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Abstract

The regularizing properties of the Golub-Kahan bidiagonalization algorithm are
powerful when the associated Krylov subspace captures the dominating components
of the solution. In some applications the regularized solution can be further improved
by enrichment, i.e., by augmenting the Krylov subspace with a low-dimensional sub-
space that represents specific prior information. Inspired by earlier work on GMRES
we demonstrate how to carry these ideas over to the bidiagonalization algorithm,
and we describe how to incorporate Tikhonov regularization. This leads to a hybrid
iterative method where the choice of regularization parameter in each iteration also
provides a stopping rule.
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1 INTRODUCTION

We are concerned with iterative Krylov subspace methods for solving large ill-conditioned systems on linear equations, arising
from discretization of inverse problems, of the form

min
x

‖Ax − b‖22 , A ∈ ℝm×n . (1)

Such problems arise in many areas of science and engineering1 and it is important to have access to efficient algorithms that
can handle large-scale inverse problems. To compute a stable solution to such problems, one must incorporate prior information
about the desired solution. One often chooses a variational formulation known as Tikhonov regularization,

min
x

{

‖Ax − b‖22 + �
2 (x)

}

.

Here (x) is a regularization or smoothness term that penalizes unwanted features in the solution, and � is a user-chosen
regularization parameter1.
Instead of enforcing smoothness conditions on the solution, one may have prior information that can be specified in the form

of a low-dimensional subspace in which the solution must lie1. This leads to a projection formulation of the form

min
x

‖Ax − b‖22 s.t. x ∈ k , (2)

where the signal subspace k is a linear subspace of dimension k. If the basis of k = span{v1, v2,… , vk} is chosen such that
it captures the main features in the solution, then this approach can be very useful. The latter approach is particularly attractive
for large-scale problems, where the signal subspace can take the form of a Krylov subspace, such as:



2 HANSEN, DONG, ABE

k = span{ATb, ATAAT b, (ATA)2ATb,… , (ATA)k−1ATb} for the CGLS and LSQR algorithms1, 2, (3)
̄k = span{b, Ab, A2b,… , Ak−1b} for the GMRES and MINRES algorithms3, 4, (4)
⃗k = span{Ab,A2b, A3b,… , Akb} for the RRGMRES and MR-II algorithms5, 6, (5)

where k is the number of iterations; such methods are sometimes referred to as regularizing iterations. Depending on the
application, one ormore of these subspacesmay bewell suited to compute a good regularized solution, i.e., a good approximation
that is only little sensitive to perturbations of the data7. Moreover, it is possible to combine the projection formulation with
Tikhonov regularization; this leads to so-called hybrid iterative methods1, 8 where Tikhonov regularization is applied in each
iteration of the algorithm to the projected problem, i.e., the problem of small dimensions in the relevant Krylov subspace.
We can further improve the regularized solution by incorporating additional specific prior information. In this work we assume

that the solution has a significant component in a given subspace p of dimension p ≪ k (e.g., chosen to represent known
features in the solution). In connection with the above Krylov subspace methods, it was proposed9, 10 to decompose the solution
into a component in p and another component in the orthogonal complement ⟂

p , which leads to the idea of enriched (or
augmented) Krylov subspace methods. See also11 for an adaptive approach.
Recently we presented an algorithm R3GMRES12 based on the range-restricted GMRES (RRGMRES) method5 and the

corresponding Krylov subspace ⃗k. In the present work we consider a similar approach based on the LSQR method and the
underlying Golub-Kahan bidiagonalization algorithm13, and the corresponding Krylov subspace k. Specifically, we compute
regularized solutions in a signal subspace p,k that is the direct sum of the two subspacesp and k,

p,k = p +k ≡ {y + z | y ∈ p ∧ z ∈ k} , (6)

which itself is a linear subspace.
An efficient and stable algorithm ENRICHED CGNR for this problem, based on the CGLS algorithm, was published in10. Here

we present an alternative algorithm that takes its basis in the LSQR algorithm and the underlying bidiagonalization process. Due
to this formulation, our algorithm lends itself easily to extensions to hybrid iterative algorithms where an additional Tikhonv
regularization terms is incorporated, and where it is possible to efficiently compute the corresponding regularization parameter
in each iteration. The latter also provides a stopping rule for the iterations, when the regularization parameter stabilizes.
Our paper is organized as follows. We first present the basic enriched bidiagonalization algorithm and discuss how to imple-

ment it. Then we introduce Tikhonov regularization which leads to the hybrid version of the algorithm, and again we discuss
implementation aspects. We conclude with a few illustrative numerical examples. Throughout, Iq denotes an identity matrix of
order q.

2 FORMULATION OF THE BASIC ALGORITHM

We want to solve the problem
min
x

‖Ax − b‖22 s.t. x ∈ p +k . (7)

In principle we could use, say, a Hessenberg decomposition

A [Wp , A
T b , ATAAT b ,… , (ATA)k−1AT b ] = Vp+k+1Hp+k

and compute the solution as

x(k) = [Wp , A
T b , ATAAT b ,… , (ATA)k−1AT b ] y(k) ,

y(k) = argminy
‖

‖

‖

Hp+1y − V T
p+k+1b

‖

‖

‖

2

2
.

But we prefer to use a stable and efficient “standard” algorithm. Following the ideas behind the R3GMRES algorithm12 for
square matrices, we use the bidiagonalization algorithm to compute an orthonormal basis of k, and augment it byp in each
iteration of the algorithm. This may seem cumbersome – but the overhead is, in fact, favorably small.
At iteration k we have the decomposition

A [Vk , Wp ] =
[

Uk+1 , Ũk
]

[

Bk Gk
0 Fk

]

, (8)
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where Vk, Uk+1 and Bk are associated with the classical bidiagonalization algorithm. The remaining matrices are associated
with the enrichment/augmentation. Specifically:

• AVk = Uk+1Bk is obtained after k iterations of the bidiagonalization process.

• Vk ∈ ℝn×k has orthonormal columns that span k.

• Uk+1 ∈ ℝm×(k+1) has orthonormal columns, and u1 = b∕‖b‖2.

• Bk ∈ ℝ(k+1)×k is a lower bidiagonal matrix.

• Ũk ∈ ℝm×p satisfies range(AWp) = range(Uk+1Gk + ŨkFk) and ŨT
k Uk+1 = 0.

• Fk ∈ ℝp×p and changes in every iteration.

• Gk is (k + 1) × p and is updated associated with Uk+1.

The columns of
[

Vk , Wp
]

form a basis for p,k. The matrices Gk ∈ ℝ(k+1)×p and Fk ∈ ℝp×p are composed of the coefficients
of AWp with respect to basis of range(Uk+1) and range(Ũk), respectively:

Gk = UT
k+1AWp , Fk = ŨT

k AWp . (9)

Then the iterate x(k) ∈ p,k is given by x(k) =
[

Vk , Wp
]

y(k), where y(k) solves a least squares problem:

y(k) = argminy
‖

‖

‖

‖

‖

‖

[

Bk Gk
0 Fk

]

y −

[

UT
k+1

ŨT
k

]

b
‖

‖

‖

‖

‖

‖

2

2

. (10)

The above derivation leads to the following generic formulation:

BASIC ENRICHED BIDIAGONALIZATION

1. Set U1 = b∕‖b‖2, V0 = [ ], B0 = [ ], G0 = UT
1 AWp, k = 1.

2. Use the bidiagonalization process to obtain vk and uk+1 such that AVk = Uk+1Bk, where

Vk = [Vk−1, vk], Uk+1 =
[

Uk, uk+1
]

, Bk =
⎡

⎢

⎢

⎣

Bk−1
0
×

0 ×

⎤

⎥

⎥

⎦

.

3. Compute Gk =
[

Gk−1
uTk+1AWp

]

∈ ℝ(k+1)×p.

4. Orthonormalize AWp with respect to Uk+1 to obtain Ũk ∈ ℝm×p.

5. Compute Fk = ŨT
k AWp ∈ ℝp×p.

6. Solve miny
‖

‖

‖

‖

‖

‖

[

Bk Gk
0 Fk

]

y −

[

UT
k+1

ŨT
k

]

b
‖

‖

‖

‖

‖

‖

2

2

to obtain y(k).

7. Then x(k) =
[

Vk , Wp
]

y(k).

8. Stop, or set k ∶= k + 1 and return to Step 2.

We note that we need to recompute the skinny m×pmatrix Ũk and the small p×pmatrix Fk in each iteration, but the dimension
p of the augmentation subspace is small so this overhead is negligible.
For efficiency reasons when solving the least squares problem in Step 6, in each iteration we update the orthogonal

factorization:
[

Bk Gk
0 Fk

]

= Q

⎡

⎢

⎢

⎢

⎣

T (11)
k T (12)

k

0 T (22)
k

0 0

⎤

⎥

⎥

⎥

⎦

,
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FIGURE 1 The Shepp-Logan head phantom and two reconstructions in which negative pixels are truncated to 0. The LSQR
reconstruction shows the usual line artifacts associated with few-projection CT problems. On the other hand, the reconstruction
computed with the enriched bidiagonalization method (as well as enriched CGNR) has much fewer artifacts.

where T (11)
k ∈ ℝk×k and T (22)

k ∈ ℝp×p are upper triangular, and Q ∈ ℝ(k+p+1)×(k+p+1) is orthogonal. We update T (11)
k via Givens

rotations that are also applied to Gk and UT
k+1b. The matrix Ũk is already orthogonal to Uk, hence (in principle) we can perform

the update Ũk+1 = (Im − uk+1uTk+1) Ũk. For numerical stability, we must reorthogonalize the columns of Vk, Uk+1, and Ũk. This
is an acceptable approached used in many similar algorithms, such as the algorithm HyBR14.
We emphasize that the iterates produced by our algorithm are mathematically identical to those produced by the enriched

CGNR method10.
To illustrate the power of incorporating additional information via the augmentation subspace p, we consider a parallel-

beam X-ray CT problem generated by means of the function paralleltomo from the software package AIR TOOLS II 15. In this
example, the 64 × 64 test image is the Shepp-Logan head phantom and our prior information is that the image has a particular
oval structure that represents the skull. Hence we can choose binary basis vectors ofp that represent this structure.
We use 22 projections of 91 pixels, so the matrix is 2002 × 4096 and the problem is underdetermined. We add 1% Gaussian

noise to the data. We then solve the CT reconstruction problem by means of LSQR and the basic enriched bidiagonalization
algorithm. The results are shown in Figure 1 where we see that incorporation of the specific information about the skull gives a
much improved reconstruction, compared to that from the LSQR algorithm.

3 FORMULATION OF THE HYBRID ALGORITHM

For some inverse problems, the Krylov subspace or the enriched subspace may not provide enough regularization, and an
additional regularization term �2(x) is needed. Here we consider the case where(x) = ‖x‖22 and the corresponding problem

min
x

{

‖A x − b‖22 + �
2
‖x‖22

}

s.t. x ∈ p,k . (11)

After reformulating (11) as

min
x

{

‖

‖

‖

‖

‖

[

A
�I

]

x −
[

b
0

]

‖

‖

‖

‖

‖

2

2

}

s.t. x ∈ p,k , (12)

both the enriched CGNR algorithm and our enriched bidiagonalization algorithm can handle this problem efficiently, by adding
a Tikhonov regularization term to the projected problem in each iteration. The details on how such a term is added to the LSQR
algorithm can be found in Section 6.4 and Fig. 6.10 in1.
A further advantage of adding a regularization term to the projected problem is that, in some case, we can choose a different

regularization parameter �k in each iteration. Moreover, since the projected problems have much smaller dimensions than the
original problem (1) we are free to use a variety of parameter-choice rules, including those that require the computation of the
SVD of the projected matrix. This is often referred to as a hybrid iterative method and it is the basis of the HyBR algorithm14

that applies this idea to the LSQR algorithm, using weighted generalized cross validation to choose the regularization parameter.
Similar hybrid iterative algorithms based on (flexible) GMRES are implemented in the IR TOOLS package16.
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The way that Tikhonov regularization is introduced in the enriched CGNR algorithm10 does not allow the regularization
parameter to change in each iteration. On the other hand, since our algorithm explicitly builds on the bidiagonalization that
also underlies LSQR, we can indeed introduce an iteration-dependent regularization parameter �k. Specifically, we obtain the
following algorithm where PCR denotes the chosen parameter-choice rule:

HYBRID ENRICHED BIDIAGONALIZATION

1. Set U1 = b∕‖b‖2, V0 = [ ], B0 = [ ], G0 = UT
1 AWp, k = 1.

2. Use the bidiagonalization process to obtain vk and uk+1 such that AVk = Uk+1Bk, where

Vk = [Vk−1, vk], Uk+1 =
[

Uk, uk+1
]

, Bk =
⎡

⎢

⎢

⎣

Bk−1
0
×

0 ×

⎤

⎥

⎥

⎦

.

3. Compute Gk =
[

Gk−1
uTk+1AWp

]

∈ ℝ(k+1)×p.

4. Orthonormalize AWp with respect to Uk+1 to obtain Ũk ∈ ℝm×p.

5. Compute Fk = ŨT
k AWp ∈ ℝp×p.

6. Use PCR to choose �k and compute y(k)�k by solving the regularized problem

miny

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎣

Bk Gk
0 Fk

�kVk �kWp

⎤

⎥

⎥

⎥

⎦

y −

⎡

⎢

⎢

⎢

⎣

UT
k+1

ŨT
k

0

⎤

⎥

⎥

⎥

⎦

b

‖

‖

‖

‖

‖

‖

‖

‖

2

2

7. Then x(k) =
[

Vk , Wp
]

y(k)�k .

8. Stop, or set k ∶= k + 1 and return to Step 2.

Following the HyBR algorithm14 as well as the hybrid iterative algorithms in IR TOOLS 16 we stop the iterations when the
regularization parameter �k stabilizes.
To solve the regularized problem in Step 6 efficiently, we already described how to update a QR factorization of the top 2× 2

block matrix. To treat the large bottom block �k
[

Vk , Wp
]

∈ ℝn×(k+p) efficiently, we multiply from the left with the orthogonal
matrix

[

Vk , Vo
]T , where the columns of Vo are chosen to make the full matrix orthogonal. The 2-norm is unaffected by this

transformation, and the bottom block then takes the form

[

Vk , Vo
]T �k

[

Vk , Wp
]

= �k

[

Ik V T
k Wp

0 V T
o Wp

]

, V T
k Wp =

[

V T
k−1Wp

vTkWp

]

,

where we used that Vk =
[

Vk−1 , vk
]

and W T
p vk is a vector of length p. Since the matrix Vo is not explicitly available, we

consider instead the Cholesky factorization of the symmetric and positive definite p × p matrix

(V T
o Wp)TV T

o Wp = W T
p Vo V

T
o Wp = W T

p (In − Vk V T
k )Wp = RTkRk ,

where Rk ∈ ℝp×p is the Cholesky factor. It follows immediately that

RTkRk = W T
p (In − Vk−1 V T

k−1)Wp − (W T
p vk) (W

T
p vk)

T = RTk−1Rk−1 − (W T
p vk) (W

T
p vk)

T .

Hence we can compute Rk from Rk−1 using techniques that downdate a Cholesky factor due to a rank-one change17, and the
bottom block is reduced to a small matrix of size (k + p) × (k + p).

4 NUMERICAL EXAMPLES

To illustrate the performance of our hybrid enriched bidiagonalization (HEB) algorithm we use the following approach:

1. Generate a noise-free system: Axexact = bexact .
2. Add noise: b = bexact + e where e is a random vector of Gaussian white noise scaled such that ‖e‖2∕‖bexact‖2 = �.
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FIGURE 2 Results for the test problem deriv2(n,2). LSQR is not able to produce a good solution with the Krylov subspace
k; HEB performs much better due to the subspace augmentation, and GCV successfully computes a very good regularization
parameter �k that stagnates (as it should) after 6 iterations. The exact solution is indistinguishable from the HEB solution.

3. Show the best solutionwithin the iterations, the relative error ‖xexact−x(k)‖2∕‖xexact‖2, and the residual norm ‖b−Ax(k)‖2.

We compare the following three algorithms:

• LSQR is the implementation from REGULARIZATION TOOLS 18.

• HEB with a fixed regularization parameter � chosen by the user.

• HEBwith the regularization parameter �k chosen by applying generalized cross validation (GCV) to the projected problem
in each iteration.

4.1 A large component in augmented subspace
The first test problem is deriv2(n,2) from REGULARIZATION TOOLS 18 with n = 32 and relative noise level � = 10−6. The
augmentation subspace is

2 = span{w1, w2}, w1 = (1, 1,… , 1)T , w2 = (1, 2,… , n)T . (13)

For this problem we have

‖W2W
T
2 xexact‖2∕‖xexact‖2 = 0.99 , ‖(In −W2W

T
2 )xexact‖2∕‖xexact‖2 = 0.035 ,

and we only need to spend effort in capturing the small component of the solution in⟂
2 . But, as shown in the numerical results

in Fig. 2, the augmentation approach is crucial for computing a feasible reconstruction without the artificial oscillations towards
the ends produced by LSQR.
If we know a good value of the regularization parameter � then HEB can produce a good reconstruction. Without such prior

knowledge, however, HEB produces less accurate reconstructions as demonstrated with the choice � = 10−5 which is too large.
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FIGURE 3 Numerical results for the test problem with combined deconvolution and inpainting. The top left plot shows the best
reconstructions with the three methods, as well as the right-hand side with 56 “missing” values in the middle. The LSQR solution
has many unwanted oscillations as well as a large error in the middle. The other two methods can produce good reconstructions,
but only HEB with �k chosen by GCV needs no prior knowledge about the noise level or the regularization parameter.

On the other hand, if we use GCV to adaptively choose �k in each iteration then this parameter settles at approximately 10−7

after 6 iterations, which is where our strategy will stop the iterations (we continue them, to illustrate that �k as well as the errors
stay essentially unchanged).

4.2 Combined deconvolution and inpainting
The second test problem is a 1D problem that combines deconvolution with inpainting. We first create an n × n Toeplitz matrix
Afull (with n = 216) which is similar to the one from the test problem phillips from REGULARIZATION TOOLS, except that we
change the point spread function to have half the width. Then we remove rows 71–126 of this matrix to obtain (using MATLAB
notation) A = Afull([1∶70, 127∶216], ∶) ∈ ℝ160×216. The exact solution xexact has elements sin(1.5�i∕n) + cos(0.1�i∕n) and the
exact right-hand side is bexact = Axexact (think of bexact as the blurred version of xexact with the middle 56 elements removed, cf.
Fig. 3). We then add Gaussian noise with relative noise level � = 10−4.
The numerical results are shown in Figure 3, using the augmentation subspace

3 = span{w1, w2, w3}, w1 = (1, 1,… , 1)T , w2 = (1, 2,… , n)T , w3 = (1, 4,… , n2)T . (14)

The LSQR methods seeks to approximate a minimum-norm solution and therefore even the best solution has a large error in the
middle where the method seeks to introduce small elements. The best HEB solutions are much better, because the augmentation
subspace W3 in (14) provides basis vectors that – together with the Tikhonov regularization – are able to “fill the gap” in
the middle of the solution. The HEB method with a fixed � depends on a good a priori choice – otherwise many values have
to be tried. The HEB method with �k chosen by GCV works very well, and no prior knowledge about the noise level or the
regularization parameter is required.
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5 CONCLUSION

We demonstrated how to augment the bidiagonalization algorithm underlying LSQR such that it computes solutions in an
enriched subspace consisting of the standard Krylov subspace plus a low-dimensional linear subspace that represents additional
prior information about the solution. We also demonstrated how to add standard-form Tikhonov regularization, thus arriving
at a hybrid enriched bidiagonalization algorithm that can choose the regularization parameter adaptively in each iteration. We
discussed implementation issues and gave a few illustrative numerical examples.
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