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INTERIOR POINT METHODS AND PRECONDITIONING FOR
PDE-CONSTRAINED OPTIMIZATION PROBLEMS INVOLVING SPARSITY

TERMS

JOHN W. PEARSON∗, MARGHERITA PORCELLI† , AND MARTIN STOLL‡

Abstract. PDE-constrained optimization problems with control or state constraints are challenging from
an analytical as well as numerical perspective. The combination of these constraints with a sparsity-promoting
L1 term within the objective function requires sophisticated optimization methods. We propose the use of an
Interior Point scheme applied to a smoothed reformulation of the discretized problem, and illustrate that such a
scheme exhibits robust performance with respect to parameter changes. To increase the potency of this method we
introduce fast and efficient preconditioners which enable us to solve problems from a number of PDE applications
in low iteration numbers and CPU times, even when the parameters involved are altered dramatically.

Key words. PDE-constrained optimization, Interior Point methods, Saddle-point systems, Preconditioning,
Sparsity, Box constraints.

AMS subject classifications. 65F08, 65F10, 65K05, 76D55, 90C20, 93C20

1. Introduction. In this paper we address the challenge of solving matrix systems arising
from PDE-constrained optimization problems [24, 26, 44]. Such formulations arise in a multitude
of applications, ranging from the control of fluid flows [23] to image processing contexts [8]. The
particular question considered in this paper is how to efficiently handle sparsity-promoting cost
terms within the objective function, as well as additional constraints imposed on the control
variable and even the state variable. In fact, seeking optimal control functions that are both
contained within a range of function values, and zero on large parts of the domain, has become
extremely relevant in practical applications [43].

In detail, we commence by studying the problem of finding (y,u) ∈ H1(Ω)×L2(Ω) such that
the functional

F(y,u) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + β‖u‖L1(Ω) (1.1)

is minimized subject to the PDE constraint

−∆y = u + f in Ω, (1.2)

y = g on Γ, (1.3)

where we assume that the equation (1.2) is understood in the weak sense [44]. Here, Ω ⊂ R2 or
R3 denotes a spatial domain with boundary Γ. Additionally, we allow for box constraints on the
control

ua ≤ u ≤ ub a.e. in Ω, (1.4)

and, for the sake of generality, consider the possibility that there are also box constraints on the
state

ya ≤ y ≤ yb a.e. in Ω. (1.5)
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We follow the convention of recent numerical studies (see [40, 41, 42, 47], for instance) and
investigate the case where the lower (upper) bounds of the box constraints are non-positive
(non-negative). Here, the functions yd, f, g,ua,ub, ya, yb ∈ L2(Ω) are provided in the problem
statement, with α, β > 0 given problem-specific regularization parameters. The functions y, yd,u
denote the state, the desired state, and the control, respectively. The state y and the control u
are then linked via a state equation (the PDE). In this work we examine several representative
state equations, including Poisson’s equation (1.2) as well as the convection–diffusion equation
and the heat equation. Furthermore, we consider the case where the difference between state y
and desired state yd is only observed on a certain part of the domain, i.e. over Ω1 ⊂ Ω, with the
first quadratic term in (1.1) then having the form 1

2‖y − yd‖2L2(Ω1). We refer to this case as the
“partial observation” case.

There are many difficulties associated with the problem (1.1)–(1.5), such as selecting a
suitable discretization, and choosing an efficient approach for handling the box constraints and
the sparsity term. In particular, the state constrained problem itself, not even including the
L1-norm term, leads to a problem formulation where the regularity of the Lagrange multiplier
is reduced, see [7] for details. Additionally, the simultaneous treatment of control and state
constraints is a complex task. For this, Günther and co-authors in [17] propose the use of
Moreau–Yosida regularization in order to add the state constraints as a penalty to the objective
function. Other approaches are based on a semismooth Newton method, see e.g. [20, 36]. In
fact, the inclusion of control/state constraints leads to a semismooth nonlinear formulation of
the first-order optimality conditions [4, 22, 37]. Interestingly, the structure of the resulting
nonlinear system is preserved if the L1-norm penalization is added [20, 36, 43]. Therefore its
solution also generally relies on semismooth Newton approaches, and an infinite dimensional
formulation is commonly utilized to derive the first-order optimality system. Stadler in [43] was
the first to study PDE-constrained optimization problems which include an L1 term by applying
a semismooth Newton approach, and many contributions have been made to the study of these
problems in recent years (cf. [18, 21] among others). Our objective is to tackle the coupled
problem of both box constraints combined with the sparsity-promoting term, using the Interior
Point method.

The paper [36] provides a complete analysis of a globally convergent semismooth Newton
method proposed for the problem (1.1)–(1.4). Theoretical and practical aspects are investigated
for both the linear algebra phase and the convergence behavior of the nonlinear method. The
numerical experiments carried out revealed a drawback of the method, as it exhibited poor
convergence behavior for limiting values of the regularization parameter α.

The aim of this paper is to propose a new framework for the solution of (1.1)–(1.5) for a wider
class of state equations and boundary conditions and, at the same time, attempt to overcome
the numerical limitations of the global semismooth approach.

To pursue this issue we utilize Interior Point methods (IPMs), which have shown great
applicability for nonlinear programming problems [30, 52], and have also found effective use
within the PDE-constrained optimization framework [32, 45]. In particular, IPMs for linear and
(convex) quadratic programming problems display several features which make them particularly
attractive for very large-scale optimization, see e.g. the recent survey paper [16]. Their main
advantages are undoubtedly their low-degree polynomial worst-case complexity, and their ability
to deliver optimal solutions in an almost constant number of iterations which depends very little,
if at all, on the problem dimension. This feature makes IPMs perfect candidates for huge-scale
discretized PDE-constrained optimal control problems.

Recently, in [32], an Interior Point approach has been successfully applied to the solution
of problem (1.1)–(1.5), with β = 0. In this case the discretization of the optimization problem
leads to a convex quadratic programming problem, so IPMs may naturally be applied, and indeed
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demonstrated very good convergence properties. Furthermore, the rich structure of the linear
systems arising in this framework allows one to design efficient and robust preconditioners, based
on those originally developed for the Poisson control problem without box constraints [34].

In this work we extend the approach proposed in [32] to the more difficult and general case
with β > 0, and apply it to a several typical PDE-constrained optimal control problems. To
implement an Interior Point scheme for this problem we utilize two key ingredients that will be
described in detail in Section 3: an appropriate discretization of the L1-norm that allows us to
write the discretized problem in a matrix–vector form, and a suitable smoothing of the resulting
vector `1 norm that yields a final quadratic programming form of the discretized problem. The
first ingredient is based on the discretization described in [47], and has recently been applied to
problem (1.1)–(1.4) in [40, 41, 42], where block-coordinate like methods are then introduced. The
second ingredient has been widely used for solving the ubiquitous L1-norm regularized quadratic
problem as, for example, when computing sparse solutions in wavelet-based deconvolution prob-
lems and compressed sensing [11]. This strategy has been used to solve an ODE-constrained
optimization problem from robotics in [46]. There the authors tackle a problem arising from
the discretization of the system of ODEs, solving this using the all-at-once interior point solver
IPOPT [48]. Given the moderate dimensions of the matrix systems arising from ODE problems,
it is possible to apply direct solvers, although this approach is infeasible for the PDE setting we
consider here. On the other hand, to our knowledge the use of the smoothing technique for the
L1-term is new within the PDE applications considered here, and a careful derivation of solvers
for the underlying matrix systems is necessary in this framework.

In order for this method to be computationally tractable for high-dimensional PDE applica-
tions, it is essential to devise potent numerical solvers for the sequence of saddle-point systems
generated by the IPM, so we propose new preconditioners which may be embedded within suitable
Krylov subspace methods, based on approximations of the (1, 1)-block and the Schur complement.
In contrast to previous results for the case β = 0 in [32], the structure of the resulting systems
is more complex due to the L1-norm contribution within the objective function. In particular,
as a result of the smoothing of the resulting vector `1-norm term, the (1, 1)-block is of larger
dimension and is also close to singular, which must be carefully addressed when devising potent
preconditioners. This also has implications for the structure of the Schur complement, which
is again more complex than for L2-regularized problems, and for which suitable approximations
must also be devised. In this paper we derive new preconditioners for the matrix systems aris-
ing from (1.1), and analyse the spectral properties of the preconditioned (1, 1)-block and Schur
complement, to guide us as to their effectiveness. We also demonstrate that our approach is
applicable when tackling problems involving partial observations, meaning that the (1, 1)-blocks
of the saddle-point systems are singular, or time-dependent problems.

We structure the paper as follows. The discretization of the continuous problem is dis-
cussed in Section 2, while an Interior Point scheme is introduced in Section 3 together with
the description of the linear algebra considerations. Hence, Section 4 is devoted to introducing
preconditioning strategies to improve the convergence behavior of the linear iterative solver. We
highlight a “matching approach” that introduces robust approximations to the Schur comple-
ment of the linear system. Additionally, we propose a preconditioning strategy for problems
involving partial observations in Section 4.3, and time-dependent PDE-constrained optimization
in Section 4.4. Section 5 illustrates the performance of our scheme for a variety of different
parameter regimes, discretization levels, and PDE constraints.

Notation. The L1 norm of a function u is denoted by ‖u‖L1 , while the `1 norm of a vector u
is denoted by ‖u‖1. Components of a vector x are denoted by xj , or by xa,j for a vector xa. The
matrix In denotes the n×n identity matrix, and 1n is the column vector of ones of dimension n.
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2. Problem Discretization and Quadratic Programming Formulation. We here
apply a discretize-then-optimize approach to (1.1)–(1.5), and use a finite element discretization
that retains a favorable property of the vector `1 norm, specifically that it is separable with
respect to the vector components. This key step allows us to state the discretized problem as a
convex quadratic program that may be tackled using an IPM.

Let n denote the dimension of the discretized space, for both state and control variables, and
let h be the corresponding mesh-size. Let the matrix L represent a discretization of the Laplacian
operator (the stiffness matrix ) when Poisson’s equation is considered or, more generally, the
discretization of a non-selfadjoint elliptic differential operator, and let the matrix M be the finite
element Gram matrix, or mass matrix. Finally, we denote by y, u, yd, f, ua, ub, ya, yb the discrete
counterparts of the functions y,u, yd, f,ua,ub, ya, yb, respectively.

The discretization without the additional sparsity term follows a standard Galerkin approach
[20, 38, 44]. For the discretization of the L1 term, we here follow [40, 41, 42, 47] and apply the
nodal quadrature rule:

‖u‖L1(Ω) ≈
n∑
i=1

|ui|
∫

Ω

φi(x) dx,

where {φi} are the finite element basis functions used and ui are the components of u. It is
shown in [47] that first-order convergence with respect to mesh-size may be achieved using this
approximation with piecewise linear discretizations of the control. We define a lumped mass
matrix D as

D := diag

(∫
Ω

φi(x) dx

)n
i=1

,

so that the discretized L1 norm can be written in matrix–vector form as ‖Du‖1. As a result, the
overall finite element discretization of problem (1.1)–(1.5) may be stated as

min
y∈IRn

,u∈IRn

1
2 (y − yd)TM(y − yd) + α

2 u
TMu+ β‖Du‖1

s.t. Ly −Mu = f,
(2.1)

while additionally being in the presence of control constraints and state constraints:

ua ≤ u ≤ ub, ya ≤ y ≤ yb. (2.2)

The problems we consider will always have control constraints present, and will sometimes also
involve state constraints.

Problem (2.1)–(2.2) is a linearly constrained quadratic problem with bound constraints on
the state and control variables (y, u), and with an additional nonsmooth weighted `1-norm term
of the variable u. A possible approach to handle the nonsmoothness in the problem consists
of using smoothing techniques for the `1-norm term, see e.g. [11, 12, 13]. We here consider
a classical strategy proposed in [11] that linearizes the `1 norm by splitting the variable u as
follows. Let w, v ∈ IRn be such that

|ui| = wi + vi, i = 1, . . . , n,

where wi = max(ui, 0) and vi = max(−ui, 0). Therefore

‖u‖1 = 1Tnw + 1Tnv,
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with w, v ≥ 0. In the weighted case, which we are interested in when approximating the dis-
cretized version of ‖u‖L1(Ω) by ‖Du‖1, we obtain

‖Du‖1 = 1TnDw + 1TnDv.

By using the relationship

u = w − v, (2.3)

one may now rewrite problem (2.1) in terms of variables (y, z), with

z =

[
w
v

]
.

Note that bounds for u

ua ≤ u ≤ ub

now have to be replaced by the following bounds for z:

za ≤ z ≤ zb,

with

za =

[
max{ua, 0}
−min{ub, 0}

]
, zb =

[
max{ub, 0}
−min{ua, 0}

]
.

We note that these bounds automatically satisfy the constraint z ≥ 0. Overall, we have the
desired quadratic programming formulation:

min
y∈IRn

,z∈IR2n
Q(y, z) := 1

2 (y − yd)TM(y − yd) + α
2 z

T M̃z + β 1T2nD̄z

s.t. Ly − M̄z = f,
za ≤ z ≤ zb,
ya ≤ y ≤ yb,

(2.4)

where

M̃ =

[
M −M
−M M

]
, D̄ =

[
D D

]
, M̄ =

[
M −M

]
.

In the next section we derive an Interior Point scheme for the solution of the above problem.
Clearly once optimal values of variables z, and therefore of w and v, are found, the control u of
the initial problem is retrieved by (2.3). We observe that we gain smoothness in the problem
at the expense of increasing the number of variables by 50% within the problem statement.
Fortunately, this increase will not have a significant impact in the linear algebra solution phase
of our method, as we only require additional sparse matrix–vector multiplications, and the storage
of the additional control vectors.

3. Interior Point Framework and Newton Equations. The three key steps to set up
an IPM are the following. First, the bound constraints are “eliminated” by using a logarithmic
barrier function. For problem (2.4), the barrier function takes the form:

Ψµ(y, z, p) = Q(y, z) + pT (Ly − M̄z − f)− µ
∑

log(yj − ya,j)− µ
∑

log(yb,j − yj)

− µ
∑

log(zj − za,j)− µ
∑

log(zb,j − zj),
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where p ∈ IRn is the Lagrange multiplier (or adjoint variable) associated with the state equation,
while µ > 0 is the barrier parameter that controls the relation between the barrier term and the
original objective Q(y, z). As the IPM progresses, µ is decreased towards zero.

The second step involves applying duality theory, and deriving the first-order optimality
conditions to obtain a nonlinear system parameterized by µ. Differentiating Ψµ with respect to
(y, z, p) gives the nonlinear system

My −Myd + LT p− λy,a + λy,b = 0, (3.1)

αM̃z + βD̄T 1n − M̄T p− λz,a + λz,b = 0, (3.2)

Ly − M̄z − f = 0, (3.3)

where the jth entries of the Lagrange multipliers λy,a, λy,b, λz,a, λz,b are defined as follows:

(λy,a)j =
µ

yj − ya,j
, (λy,b)j =

µ

yb,j − yj
, (λz,a)j =

µ

zj − za,j
, (λz,b)j =

µ

zb,j − zj
.

(3.4)
Also, the following bound constraints enforce the constraints on y and z via:

λy,a ≥ 0, λy,b ≥ 0, λz,a ≥ 0, λz,b ≥ 0.

The third crucial step of the IPM is the application of Newton’s method to the nonlinear
system given by the seven equalities in (3.1)–(3.4). We now derive the Newton equations, fol-
lowing the description in [32]. Letting y, z, p, λy,a, λy,b, λz,a, λz,b denote the most recent Newton
iterates, these quantities are updated at each iteration by computing the corresponding New-
ton steps ∆y,∆z,∆p,∆λy,a,∆λy,b,∆λz,a, ∆λz,b, through the solution of the following Newton
system:

M 0 LT −In In 0 0

0 αM̃ −M̄T 0 0 −I2n I2n
L −M̄ 0 0 0 0 0

Λy,a 0 0 Y − Ya 0 0 0
−Λy,b 0 0 0 Yb − Y 0 0

0 Λz,a 0 0 0 Z − Za 0
0 −Λz,b 0 0 0 0 Zb − Z





∆y
∆z
∆p

∆λy,a
∆λy,b
∆λz,a
∆λz,b


(3.5)

= −



My −Myd + LT p− λy,a + λy,b
αM̃z + βD̄T 1n − M̄T p− λz,a + λz,b

Ly − M̄z − f
(y − ya). ∗ λy,a − µ1n
(yb − y). ∗ λy,b − µ1n
(z − za). ∗ λz,a − µ12n

(zb − z). ∗ λz,a − µ12n


,

where Y,Z,Λy,a,Λy,b,Λz,a,Λz,b are diagonal matrices, with the most recent iterates y, z, p, λy,a,
λy,b, λz,a, λz,b appearing on their diagonal entries. Similarly, the matrices Ya, Yb, Za, Zb are di-
agonal matrices corresponding to the bounds ya, yb, za, zb. Here we utilize the matlab notation
‘.∗’ to denote the componentwise product. We observe that the contribution of the `1-norm term
only arises in the right-hand side, that is to say β does not appear within the matrix we need to
solve for.
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Eliminating ∆λy,a,∆λy,b,∆λz,a,∆λz,b from (3.5), we obtain the following reduced linear
system:M + Θy 0 LT

0 αM̃ + Θz −M̄T

L −M̄ 0

∆y
∆z
∆p

 (3.6)

= −

 My −Myd + LT p− µ(Y − Ya)−11n + µ(Yb − Y )−11n
αM̃z + βD̄T 1n − M̄T p− µ(Z − Za)−112n + µ(Zb − Z)−112n

Ly − M̄z − f

 ,
with

Θy = (Y − Ya)−1Λy,a + (Yb − Y )−1Λy,b, Θz = (Z − Za)−1Λz,a + (Zb − Z)−1Λz,b

both diagonal and positive definite matrices, which are typically very ill-conditioned. In partic-
ular in our implementation, as is standard within IPM codes, we set a maximum value for the
diagonal entries of Θy and Θz (of the order of the inverse of machine precision) to combat the
possibility of a diagonal entry being infinite numerically. Once the above system is solved, one
can compute the steps for the Lagrange multipliers:

∆λy,a = −(Y − Ya)−1Λy,a∆y − Λy,a + µ(Y − Ya)−11n, (3.7)

∆λy,b = (Yb − Y )−1Λy,b∆y − Λy,b + µ(Yb − Y )−11n, (3.8)

∆λz,a = −(Z − Za)−1Λz,a∆z − Λz,a + µ(Z − Za)−112n, (3.9)

∆λz,b = (Zb − Z)−1Λz,b∆z − Λz,b + µ(Zb − Z)−112n. (3.10)

After updating the iterates, and ensuring that they remain feasible, the barrier µ is reduced and
a new Newton step is performed.

For the sake of completeness, the structure of the overall Interior Point algorithm is reported
in the Appendix, and follows the standard infeasible Interior Point path-following scheme outlined
in [16]. We report the formulas for the primal and dual feasibilities, given by

ξkp = Lyk − M̄zk − f, ξkd =

[
Myk −Myd + LT pk − λky,a + λky,b

αM̃zk + βD̄T 1n − M̄T pk − λkz,a + λkz,b

]
, (3.11)

respectively, and the complementarity gap

ξkc =


(yk − ya). ∗ λky,a − µk1n
(yb − yk). ∗ λky,b − µk1n
(zk − za). ∗ λkz,a − µk12n

(zb − zk). ∗ λkz,a − µk12n

 , (3.12)

for problem (2.4). Here k denotes the iteration counter for the Interior Point method, with
yk, zk, pk, λky,a, λ

k
y,b, λ

k
u,a, λ

k
u,b, µ

k the values of y, z, p, λy,a, λy,b, λu,a, λu,b, µ at the kth iteration.

The measure of the change in the norm of ξkp , ξ
k
d , ξ

k
c allows us to monitor the convergence

of the entire process. Computationally, the main bottleneck of the algorithm is the linear al-
gebra phase, that is the efficient solution of the Newton system (3.6). This is the focus of the
forthcoming section.

7



4. Preconditioning. Having arrived at the Newton system (3.6), the main task at this
stage is to construct fast and effective methods for the solution of such systems. In this work, we
elect to apply iterative (Krylov subspace) solvers, both the minres method [31] for symmetric
matrix systems, and the gmres algorithm [39] which may also be applied to non-symmetric
matrices. We wish to accelerate these methods using carefully chosen preconditioners.

To develop these preconditioners, we observe that (3.6) is a saddle-point system (see [3] for
a review of such systems), of the form

A =

[
A BT

B C

]
,

with

A =

[
M + Θy 0

0 αM̃ + Θz

]
, B =

[
L −M̄

]
, C =

[
0
]
.

Provided A is nonsingular, it is well known that two ideal preconditioners for the saddle-point
matrix A are given by

P1 =

[
A 0
0 S

]
, P2 =

[
A 0
B −S

]
,

where the (negative) Schur complement S := −C + BA−1BT . In particular, provided the
preconditioned system is nonsingular, it can be shown that [25, 27, 29]

λ(P−1
1 A) ∈

{
1,

1

2
(1±

√
5)

}
, λ(P−1

2 A) ∈ {1},

and hence that a suitable Krylov method preconditioned by P1 or P2 will converge in 3 or 2
iterations, respectively.

Of course, we would not wish to work with the preconditioners P1 or P2 in practice, as they
would be prohibitively expensive to invert. We therefore wish to develop analogous precondi-
tioners of the form

PD =

[
Â 0

0 Ŝ

]
, PT =

[
Â 0

B −Ŝ

]
,

where Â and Ŝ are suitable and computationally cheap approximations of the (1, 1)-block A and

the Schur complement S. Provided Â and Ŝ are symmetric positive definite, the preconditioner
PD may be applied within the minres algorithm, and PT is applied within a non-symmetric
solver such as gmres.

Our focus is therefore to develop such approximations for the corresponding matrices for the
Newton system (3.6):

A =

[
M + Θy 0

0 αM̃ + Θz

]
, S =

[
L −M̄

] [ M + Θy 0

0 αM̃ + Θz

]−1 [
LT

−M̄T

]
.

4.1. Approximation of (1, 1)-Block. An effective approximation of the (1, 1)-block A

will require cheap and accurate approximations of the matrices M + Θy and αM̃ + Θz. The key
property which we make use of when devising such approximations is that a mass matrix M may
be effectively approximated by its diagonal DM within a preconditioner, for a range of (nodal)
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finite element bases [50]. For instance when using Q1 basis functions, which we later employ
within our numerical experiments, it can be shown that λ(D−1

M M) ∈
[

1
4 ,

9
4

]
for a two-dimensional

problem, with λ(D−1
M M) ∈

[
1
8 ,

27
8

]
in three dimensions.

This valuable property of mass matrices can be exploited and enhanced by applying the
Chebyshev semi-iteration method [14, 15, 49], which utilizes the effectiveness of the diagonal
approximation and accelerates it. Now, it may be easily shown that[

λmin

(
(DM + Θy)−1(M + Θy)

)
, λmax

(
(DM + Θy)−1(M + Θy)

)]
⊂
[

min
{
λmin(D−1

M M), 1
}
,max

{
λmax(D−1

M M), 1
} ]
,

due to the positivity of the diagonal matrix Θy. Here, λmin(·), λmax(·) denote the smallest
and largest eigenvalues of a matrix, respectively. In other words, the diagonal of M + Θy also
clusters the eigenvalues within a preconditioner. The same argument may therefore be used to
apply Chebyshev semi-iteration to M + Θy within a preconditioner, and so we elect to use this
approach.

We now turn our attention to the matrix αM̃+Θz, first decomposing Θz = blkdiag(Θw,Θv),
where Θw, Θv denote the components of Θz corresponding to w, v. Therefore, in this notation,

αM̃ + Θz =

[
αM + Θw −αM
−αM αM + Θv

]
.

Note that M̃ is positive semidefinite but αM̃ + Θz is positive definite since the diagonal Θz is
positive definite (the control and state bounds are enforced as strict inequalities at each Newton
step).

A result which we apply is that of [28, Theorems 2.1(i) and 2.2(i)], which gives us the
following statements about the inverse of 2× 2 block matrices:

Theorem 4.1. Consider the inverse of the block matrix[
A B1

B2 C

]
. (4.1)

If A is nonsingular and C −B2A
−1B1 is invertible, then (4.1) is invertible, with[

A B1

B2 C

]−1

=

[
A−1 +A−1B1(C −B2A

−1B1)−1B2A
−1 −A−1B1(C −B2A

−1B1)−1

−(C −B2A
−1B1)−1B2A

−1 (C −B2A
−1B1)−1

]
.

(4.2)
Alternatively, if B1 is nonsingular and B2 − CB−1

1 A is invertible, then (4.1) is invertible, with[
A B1

B2 C

]−1

=

[
−(B2 − CB−1

1 A)−1CB−1
1 (B2 − CB−1

1 A)−1

B−1
1 +B−1

1 A(B2 − CB−1
1 A)−1CB−1

1 −B−1
1 A(B2 − CB−1

1 A)−1

]
.

(4.3)

For the purposes of this working, we may therefore consider the matrix αM̃ + Θz itself as
a block matrix (4.1), with A = αM + Θw, B1 = B2 = −αM , C = αM + Θv. It may easily be
verified that A, C −B2A

−1B1, B1, B2−CB−1
1 A are then invertible matrices, and so the results

(4.2) and (4.3) both hold in this setting.

We now consider approximating αM̃ + Θz within a preconditioner by replacing all mass
matrices with their diagonals, i.e. writing

αD̃M + Θz :=

[
αDM + Θw −αDM

−αDM αDM + Θv

]
.

9



This would give us a practical approximation, by using the expression (4.2) to apply (αD̃M +

Θz)
−1, provided it can be demonstrated that αD̃M + Θz well approximates αM̃ + Θz. This is

indeed the case, as demonstrated using the result below:

Theorem 4.2. The eigenvalues λ of the matrix[
αDM + Θw −αDM

−αDM αDM + Θv

]−1 [
αM + Θw −αM
−αM αM + Θv

]
(4.4)

are all contained within the interval:

λ ∈
[

min{λmin(D−1
M M), 1},max{λmax(D−1

M M), 1}
]
.

Proof. The eigenvalues of (4.4) satisfy[
αM + Θw −αM
−αM αM + Θv

] [
x1

x2

]
= λ

[
αDM + Θw −αDM

−αDM αDM + Θv

] [
x1

x2

]
,

with x1, x2 not both equal to 0, which may be decomposed to write

(αM + Θw)x1 − αMx2 = λ(αDM + Θw)x1 − λαDMx2, (4.5)

−αMx1 + (αM + Θv)x2 = − λαDMx1 + λ(αDM + Θv)x2. (4.6)

Summing (4.5) and (4.6) gives that

Θwx1 + Θvx2 = λΘwx1 + λΘvx2 = λ(Θwx1 + Θvx2),

which tells us that either λ = 1 or Θwx1 + Θvx2 = 0. In the latter case, we substitute x1 =
−Θ−1

w Θvx2 into (4.5) to give that

−(αM + Θw)Θ−1
w Θvx2 − αMx2 = − λ(αDM + Θw)Θ−1

w Θvx2 − λαDMx2

⇒
[
αM(Θ−1

w Θv + I) + Θv

]
x2 = λ

[
αDM (Θ−1

w Θv + I) + Θv

]
x2,

which in turn tells us that[
αM(Θ−1

w Θv+I)1/2+Θv(Θ
−1
w Θv+I)−1/2

]
x3 = λ

[
αDM (Θ−1

w Θv+I)1/2+Θv(Θ
−1
w Θv+I)−1/2

]
x3,

where x3 = (Θ−1
w Θv+I)1/2x2 6= 0. Premultiplying both sides of the equation by (Θ−1

w Θv+I)1/2

then gives that[
α(Θ−1

w Θv+I)1/2M(Θ−1
w Θv+I)1/2 +Θv

]
x3 = λ

[
α(Θ−1

w Θv+I)1/2DM (Θ−1
w Θv+I)1/2 +Θv

]
x3,

and therefore that the eigenvalues may be described by the Rayleigh quotient

xT3

[
α(Θ−1

w Θv + I)1/2M(Θ−1
w Θv + I)1/2 + Θv

]
x3

xT3

[
α(Θ−1

w Θv + I)1/2DM (Θ−1
w Θv + I)1/2 + Θv

]
x3

.

Now, as xT3 Θvx3 is a positive number, λ may be bounded within the range of the following

10



Rayleigh quotient:

λ ∈

min

min
x3

xT3

[
α(Θ−1

w Θv + I)1/2M(Θ−1
w Θv + I)1/2

]
x3

xT3

[
α(Θ−1

w Θv + I)1/2DM (Θ−1
w Θv + I)1/2

]
x3

, 1

 ,

max

max
x3

xT3

[
α(Θ−1

w Θv + I)1/2M(Θ−1
w Θv + I)1/2

]
x3

xT3

[
α(Θ−1

w Θv + I)1/2DM (Θ−1
w Θv + I)1/2

]
x3

, 1




=

[
min

{
min
x4

xT4 Mx4

xT4 DMx4
, 1

}
,max

{
max
x4

xT4 Mx4

xT4 DMx4
, 1

}]
⊂
[

min{λmin(D−1
M M), 1},max{λmax(D−1

M M), 1}
]
,

where in the above derivation x4 = (Θ−1
w Θv + I)1/2x3 6= 0. This gives the stated result. �

Remark 4.1. Theorem 4.2 is a positive result, due to diagonal preconditioning of a mass
matrix giving tight eigenvalue bounds for a range of nodal basis functions [50]. We have now
obtained a cheap approximation of the (1, 1)-block of our saddle-point system, with eigenvalues of
the preconditioned matrix provably contained within a tight interval. We emphasize the fact that
the interval boundaries, and thus the region of interest where the eigenvalues lie, is independent of
all system parameters, such as penalization-, regularization-, mesh-, and time-step parameters.

4.2. Approximation of Schur Complement. The Schur complement of the Newton
system (3.6) under consideration is given by

S = L(M + Θy)−1LT +
[
−M M

] [ αM + Θw −αM
−αM αM + Θv

]−1 [ −M
M

]
.

For the matrix inverse in the above expression, we again consider the matrix αM̃ +Θz as a block
matrix of the form (4.1), with A = αM + Θw, B1 = B2 = B = −αM , C = αM + Θv. Using
(4.3) then gives that

[
−M M

] [ A B
B C

]−1 [ −M
M

]
=
[
−M M

] [ (B − CB−1A)−1CB−1M + (B − CB−1A)−1M
−B−1M −B−1A(B − CB−1A)−1CB−1M −B−1A(B − CB−1A)−1M

]
= −M

[
B−1 + (B−1A+ I)(B − CB−1A)−1(CB−1 + I)

]
M,

whereupon substituting in the relevant A, B, C gives that this expression can be written as
follows:

1

α
M −

(
− 1

α
A+M

)(
−αM +

1

α
DM−1A

)−1(
− 1

α
D +M

)
=

1

α
M +

(
1

α
Θw

)(
αM −

(
αM + Θw + Θv +

1

α
ΘvM

−1Θw

))−1(
1

α
Θv

)
=

1

α
M − 1

α2

(
Θ−1
w + Θ−1

v +
1

α
M−1

)−1

.
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Therefore, S may be written as

S = L(M + Θy)−1LT +
1

α
M − 1

α2

(
Θ−1
w + Θ−1

v +
1

α
M−1

)−1

. (4.7)

It can be shown that S consists of a sum of two symmetric positive semidefinite matrices. The
matrix L(M +Θy)−1LT clearly satisfies this property due to the positive definiteness of M +Θy,

and 1
αM −

1
α2

(
Θ−1
w + Θ−1

v + 1
αM

−1
)−1

is in fact positive definite by the following argument:

1

α
M − 1

α2

(
1

α
M−1 + Θ−1

w + Θ−1
v

)−1

� 0 ⇔ 1

α2

(
1

α
M−1 + Θ−1

w + Θ−1
v

)−1

≺ 1

α
M

⇔ α2

(
1

α
M−1 + Θ−1

w + Θ−1
v

)
� αM−1

⇔ M−1 + αΘ−1
w + αΘ−1

v �M−1.

Based on this observation we apply a “matching strategy”, previously derived in [33, 34] for sim-
pler PDE-constrained optimization problems, which relies on a Schur complement being written
in this form. In more detail, we approximate the Schur complement S by

Ŝ =
(
L+ M̂

)
(M + Θy)−1

(
L+ M̂

)T
, (4.8)

where M̂ is chosen such that the ‘outer’ term of Ŝ in (4.8) approximates the second and third
terms of S in (4.7), that is

M̂(M + Θy)−1M̂T ≈ 1

α
M − 1

α2

(
Θ−1
w + Θ−1

v +
1

α
M−1

)−1

.

This may be achieved if

M̂ ≈

[
1

α
M − 1

α2

(
Θ−1
w + Θ−1

v +
1

α
M−1

)−1
]1/2

(M + Θy)1/2.

A natural choice, which may be readily worked with on a computer, therefore involves replacing
mass matrices with their diagonals, making the square roots of matrices practical to work with,
and therefore setting

M̂ =

[
1

α
DM −

1

α2

(
Θ−1
w + Θ−1

v +
1

α
D−1
M

)−1
]1/2

(DM + Θy)1/2.

We therefore have a Schur complement approximation Ŝ which may be approximately inverted by
applying a multigrid method to the matrix L+ M̂ and its transpose, along with a matrix–vector
multiplication for M + Θy.

Below we present a result concerning the lower bounds of the eigenvalues of the precondi-
tioned Schur complement.

Theorem 4.3. In the case of lumped (diagonal) mass matrices, the eigenvalues of the
preconditioned Schur complement all satisfy:

λ(Ŝ−1S) ≥ 1

2
.
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Proof. Bounds for the eigenvalues of Ŝ−1S are determined by the extrema of the Rayleigh
quotient

R :=
vTSv

vT Ŝv
=

χTχ+ ωTω

(χ+ γ)T (χ+ γ)
,

where

χ = (M + Θy)−1/2LTv,

ω =

[
1

α
M − 1

α2

(
Θ−1
w + Θ−1

v +
1

α
M−1

)−1
]1/2

v,

γ = (M + Θy)−1/2(DM + Θy)1/2

[
1

α
DM −

1

α2

(
Θ−1
w + Θ−1

v +
1

α
D−1
M

)−1
]1/2

v.

Following the argument used in [32, Lemma 2], we may bound R as follows:

R =

χTχ+
ωTω

γTγ
γTγ

(χ+ γ)T (χ+ γ)
≥ min

{
ωTω

γTγ
, 1

}
· χTχ+ γTγ

(χ+ γ)T (χ+ γ)
≥ 1

2
·min

{
ωTω

γTγ
, 1

}
, (4.9)

using the argument

1

2
(χ− γ)T (χ− γ) ≥ 0 ⇔ χTχ+ γTγ ≥ 1

2
(χ+ γ)T (χ+ γ)

⇔ χTχ+ γTγ

(χ+ γ)T (χ+ γ)
≥ 1

2
.

We now turn our attention to the product ωTω
γTγ

. Straightforward calculation tells us that

ωTω

γTγ
=

vT [M − (Θ +M−1)−1]v

vT [DM − (Θ +D−1
M )−1]v︸ ︷︷ ︸

=:RΘ

·w
T (DM + Θy)−1w

wT (M + Θy)−1w
,

where Θ := αΘ−1
w + αΘ−1

v and w := (DM + Θy)1/2
[

1
αDM − 1

α2

(
Θ−1
w + Θ−1

v + 1
αD
−1
M

)−1 ]1/2
v.

It may be observed that

wT (DM + Θy)−1w

wT (M + Θy)−1w
≥ λmin

(
(DM + Θy)−1(M + Θy)

)
≥ min

{
λmin(D−1

M M), 1
}
,

and hence that

ωTω

γTγ
≥ RΘ ·min

{
λmin(D−1

M M), 1
}
. (4.10)

Finally, we observe that RΘ = 1 for lumped mass matrices, as DM = M . Inserting (4.10)
into (4.9) then gives the required result. �

Remark 4.2. For consistent mass matrices, the working above still holds, except RΘ and
λmin(D−1

M M) are not equal to 1. Therefore, the bound reads

λ(Ŝ−1S) ≥ 1

2
·min

{
min RΘ ·min

{
λmin(D−1

M M), 1
}
, 1
}
,
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and depends on the matrix [DM − (Θ + D−1
M )−1]−1[M − (Θ + M−1)−1], which does not have

uniformly bounded eigenvalues. This is, however, a weak bound, and in practice we find that the
(smallest and largest) eigenvalues of the preconditioned Schur complement are moderate in size.

Furthermore, in numerical experiments, we find the vast majority of the eigenvalues of Ŝ−1S
to be clustered in the interval

[
1
2 , 1
]
, particularly as the Interior Point method approaches con-

vergence, for the following reasons. In [35, Theorem 4.1], it is shown that

λ

[(L+
1√
α
M

)
M−1

(
L+

1√
α
M

)T]−1 [
LM−1LT +

1

α
M

] ∈ [1

2
, 1

]
, (4.11)

for any (positive) value of α, and any mesh-size, provided L+LT is positive semidefinite, which
is the case for Poisson and convection–diffusion problems for instance. For the Schur comple-
ment (4.7) and Schur complement approximation (4.8), as the Interior Point method approaches
convergence, two cases can arise: (i) some entries of Θ−1

w + Θ−1
v can approach zero, where-

upon substituting these values into (4.7) and (4.8) gives that S and Ŝ are both approximately

L(M+Θ−1
y )−1LT , so the eigenvalues of Ŝ−1S should be roughly 1; (ii) some entries of Θ−1

w +Θ−1
v

approach infinity (with many entries of Θy correspondingly approaching zero), so S is approx-

imately LM−1LT + 1
αM , with Ŝ an approximation of (L + 1√

α
M)M−1(L + 1√

α
M)T , giving

clustered eigenvalues as predicted by (4.11). The numerical evidence of the described behavior,
for consistent mass matrices, is shown in Figure 4.1.
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(a) Poisson eigenvalues
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(b) Convection–diffusion eigenvalues

Figure 4.1: Eigenvalue distribution of Ŝ−1S at Interior Point iterations (1, 4, 7, 10, 13) for test
problem with Poisson’s equation (left), and at Interior Point iterations (1, 4, 7, 10) for test problem
with convection–diffusion equation (right) (with mesh-size h = 2−4).

We note that the (1, 1)-block and Schur complement approximations that we have derived are
both symmetric positive definite, so we may apply the minres algorithm with a block diagonal
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preconditioner of the form

PD =


M + Θy 0 0 0

0 αDM + Θw −αDM 0
0 −αDM αDM + Θv 0

0 0 0 Ŝ

 ,
with Ŝ defined as above.

It is also possible to exploit the often faster convergence achieved by block triangular pre-
conditioners within gmres, and utilize the block triangular preconditioner:

PT =


M + Θy 0 0 0

0 αDM + Θw −αDM 0
0 −αDM αDM + Θv 0

L −M M −Ŝ

 .
4.3. Preconditioner for Partial Observations. In practice, the quantity of importance

from a practical point-of-view is the difference between the state variable and the desired state
on a certain region of the domain, i.e. Ω1 ⊂ Ω, in which case one would instead consider the
term 1

2‖y − yd‖2L2(Ω1) within the cost functional (1.1). We now briefly outline how to tackle the

resulting matrix systems. One may follow developments in [2, 19] to obtain the preconditioner:

P−1
Π =

 0 L−1M̄(αM̃ + Θz)
−1 L−1

0 (αM̃ + Θz)
−1 0

−Ŝ−1
Π Ŝ−1

Π (M + Θy)L−1M̄(αM̃ + Θz)
−1 Ŝ−1

Π (M + Θy)L−1

 . (4.12)

The matrix ŜΠ is designed to approximate the Schur complement SΠ of the permuted matrix
system, that is the Schur complement ofM + Θy 0 LT

0 αM̃ + Θz −M̄T

L −M̄ 0

0 0 I
0 I 0
I 0 0

 ,
which is given by

ŜΠ ≈ SΠ = LT + (M + Θy)L−1M̄(αM̃ + Θz)
−1M̄T .

Applying the preconditioner is in fact more straightforward than it currently appears. To

compute a vector v = P−1
Π w, where v :=

[
vT1 , vT2 , vT3

]T
, w :=

[
wT

1 , wT
2 , wT

3

]T
, we first

observe from the second block of P−1
Π that

(αM̃ + Θz)
−1w2 = v2.

The first equation derived from (4.12) then gives that

L−1M̄(αM̃ + Θz)
−1w2 + L−1w3 = v1

⇒ L−1(M̄v2 + w3) = v1,

and applying this within the last equation in (4.12) that

−Ŝ−1
Π w1 + Ŝ−1

Π (M + Θy)L−1M̄(αM̃ + Θz)
−1w2 + Ŝ−1

Π (M + Θy)L−1w3 = v3

⇒ −Ŝ−1
Π w1 + Ŝ−1

Π (M + Θy)
(
L−1M̄(αM̃ + Θz)

−1w2 + L−1w3

)
= v3

⇒ Ŝ−1
Π

(
(M + Θy)v1 −w1

)
= v3.
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Thus we need to approximately solve with ŜΠ, L, and αM̃ + Θz, which are all invertible
matrices, to apply the preconditioner. We now briefly discuss our choice of ŜΠ. We suggest a
matching strategy as above, to write

SΠ = LT + (M + Θy)L−1M̄(αM̃ + Θz)
−1M̄T ≈

(
LT +Ml

)
L−1

(
L+Mr

)
= ŜΠ,

where

MlL
−1Mr ≈ (M + Θy)L−1M̄(αM̃ + Θz)

−1M̄T .

Such an approximation may be achieved if, for example,

Ml = M + Θy, Mr ≈ M̄(αM̃ + Θz)
−1M̄T .

We take a matrix based on the approximation M̂ from the previous section to approximate Mr.

4.4. Time-Dependent Problems. We may also apply our methodology to design precon-
ditioners for time-dependent problems. For instance, consider minimizing the cost functional:

F(y,u) =
1

2
‖y − yd‖2L2(Ω×(0,T)) +

α

2
‖u‖2L2(Ω×(0,T)) + β‖u‖L1(Ω×(0,T)),

subject to the PDE yt −∆y = u + f on the space-time interval Ω × (0, T ), along with suitable
boundary and initial conditions.

With the backward Euler method used to handle the time derivative, the matrix within the
system to be solved is of the form

A =

 τMc + Θy 0 LT

0 ατM̃c + Θz −τM̄T

L −τM̄ 0

 , (4.13)

with τ the time-step used.
The matrix Mc is a block diagonal matrix consisting of multiples of mass matrices on

each block diagonal corresponding to each time-step, depending on the quadrature rule used
to approximate the cost functional in the time domain. For example, if a trapezoidal rule is
used, then Mc = blkdiag( 1

2M,M, ...,M, 1
2M), and if a rectangle rule is used, then Mc =M :=

blkdiag(M,M, ...,M,M). The matrix L is a block-lower triangular matrix representing the “all-
at-once” Euler discretization, with M + τL appearing on each block diagonal and −M on each
block sub-diagonal. Further,

M̃c =

[
Mc −Mc

−Mc Mc

]
, M̄ =

[
M −M

]
.

We now consider saddle-point preconditioners for the matrix (4.13). We may apply a block
triangular preconditioner of the form

PT =


τMc + Θy 0 0 0

0 ατDMc
+ Θw −ατDMc

0
0 −ατDMc

ατDMc
+ Θv 0

L −τM τM −Ŝ

 ,
or an analogous block diagonal preconditioner, where DMc := diag(Mc), the matrix τMc + Θy

can be approximately inverted by applying Chebyshev semi-iteration to the matrices arising at
each time-step, and Ŝ is an approximation of the Schur complement:

S = L(τMc + Θy)−1LT +
τ

α
MM−1

c M−
1

α2
MM−1

c

(
Θ−1
w + Θ−1

v +
1

ατ
M−1

c

)
M−1

c M.
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(a) Control u, β = 5 × 10−2
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Figure 5.1: Poisson problem: computed solutions for the control u, for two values of β.

We select the approximation

Ŝ =
(
L+ M̂

)
(τMc + Θy)−1

(
L+ M̂

)T
,

using the same reasoning as in Section 4.2, where

M̂ =

[
τ

α
D2
MD−1

Mc
− 1

α2
D2
MD−2

Mc

(
Θ−1
w + Θ−1

v +
1

ατ
D−1
Mc

)]1/2

(τDMc + Θy)1/2,

with DM := diag(M). Within the numerical experiments of the forthcoming section, we apply
the preconditioning strategy that arises from the working above.

5. Numerical Experiments. We now implement the Interior Point algorithm described in
the Appendix, using matlab R© R2017b on an Intel R© Xeon R© computer with a 2.40GHz processor,
and 250GB of RAM. Within the algorithm we employ the preconditioned minres [31] and gmres
[39] methods with the following preconditioners:

• ipm-gmres-PT : gmres and block triangular preconditioner PT ,
• ipm-minres-PD : minres with block diagonal preconditioner PD,
• ipm-gmres-PΠ : gmres and non-symmetric preconditioner PΠ.

Regarding the parameters listed in the Appendix, we use α0 = 0.995 and εp = εd = εc = 10−6.
For the barrier reduction parameter σ, we consider for each class of problems tested a value
that ensures a smooth decrease in the complementarity measure ξkc in (3.12), that is to say
‖ξkc ‖ = O(µk). This way, the number of nonlinear (Interior Point) iterations typically depends
only on σ. We solve the linear matrix systems to a (relative unpreconditioned residual norm)
tolerance of 10−10.

We apply the ifiss software package [9, 10] to build the relevant finite element matrices for
the 2D examples shown in this section, and use the deal.II library [1] in the 3D case. In each
case we utilize Q1 finite elements for the state, control, and adjoint variables.

We apply 20 steps of Chebyshev semi-iteration to approximate the inverse of mass matri-
ces, as well as mass matrices plus positive diagonal matrices, whenever they arise within the
preconditioners. Applying the approximate inverses of the Schur complement approximations
derived for each of our preconditioners requires solving for matrices of the form L + M̂ and its
transpose. For this we typically utilize 3 V-cycles of the algebraic multigrid routine hsl-mi20
[5], with a Gauss–Seidel coarse solver, and apply 5 steps of pre- and post-smoothing. For tests
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β = 10−1 β = 10−2 β = 10−3

sparsity ‖u‖1 sparsity ‖u‖1 sparsity ‖u‖1
α = 10−2 99% 3 15% 7× 102 12% 1× 103

α = 10−4 100% 2 38% 9× 102 12% 1× 103

α = 10−6 100% 2 39% 9× 102 12% 1× 103

Table 5.1: Poisson problem: sparsity features of the computed optimal control, for a range of α
and β, and mesh-size h = 2−5.

on the simpler Poisson problem in Section 5.1 we use 2 V-cycles and 3 steps of pre- and post-
smoothing. For time-dependent problems, we also use Chebyshev semi-iteration and algebraic
multigrid within the preconditioner, but are required to apply the methods to matrices arising
from each time-step. In the forthcoming tables of results, we report the average number of linear
(minres or gmres) iterations av-li, and the average CPU time av-cpu. The overall number
of nonlinear (Interior Point) iterations nli is specified in the table captions. We believe these
demonstrate the effectiveness of our proposed Interior Point and preconditioning approaches,
as well as the robustness of the overall method, for a range of PDEs, matrix dimensions, and
parameters involved in the problem set-up.

ipm-gmres-PT ipm-minres-PD
h = 2−l log10α av-li av-cpu av-li av-cpu

6 −2 9.4 0.1 20.9 0.3
−4 7.9 0.1 16.1 0.2
−6 7.9 0.1 15.6 0.2

7 −2 8.9 0.4 19.8 0.9
−4 8.3 0.4 16.8 0.8
−6 8.3 0.4 16.3 0.8

8 −2 9.1 1.6 19.8 3.5
−4 8.7 1.5 17.7 3.3
−6 8.8 1.6 17.3 3.2

9 −2 9.6 8.0 20.6 16.7
−4 9.3 7.7 18.7 15.5
−6 9.3 7.6 18.0 14.6

Table 5.2: Poisson problem: average Krylov iterations and CPU times for problem with control
constraints, for a range of h and α, β = 10−2, σ = 0.25, nli = 12.

5.1. A Poisson Problem. We first examine an optimization problem involving Poisson’s
equation, investigating the behavior of the IPM and our proposed preconditioners.

Two-Dimensional Case. We focus initially on the performance of our solvers for the two-
dimensional Poisson problem, employing both ipm-gmres-PT and ipm-minres-PD methods, as
well as considering some sparsity issues. We set the box constraints for the control to be ua = −2,
ub = 1.5, and the desired state yd = sin(πx1) sin(πx2), with xi denoting the ith spatial variable.
Figure 5.1 displays the computed optimal controls for this problem for a particular set-up on the
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domain Ω = (0, 1)2, for both β = 5 × 10−2 and β = 5 × 10−3 as well as α = 10−2. Table 5.1
reports the level of sparsity in the computed solution, as well as its `1 norm, when varying the
regularization parameters α and β. The value of sparsity in the table is computed by measuring
the percentage of components of u which are below a certain threshold (10−2 in our case), see
e.g. [51]. We observe that our algorithm reliably computes sparse controls, and as expected the
sparsity of the solution increases when β is correspondingly increased.

In Table 5.2 we compare the performance of the preconditioners PT and PD within the IPM,
varying the spatial mesh-size h = 2−i, i = 6, 7, 8, 9, corresponding to n = 4225, 16641, 66049,
263169 degrees of freedom, as well as the regularization parameter α, while fixing the value
β = 10−2 (Table 5.1 indicates that this value of β gives rise to a computationally interesting
case). We set σ = 0.2, and take 9 Interior Point iterations with a final value µk = 5 × 10−7.
Figure 5.2 provides a representation of the typical convergence behavior for the feasibilities ξkp , ξ

k
d

and complementarity ξkc , together with the decrease of µk with this value of σ. The reported
results demonstrate good robustness of both preconditioners with respect to both h and α in
terms of linear iterations and CPU time, with ipm-gmres-PT outperforming ipm-minres-PD
in each measure. Despite the fact that the value of av-li is constant in both implementations,
we observe that when using ipm-minres-PD the number of preconditioned minres iterations
slightly increases as µk → 0, as many entries of Θz tend to zero. On the contrary, the number
of preconditioned gmres iterations hardly varies with k.

0 2 4 6 8 10 12
10−15

10−10

10−5

100

105

k

µk

ξkp
ξkd
ξkc

Figure 5.2: Typical convergence history of the relevant quantities µk, ξkp , ξ
k
d , ξ

k
c .

We also investigate the performance of our IPMs on purely sparse problems. We test the
solver for very small values of α, and find that both the IPM and the preconditioner technique
work well. In fact, the number of nonlinear IP steps nli does not vary with α, and the precondi-
tioner is still robust with respect to nearly zero values of α. For the discretization level l = 7 we
report in Figure 5.3 the average number of linear iterations av-li (of both gmres and minres)
versus α with values α = 10−2i, i = 1, 2, . . . , 8.

As a final validation of the general framework outlined, we report in Table 5.3 results obtained
when imposing both control and state constraints within the Poisson setting described above.
In particular, we set ya = −0.1, yb = 0.8, ua = −1, ub = 15 and test the most promising
implementation of the IPM, that is the ipm-gmres-PT routine, while varying h and α. The
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Figure 5.3: Poisson problem: average Krylov iterations for a range of α, with h = 2−7, β = 10−2,
σ = 0.25 (nli = 12).

reported values of av-li confirm the roboustness of the preconditioning strategy proposed.

ipm-gmres-PT
h = 2−l log10α av-li av-cpu

6 −2 15.5 0.2
−4 12.3 0.2
−6 10.6 0.1

7 −2 14.6 0.7
−4 12.3 0.6
−6 10.4 0.5

8 −2 14.4 2.5
−4 12.2 2.2
−6 106 1.9

9 −2 13.8 10.9
−4 11.6 9.4
−6 10.7 8.7

ipm-gmres-PΠ

n log10α av-li av-cpu

729 −2 11.9 0.1
−4 13.1 0.1
−6 13.1 0.1

4913 −2 11.8 0.3
−4 12.1 0.3
−6 12.1 0.3

35937 −2 11.9 2.3
−4 11.9 2.3
−6 11.9 2.3

274625 −2 13.1 21.1
−4 13.1 21.5
−6 13.1 21.3

Table 5.3: (Left) Poisson problem: average Krylov iterations and CPU times for problem with
both control and state constraints, for a range of h and α, β = 10−2, σ = 0.3 (nli = 17).
(Right) Three-dimensional Poisson problem with partial observations: average Krylov iterations
and CPU times for problem, for a range of numbers of degrees of freedom in each variable n and
α, β = 10−3, σ = 0.25 (nli = 12).

Three-Dimensional Case with Partial Observations. We also wish to present results
for the case of partial observations, paired with a three-dimensional example involving Poisson’s
equation on Ω = (0, 1)3. The desired state is illustrated in Figure 5.4. We use the preconditioner
PΠ, as the observation domain Ω1 is given by 0.2 < x1 < 0.4, 0.4 < x2 < 0.9, 0 ≤ x3 ≤ 1, and
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therefore the (1, 1)-block of the matrix (3.6) can be singular. The results for the computation
with α = 10−5, β = 10−3, and without additional box constraints, are also presented in Figure
5.4, with the discretization involving 35937 degrees of freedom. To illustrate the performance

(a) Computed control u (b) Computed state y (c) Desired state yd

Figure 5.4: Three-dimensional Poisson problem with partial observations: computed solutions
for the control, state, and desired state.

of the proposed preconditioner PΠ with respect to changes in the parameter regimes, in Table
5.3 we provide results for a computation involving sparsity constraints applied to the control, as
well as partial observation of the state, and set ua = −2, ub = 1.5. Again, the results are very
promising and a large degree of robustness is achieved.

5.2. A Convection–Diffusion Problem. We next consider the optimal control of the
convection–diffusion equation given by −ε∆y + ~w · ∇y = u on the domain Ω = (0, 1)2, with the

wind vector ~w given by ~w =
[
2x2(1− x2

1),−2x1(1− x2
2)
]T

, and the bounds on the control given by
ua = −2 and ub = 1.5. The desired state is here defined by yd = exp(−64(x1−0.5)2+(x2−0.5)2).
Figure 5.5 displays the computed optimal controls for this problem for two values of β as well as
α = 10−2.

The discretization is again performed using Q1 finite elements, while also employing the
Streamline Upwind Petrov–Galerkin (SUPG) [6] upwinding scheme as implemented in ifiss.
The results of our scheme are given in Table 5.4, which again exhibit robustness with respect to
h and α, while also performing well for both values of ε tested.

We now provide a numerical insight on the comparison between the proposed IPM approach
and the commonly used semismooth Newton approach [22]. We therefore compare ipm-gmres-
PT and the implementation ssn-gmres-ipf of the global semismooth Newton method proposed
for PDE-constrained optimization problems with sparsity-promoting terms in [36]. When using
the ssn-gmres-ipf approach, global convergence is attained using a nonsmooth line-search strat-
egy and the linear systems arising in the linear algebra phase are solved by using preconditioned
gmres. We consider the 2× 2 block formulation and an indefinite preconditioner available in a
factorized form [36, 37]. Since the semismooth approach requires a diagonal mass matrix in the
discretization of the complementarity conditions, in the experiments with ssn-gmres-ipf we use
a lumped mass matrix. Table 5.5 collects results concerning the nonlinear behavior of the two
methods: the number of nonlinear iterations (nli) and the total CPU time (tcpu).

We again highlight that the number of nonlinear Interior Point iterations does not vary with
α. In fact, the mildly aggressive choice of barrier reduction factor σ yields a low number of non-
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Figure 5.5: Convection–diffusion problem: computed solutions for the control u, for two values
of β.

ε = 10−1 ε = 10−2

ipm-gmres-PT ipm-minres-PD ipm-gmres-PT ipm-minres-PD
h = 2−l log10α av-li av-cpu av-li av-cpu av-li av-cpu av-li av-cpu

6 −2 9.4 0.2 21.1 0.5 11.2 0.5 25.8 1.1
−4 8.3 0.2 18.2 0.4 10.5 0.5 23.2 1.0
−6 8.2 0.2 17.8 0.4 10.5 0.5 23.5 1.0

7 −2 8.2 0.8 18.0 1.7 9.2 1.6 20.6 3.4
−4 7.5 0.7 16.3 1.5 8.7 1.5 19.0 3.1
−6 7.5 0.7 16.1 1.5 8.7 1.5 19.4 3.1

8 −2 7.5 2.7 16.3 5.6 8.0 3.8 17.1 7.9
−4 7.0 2.5 15.1 5.2 7.7 3.7 16.4 7.5
−6 7.0 2.5 14.8 5.1 7.7 3.7 16.4 7.5

9 −2 7.0 11.2 14.9 23.0 7.3 13.1 15.1 26.3
−4 6.7 11.0 14.2 22.4 6.8 12.5 14.4 25.5
−6 6.7 11.0 13.9 21.7 6.8 12.5 14.5 25.5

Table 5.4: Convection–diffusion problem: average Krylov iterations and CPU times for problem
with control constraints, for a range of h and α, β = 10−3, σ = 0.25 (nli = 11) with ε = 10−1,
and σ = 0.4 (nli = 16) with ε = 10−2.

linear iterations, even for limiting values of α. By contrast, ssn-gmres-ipf struggles as α→ 0.
Furthermore, overall the Interior Point strategy outperforms the semismooth method in terms
of total CPU time.

5.3. A Heat Equation Problem. To demonstrate the applicability of our methodology
to time-dependent problems, we now perform experiments on an optimization problem with the
heat equation acting as a constraint. We utilize the implicit Euler scheme on a time interval
up to T = 1, for varying values of time-step τ , and set a time-independent desired state to
be yd = sin(πx1) sin(πx2). We consider a control problem with full observations, with Table
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ipm-gmres-PT ssn-gmres-ipf

h = 2−l log10α nli tcpu nli tcpu

6 −2 11 2.8 5 4.2
−4 11 2.5 19 27.9
−6 11 2.4 > 100
−8 11 2.4 > 100

7 −2 11 9.4 5 14.0
−4 11 8.7 18 101.9
−6 11 8.7 > 100
−8 11 9.1 > 100

8 −2 11 36.6 5 43.4
−4 11 34.4 20 345.3
−6 11 33.9 > 100
−8 11 33.8 > 100

9 −2 11 155.9 5 147.3
−4 11 149.8 21 1265.4
−6 11 148.9 > 100
−8 11 149.6 > 100

Table 5.5: Convection–diffusion problem: comparison between ipm-gmres-PT and ssn-gmres-
ipf in terms of nonlinear iterations and total CPU times for problem with control constraints,
for a range of h and α, β = 10−3, ε = 10−1.

5.6 illustrating the performance of the Interior Point method and preconditioner PT for varying
mesh-sizes and values of α, with fixed β = 10−2. Considerable robustness is again achieved, in
particular with respect to changes in the time-step.

ipm-gmres-PT
τ = 0.04 τ = 0.02 τ = 0.01

h = 2−l log10α av-li av-cpu av-li av-cpu av-li av-cpu

4 −2 13.9 0.6 13.1 1.0 13.1 2.2
−4 13.3 0.5 12.2 1.0 12.3 2.0
−6 12.8 0.5 12.0 1.0 12.0 2.0

5 −2 14.6 1.6 14.0 3.1 14.7 6.6
−4 13.9 1.5 13.3 2.9 13.3 5.8
−6 13.6 1.5 12.8 2.8 13.0 5.7

6 −2 15.5 5.9 14.6 11.4 15.4 23.7
−4 14.8 5.8 14.0 10.6 14.0 21.7
−6 14.6 5.5 13.8 10.6 13.9 21.5

Table 5.6: Heat equation problem: average Krylov iterations and CPU times for problem with
control constraints, for a range of h, α, and τ , β = 10−2, σ = 0.25 (nli = 13).
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Remark 5.1. We emphasize that the robustness with respect to α, in terms of number
of nonlinear Interior Point iterations, is a result of the suitable choices made for the barrier
reduction factor σ. In particular, in all the test cases discussed, the choice of σ is mildly aggressive
(from 0.2 to 0.4 in the most difficult cases), yielding a low number of nonlinear iterations, even
for limiting values of α. By contrast, a semismooth Newton approach globalized with a line-search
strategy may perform poorly as α→ 0, as observed above.

6. Conclusions. We have presented a new Interior Point method for PDE-constrained
optimization problems that include additional box constraints on the control variable, as well as
possibly the state variable, and a sparsity-promoting L1-norm term for the control within the cost
functional. We incorporated a splitting of the control into positive and negative parts, as well as a
suitable nodal quadrature rule, to linearize the L1 norm, and considered preconditioned iterative
solvers for the Newton systems arising at each Interior Point iteration. Through theoretical
justification for our approximations of the (1, 1)-block and Schur complement of the Newton
systems, as well as numerical experiments, we have demonstrated the effectiveness and robustness
of our approach, which may be applied within symmetric and non-symmetric Krylov methods, for
a range of steady and time-dependent PDE-constrained optimization problems. As an outlook,
the implementation of our algorithms within faster (compiled) code would allow the applicability
of our robust preconditioning schemes to even larger matrix systems.

Appendix. Interior Point Algorithm for Quadratic Programming. In the Algorithm
below, we present the structure of the Interior Point method that we apply within our numerical
experiments, following the Interior Point path-following scheme described in [16]. It is clear that
the main computational effort arises from solving the Newton system (3.6) at each iteration.
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