP-F 113.0 77 123.6 94 45.8 71 53.8 81
L-BROY-TP-F 96.3 60 100.0 51 40.5 57 34.3 47

Hessian Update with Vector Transport
Time Iter Time Iter Time Iter Time Iter

L-BFGS-LP-F 117.0 67 161.5 92 46.4 50 52.8 52
L-BFGS-TP-F 98.3 54 113.9 51 44.8 39 55.7 43
L-BROY-LP-F 134.1 77 160.3 96 63.0 72 58.6 64
L-BROY-TP-F 113.9 60 116.5 53 62.9 55 60.5 48

Independent of Window Size
Time Iter Time Iter

HOOI 112.8 210 112.8 210
NPNGMRES 44.9 35 35.8 33
NPNCG β̂HS 33.0 37 146.0 210
NPNCG β̃HS 67.2 72 130.1 210

Table III. Tucker decomposition results comparing MT and modBT line-searches with varying m, for a
medium-size tensor with MNIST data. Asterisks denote runs which failed to converge. Entries in bold

indicate the best time for a given value of m.

only consider the values of m = 1 and m = 2, because other values tested (not shown) gave larger
execution times.

Algorithm Time Iter

HOOI 24.7 652

NPNCG β̂HS 9.5 100

NPNCG β̃HS 10.1 103

NPNGMRES 11.2 91

m = 1

L-BFGS 9.0 278

L-BFGS-LP-F 4.4 89

L-BFGS-TP-F 5.6 80

L-BROY 11.6 341

L-BROY-LP-F 7.0 131

L-BROY-TP-F 9.6 134

m = 2

L-BFGS 8.3 249

L-BFGS-LP-F 4.3 89

L-BFGS-TP-F 6.2 87

L-BROY *55.7 1581

L-BROY-LP-F 7.1 130

L-BROY-TP-F 9.3 127
Table IV. Results for decomposing a noisy synthetic (120× 120× 120) tensor into a rank-(20, 20, 20)
Tucker HOSVD approximation. Results correspond to the average of 10 trials. Asterisks denote algorithms
which failed to converge at least once. The bold entry indicates the best average time out of all methods

tested.

For our second test we computed rank-(20, 20, 20) HOSVDs of rank-(40, 40, 40) synthetic tensors
of size (120, 120, 120), using noise parameters `1 = `2 = 10 and noise tensors N1, N2 with elements
from the standard normal distribution; see (49). Ten trials using different noise tensors N1 and N2
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were carried out for each method. The results, recorded in Table IV, indicate that HOOI is the
slowest of the pre-existing methods, typically followed by NPNGMRES and then NPNCG, with
no clear winner between the β̂ and β̃ variants. For this problem we again use the forward HOOI
sweep as nonlinear preconditioner. The L-BFGS results clearly improve upon the existing solvers.
The L-Broyden iterations are less effective, though many are still competitive with the NPNCG and
NPNGMRES results. We see that the fastest results are for nonlinearly left-preconditioned L-BFGS.
More generally, we see improvements of more than 50% for the best new method.

For the final test we again used the MNIST Database from the initial Tucker test, doubling the
number of images to form a tensor X ∈ R28×28×5000 consisting of 5000 images of the digit 5.
We add uniformly distributed noise to obtain X′ = X + 2.5 ‖X‖‖N‖N, where N has entries in [0, 1].
Convergence histories in Figure 3 compare the performance of HOOI, NPNCG, NGMRES, and
NPQN methods for a test tensor without (top) and with (bottom) noise. L-BFGS and L-Broyden
without preconditioning are not convergent for these kinds of problems, and hence plots for these
solvers are omitted. These plots show that, in the easier noise-free case, there is, unsurprisingly, only
a small benefit to accelerating HOOI, with NPNGMRES and the NPQN methods all performing
slightly better than HOOI, and the NPNCG methods performing slightly worse. Once noise is
introduced, however, the convergence of HOOI slows down significantly, and there are clear benefits
to using nonlinearly preconditioned methods. In general: nonlinear preconditioning is useful for
difficult problems when high accuracy is required, and due to the low amount of overhead involved
it does not harm convergence in other circumstances, improving the overall robustness of solvers.

This test is repeated 10 times for different N, with the results recorded in Table V. The fastest
time is indicated in bold. For existing methods, the general trend is NPNCG using β̂HS gives the
fastest convergence, followed by NPNGMRES, then NPNCG using β̃HS, and finally HOOI, being
the slowest iteration considered by far. Of the new methods, the L-BFGS-TP variant is the fastest,
up to 15% faster than the best previously existing method. Here we have used forward-backward
HOOI sweeps in the nonlinear preconditioners, because for this problem they gave better results than
forward sweeps. For L-Broyden we note that increasing window size from m = 1 to m = 2, results
in noticeably faster methods, whereas the difference between mean values for different window sizes
is very small for L-BFGS. The 15% improvement is less than for the previous problem, indicating
that this real-data problem may be less ill-conditioned than the artificial-data problem with high
collinearity.

6. CONCLUSIONS

Nonlinear preconditioning strategies are an effective way to improve the convergence of iterative
solvers for nonlinear systems and nonlinear optimization problems. In particular, when the
problem formulation naturally suggests a fixed-point iteration that is more effective than steepest
descent, such iterations can be greatly accelerated through use as nonlinear preconditioners.
Nonlinearly preconditioned methods can be based on nonlinear left-preconditioning or nonlinear
preconditioning formulations derived from a change of variables in the optimization problem.

In this paper we have developed NPQN methods based on the L-Broyden and L-BFGS
update equations. These iterations are applied to the problems of computing two popular tensor
decompositions: the CP decomposition and the Tucker HOSVD. These decompositions are
commonly used tools in data compression and multilinear statistical analysis, hence improved
computational algorithms will continue to be in demand. We also illustrated how to extend these
NPQN methods to the manifold setting, which can be useful for solving problems where the
unknowns have some constraints, such as underlying symmetry or orthogonal structure.

Numerical results provide evidence that, much like the previously developed NPNCG and
NPNGMRES methods of [5, 6, 7], NPQN methods are effectively combined with CP-ALS iterations
for the CP decomposition and HOOI for the Tucker HOSVD. L-BFGS or L-Broyden preconditioned
by CP-ALS or HOOI is always much faster than the individual QN method or ALS-type fixed point
iteration for difficult problems or when high accuracy is required. Furthermore, our results show
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Figure 3. Convergence histories showing scaled gradient norms for the rank-(14, 14, 100) Tucker HOSVD
decomposition of the (28× 28× 5000) digit tensor without noise (above) and with added noise (below)

(corresponding to some of the runs summarized in Table V).

that the proposed NPQN methods may significantly outperform NPNCG and NPNGMRES, being
up to 50% faster, establishing them as state of the art methods for difficult, ill-conditioned tensor
decomposition problems.

There are a number of directions to carry out future work based on these results. At this
point we have established the effectiveness of nonlinearly preconditioned versions of the popular
NCG, NGMRES, L-BFGS and L-Broyden methods in Euclidean space and on Grassmann matrix
manifolds. These methods can be applied to other systems of equations or optimization problems
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Algorithm Time Iter

HOOI *448.3 167

NPNCG β̂HS 115.7 29

NPNCG β̃HS 260.0 61

NPNGMRES 121.7 25

m = 1

L-BFGS *201.6 250

L-BFGS-LP-FB 112.0 34

L-BFGS-TP-FB 101.0 29

L-BROY *196.0 250

L-BROY-LP-FB 139.2 43

L-BROY-TP-FB 133.5 38

m = 2

L-BFGS *204.7 250

L-BFGS-LP-FB 112.7 34

L-BFGS-TP-FB 99.5 28

L-BROY *202.7 250

L-BROY-LP-FB 123.0 37

L-BROY-TP-FB 109.2 31
Table V. Results for decomposing a noisy (28× 28× 5000) tensor into a rank-(100, 14, 14) Tucker HOSVD
approximation. Results correspond to the average of 10 trials. Asterisks denote algorithms which failed to
converge to the desired tolerance at least once. The bold entry indicates the best average time out of all

methods tested.

for matrix or tensor problems that have associated fixed point iterations that are more effective
than steepest descent. We can also consider the development of preconditioned versions of other
algorithms, such as those based on trust region strategies.

All code and test examples will be made available on the authors’ website.
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A. TENSOR DECOMPOSITION PROBLEMS

A.1. Tensors

A tensor is a multidimensional array, and the number of dimensions (modes) of a tensor is called
the tensor order. Order-1 tensors are vectors and order-2 tensors are matrices. Tensors of order-3 or
greater will be indicated by Euler script letters (X) and tensor elements are indicated by subindices
or bracketed arguments: Xijk = X(i, j, k).

Tensors are useful when large quantities of data need to be organized and analyzed, because
each dimension can represent a parameter and each element can represent an observation for a
particular parameter combination. As a result tensors have seen widespread use in areas such as in
chemometrics [50], data mining [51], food science [52], pattern and image recognition [48, 53], and
signal processing [54].

A tensor decomposition expresses a tensor as a sum or product of several low-dimensional
components with the goal of simplifying further work involving the tensor data. Tensor
approximation problems involve seeking the best approximation of a tensor X by a tensor
X̂, commonly having a specified decomposition, the components of which are determined by
minimizing

∥∥∥X− X̂
∥∥∥.

A.1.1. Matrix Singular Value Decomposition (SVD) A matrix M ∈ Rm×n has SVD M = UΣVᵀ,
where U ∈ Rm×m, V ∈ Rn×n are orthogonal and Σ ∈ Rm×n is diagonal with nonnegative real
entries in decreasing order. The nonzero entries of Σ are the singular values of M and the columns
of U (V) are the left (right) singular vectors. The rank of M is equal to the number of singular
values, and by the Eckhart-Young theorem the best rank-r approximation of M in the Frobenius
norm is obtained by keeping the largest r singular values, setting the rest to zero [55].

A.1.2. Tensor Matricizations and Definitions of Rank Mode-n tensor fibers are vectors obtained by
fixing all indices but the nth. The mode-nmatricization of X, denoted X(n), has the mode-n fibers of
X as its columns. So long as the ordering of fibers is consistent throughout calculations, the specific
ordering used is unimportant in many applications. A rank-one tensor X ∈ RI1×···×IN is the outer
product

X = a(1) ◦ a(2) ◦ · · · ◦ a(N)
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where a(n) ∈ RIn for n = 1, . . . , N and

Xiii2...iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
for all 1 ≤ in ≤ In.

The rank of X, denoted rank(X), is the minimum number of rank-one tensors required to express
X as a linear combination [1]. The n-rank of X is the dimension of the space spanned by
the mode-n fibers: rankn(X) = dim(Col(X(n))) [56]. The multilinear rank of X is the N -tuple
(rank1(X), . . . , rankN (X)).

A.1.3. Tensor and Matrix Products The mode-n contravariant product of X ∈ RI1×···×IN and
A ∈ RJ×In is Y = (A)n · X [15]:

Y(i1, . . . , in−1, j, in+1, . . . , in) =

In∑
in=1

A(j, in)X(i1, . . . , iN ).

Each mode-n fiber of X is multiplied by each row of A: Y(n) = AX(n). It follows that (B)n ·
((A)n · X) = (BA)n · X, and that multiplication in different modes is commutative.

The inner product of X and Y ∈ RI1×···×IN is

〈X,Y〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

X(i1, , . . . , iN )Y(i1, . . . , iN ).

The tensor Frobenius norm is ‖X‖F =
√
〈X,X〉, and ‖X‖F =

∥∥X(k)

∥∥
F

for k = 1, . . . , N . It is also
invariant under orthogonal transformations A(n):

‖X‖F =
∥∥∥(A(1), . . . ,A(N)) · X

∥∥∥
F
.

The Hadamard (element-wise) product of equal sized tensors X and Y is denoted X ∗ Y. The
Kronecker product of A ∈ RI×J and B ∈ RK×L is denoted by A⊗B ∈ R(IK)×(JL), and the
Khatri-Rao product of C ∈ RI×K and D ∈ RJ×K is denoted by C�D ∈ R(IJ)×K :

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 , C�D =
[
c1 ⊗ d1 c2 ⊗ d2 · · · cK ⊗ dK

]
.

These products are useful when computing tensor decompositions and matricizing tensor-matrix
products, as shown in the following subsections.

A.2. CP Decomposition

The CP decomposition, also known by the names CANDECOMP (canonical decomposition) and
PARAFAC (parallel factors), decomposes a tensor into a sum of rank-one tensors [1]. The rank-R
CP decomposition of X ∈ RI1×···×IN is [1]

JA(1),A(2), . . . ,A(N)K ≡
R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,

and to compute a CP decomposition we solve

min
{A(n)}

1
2

∥∥∥X− JA(1),A(2), . . . ,A(N)K
∥∥∥2
F
.
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The mode-n matricization of a CP tensor is given by

A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)ᵀ
.

By fixing all matrices except A(n) the problem becomes

min
A(n)

1
2

∥∥∥X(n) −A(n)(A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))ᵀ
∥∥∥2
F
, (51)

a linear least squares problem with exact solution

A(n) = X(n)

((
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)ᵀ)†
,

where † denotes the Moore-Penrose pseudoinverse [57, 58]. Since the pseudoinverse of a Khatri-Rao
product satisfies the identity [1]

(A�B)† = ((AᵀA) ∗ (BᵀB)) (A�B)ᵀ,

this exact solution is typically implemented as

A(n) = X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)ᵀ (
ΓΓΓ(n)

)†
,

where

ΓΓΓ(n) =
(
A(1)ᵀA(1)

)
∗ · · · ∗

(
A(n−1)ᵀA(n−1)

)
∗
(
A(n+1)ᵀA(n+1)

)
∗ · · · ∗

(
A(N)ᵀA(N)

)
for n = 1, . . . , N . The CP-ALS iteration based on these computations (Algorithm 4) can be slow
to converge in practice, thus alternative optimization algorithms are desirable. Most optimization
algorithms require the gradient of

f(x) = 1
2

∥∥∥X− JA(1),A(2), . . . ,A(N)K
∥∥∥2
F
,

where x = (A(1),A(2), . . . ,A(N)) is theN -tuple of factor matrices. The partial derivative of f with
respect to A(n) is [3]

∂f

∂A(n)
= −X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
+ A(n)ΓΓΓ(n).

Note that setting the gradient of f equal to zero gives

A(n)ΓΓΓ(n) = X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
,

from which the CP-ALS iteration immediately follows.

A.3. The Tucker HOSVD

The Tucker format was introduced by Tucker in 1963 for 3-mode tensors [59], and has since been
extended to N -mode tensors; see, for example, [60, 56]. A tensor X ∈ RI1×···×IN is expressed in
Tucker format as (A(1), . . . ,A(N)) · S, where S ∈ RR1×···×RN and A(n) ∈ RIn×Rn . We must have
Rn ≤ In, and in practice often have Rn � In, resulting in a significant reduction in storage. If
Rn ≥ rankn(X) for all n, the decomposition is exact. If not, then this is an approximate Tucker
decomposition. Tucker decompositions are not unique: replacing S by (B)n · S and A(n) by
A(n)B−1 produces an equivalent tensor.

In [56] the authors introduce a tucker decomposition called the HOSVD and prove all tensors
have such a decomposition. The HOSVD of X ∈ RI1×···×IN is X = (A(1), . . . ,A(N)) · S, where
S ∈ RI1×···×IN , each A(n) ∈ RIn×In is orthogonal, and S satisfies
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(i) all-orthogonality: for all possible n, α, and β, α 6= β: 〈Sin=α,Sin=β〉 = 0;

(ii) the ordering: ‖Sin=1‖F ≥ ‖Sin=2‖F ≥ · · · ≥ ‖Sin=In‖F ≥ 0 for all n.

Given a target multilinear rank (R1, . . . , RN ), a truncated HOSVD may be computed in which
A(n) contains only Rn orthonormal columns. The procedure is described in Algorithm 7 [1]. The
important difference between the matrix SVD and the HOSVD is that there is no higher dimensional
equivalent of the Eckhart-Young theorem: truncating does not result in an optimal approximation
[56].

Algorithm 7 Truncated HOSVD

1: procedure HOSVD(X,R1, . . . , RN )
2: for n = 1, . . . , N do
3: A(n) ← Rn leading left singular vectors of X(n)

4: end for
5: S← (A(1)ᵀ, . . . ,A(N)ᵀ) · X
6: return S,A(1), . . . ,A(N)

7: end procedure

The best approximate HOSVD of a given X is determined by:

min
S,{A(n)}

1
2

∥∥∥X− (A(1), . . . ,A(N)) · S
∥∥∥2
F

subject to S ∈ RR1×···×RN , A(n) ∈ RIn×Rn and A(n)ᵀA(n) = IRn ,

which is equivalent to [4]

max
{A(n)}

1
2

∥∥∥(A(1)ᵀ, . . . ,A(N)ᵀ
)
· X
∥∥∥2
F

subject to A(n) ∈ RIn×Rn and A(n)ᵀA(n) = IRn
,

where S =
(
A(1)ᵀ, . . . ,A(N)ᵀ

)
· X. If we use the natural fiber ordering of [15] we see that the

mode-n matricization of
(
A(1)ᵀ, . . . ,A(N)ᵀ

)
· X is

Y(n) := A(n)ᵀX(n)

(
A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N)

)
.

Fixing all factor matrices but A(n) gives 1
2

∥∥A(n)ᵀY(n)

∥∥2
F

, which is maximized by taking the Rn
leading left singular vectors of Y(n) as the columns of A(n). The HOOI Algorithm implements this
iteration.

B. MATRIX MANIFOLD OPTIMIZATION

In [7] we discussed how to adapt NPNCG and NPNGMRES to matrix manifolds. In this appendix
we summarize the terminology and operations required for optimization on matrix manifolds, using
Grassmann and Stiefel manifolds as particular examples, and then describe the NPQN iteration for
general matrix manifold problems.

B.1. Motivation for Manifold Optimization

As previously noted, the tensor Frobenius norm is invariant under orthogonal transformations,
meaning (50) does not have isolated maxima. Furthermore, the orthonormality imposed on
{A(n)}Nn=1 introduces a large number of equality constraints. However, if we define the N -tuple
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of factor matrices to be a point on a Cartesian product of matrix manifolds, we are able to eliminate
both of these issues. This discussion requires some knowledge of two particular types of matrix
manifolds, defined below.

The Stiefel manifold, St(n, p) = {X ∈ Rn×p|XᵀX = Ip}, is the set of all n× p orthonormal
matrices. The Grassmann manifold (Grassmannian), Gr(n, p), is the set of p-dimensional linear
subspaces of Rn [61]. We can represent Y ∈ Gr(n, p) as the column space of some Y ∈ St(n, p).
This Y is not unique: the subset of St(n, p) with the same column space as Y is YOp := {YM|M ∈
Op}, where Op is the set of p× p orthogonal matrices. Gr(n, p) is thus identified with the set of
matrix equivalence classes St(n, p)/Op := {YOp|YᵀY = Ip} induced by X ∼ Y if and only if
Col(X) = Col(Y). The inner product on these manifolds is 〈X,Y〉 = tr(XᵀY).

If (50) is solved over a Cartesian product of Grassmannians, the representative N -tuples of factor
matrices satisfy the orthonormality constraints by definition. Furthermore, because these matrices
represent equivalence classes, the result is an unconstrained problem with isolated extrema:

max
{A(n)}

1
2

∥∥∥(A(1)ᵀ, . . . ,A(N)ᵀ
)
· X
∥∥∥2
F
, (52)

where A(n) ∈ St(In, Rn) represents A(n) ∈ Gr(In, Rn). Expressions for the gradient of this
objective function can be found in [15, 18].

B.2. Directions and Movement on Manifolds

We use [62] as a general reference for this subsection. Let M denote an arbitrary manifold. A
tangent vector at x ∈M, denoted ξx, describes a possible direction of travel tangent toM at x. The
tangent space, TxM, is the vector space of all tangent vectors at x. On Gr(n, p) a tangent vector is
itself an n× p matrix, and just as Y ∈ St(n, p) can represent Y ∈ Gr(n, p), we can use elements of
TYSt(n, p) to represent elements of TYGr(n, p). We may express TYSt(n, p) as VY ⊕HY, where
VY contains directions for movement within the equivalence class Y andHY contains directions for
movement between equivalence classes. Elements of HY are used as unique representative tangent
vectors for points on Gr(n, p). Specifically, HY = {Z ∈ Rn×p|YᵀZ = 0p}, and the orthogonal
projection onto HY is [61, 62]

ΠY = I−YYᵀ. (53)

Movement alongM in the direction of ξ, is described by a retraction mapping. The exponential
map describes motion along a geodesic, the curve connecting two points with minimal length. On
Gr(n, p), the exponential map starting at Y in the direction ξ is

ExpY(tξ) = YV cos(Σt)Vᵀ + U sin(Σt)Vᵀ, (54)

where ξ has compact SVD UΣVᵀ.
Tangent spaces TXM and TYM for X 6= Y are generally different vector spaces, hence linear

combinations of ξ ∈ TXM and η ∈ TYM are not well-defined. By using a vector transport
mapping, we instead find a ξ′ ∈ TYM to use in place of ξ. Given X ∈ Gr(n, p) and ξ, η ∈
TXGr(n, p), if ξ has compact SVD UΣΣΣVᵀ, the parallel transport of η along the geodesic of length
t starting at X in the direction of ξ is [62]:

TX,tξ(η) =

([
XV U

] [− sin(ΣΣΣt)
cos(ΣΣΣt)

]
Uᵀ + (I−UUᵀ)

)
η. (55)

If ξ = η, this simplifies to

TX,tξ(ξ) =
[
XV U

] [− sin(ΣΣΣt)
cos(ΣΣΣt)

]
ΣΣΣVᵀ.

If we know that Y = ExpX(tξ), we can also compute the approximation TY(η) = ΠYη using (53).
The direction of travel from X to Y cannot be described by a vector Y − X : this operation is not

defined. When ExpX(·) is invertible, a tangent vector defining a geodesic from X to Y can be found
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via the logarithmic map. Given X and Y, the tangent vector in TXGr(n, p) is

LogX(Y) = U arctan(Σ)Vᵀ, (56)

where UΣVᵀ is the compact SVD of ΠXY(XᵀY)−1 [63].
For a manifold M =

∏N
k=1 Gr(nk, pk), a Cartesian product of N Grassmannians, elements are

N -tuples of linear subspaces y = (Y1, . . . ,YN )ᵀ, in turn represented by N -tuples of matrices
y = (Y1, . . . ,YN )ᵀ. The tangent space at y ∈M is the Cartesian product of tangent spaces
TYk

Gr(nk, pk). The inner product on M is 〈x,y〉 =
∑N

k=1〈Xk,Yk〉. All other required operations
are performed component-wise on x, y ∈M, using the operations defined for Gr(nk, pk).

B.3. NPQN Methods on Matrix Manifolds

To simplify notation bold lowercase letters are used here to represent n-tuples of matrices; e.g.,
xk = (A

(1)
k , . . . ,A

(n)
k )ᵀ. We define the preconditioner direction to be gk = −Logxk

(Q(g; xk)) (see
(56)), the negative of the tangent vector at xk defining the geodesic to Q(g; xk). One iteration of
manifold NPQN is described in Algorithm 8. The line-search is carried out along the curve defined
by the retraction Rxk

(·) (see (54)), and the vectors sk, yk and yk require vector transport (see (55)).

Algorithm 8 NPQN on Manifolds

1: procedure MANNPQN(f,g,xk, Sk, Yk, Yk)
2: gk ← g(xk)
3: gk ← −Logxk

(Q(xk))
4: compute pk by (41) or (44)
5: xk+1 ← Rxk

(αkpk) . αk determined by line-search
6: gk+1 = g(xk+1)
7: gk+1 ← −Logxk+1

(Q(xk+1))

8: sk = Txk,αkpk
(αkpk)

9: yk = gk+1 − Txk,αkpk
(gk)

10: yk = gk+1 − Txk,αkpk
(gk)

11: update Sk to Sk+1, Yk to Yk+1, and Yk to Yk+1

12: return xk+1,Sk+1,Yk+1,Yk+1

13: end procedure

In most of this algorithm we work with tangent vectors as N -tuples of matrices. Two exceptions
are in line 4, where we compute the search direction, and line 11, where we update the storage
matrices. To use (41) or (44) the tangent vectors gk and gk are converted into 1D arrays by
vectorizing each factor matrix column-wise and vertically concatenating the results. Once the search
direction is computed this process is reversed to produce the tangent vector pk for use in the
retraction. Similarly, before the updates in line 11 the tangent vectors sk, yk, and yk must also
be vectorized.

When updating the matrices Sk, Yk and Yk, the proper approach for manifold optimization is
to parallel transport these matrices to xk+1 before appending the new column, as described in [16,
§ 7.1]. However, transport of these matrices can be computationally expensive. Comparisons of
algorithms with and without this transport step are recorded in Table III. Based on these results we
ultimately decided to omit this step in this paper.
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