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Abstract. Problems arising in Earth’s mantle convection involve finding the solution to Stokes systems

with large viscosity contrasts. These systems contain localized features which, even with adaptive mesh

refinement, result in linear systems that can be on the order of 109 or more unknowns. One common
approach for preconditioning to the velocity block of these systems is to apply an Algebraic Multigrid

(AMG) v-cycle (as is done in the ASPECT software, for example), however, with AMG, robustness can be

difficult with respect to problem size and number of parallel processes. Additionally, we see an increase in
iteration counts with adaptive refinement when using AMG. In contrast, the Geometric Multigrid (GMG)

method, by using information about the geometry of the problem, should offer a more robust option.

Here we present a matrix-free GMG v-cycle which works on adaptively refined, distributed meshes, and
we will compare it against the current AMG preconditioner (Trilinos ML) used in the ASPECT[3] software.

We will demonstrate the robustness of GMG with respect to problem size and show scaling up to 114688
cores and 217 billion unknowns. All computations are run using the open source, finite element library

deal.II.[1]

1. Introduction

The major bottleneck of computations of processes in Earth’s mantle convection is the solution of Stokes
systems to solve for velocity and pressure. These systems often have large variation in their coefficients, as
well as highly localized features requiring adaptive mesh refinement to yield high enough resolution while
still being computationally feasible to solve. Even with adaptive refinement, there is a desire to solve on
meshes containing well over a billion unknowns, which many current open-source codes are not equipped to
handle.

When open-source codes like the mantle convection code ASPECT[3] were first developed, the state-of-the
art solvers often relied on algebraic multigrid (AMG) methods when preconditioning on the velocity space
of the Stokes finite element discretizations (see, e.g., the works of Geenen et al.[11] and Kronbichler et
al.[17]). While these algebraic methods can be very powerful for smaller problems, their performance tends
to deteriorate with highly adaptive meshes and when distributing the problem over a large number of cores.

Key words and phrases. geometric multigrid, matrix-free finite elements, parallel computing, adaptive mesh refinement,

Stokes equations.
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2 MATRIX-FREE GEOMETRIC MULTIGRID FOR A STOKES PROBLEM

In addition, these methods require the storing of matrices which greatly limits the size of the problem which
can be solved, and can provide a major computational bottleneck as the access of matrix entries from main
memory starts to become slower than the actual computation with those entries.[19]

In response to these limitations, much of the research into solving the Stokes systems is now focused on
using either geometric multigrid (GMG) or a hybrid multigrid (HMG) (where AMG is used on coarse meshes
of the GMG method) for preconditioning on the velocity space. These methods have the advantage that, by
using geometric information about the problem to construct the multigrid level hierarchy, there should be less
deterioration with highly adaptive meshes. Also, using these geometric methods allow for the implementation
of matrix-free operator evaluation which not only reduces the memory required for an application (allowing
one to solve larger problems), but also can lead to faster matrix-vector products, particularly for higher order
finite elements.[18] These methods have lead to solutions of systems on the order of 1013 unknowns[13] (low
order, globally refined tetrahedral mesh) and 1011 unknowns[21] (higher order, adaptively refined hexahedral
mesh).

Here we will present a comparison of a Stokes application using the matrix-free GMG method presented
in the work of Clevenger et al.[8] and implemented by the authors into ASPECT with the current AMG-based
method described in the work of Kronbichler et al.[17] and Heister et al.[14] (with Trilinos ML AMG) widely
used by the ASPECT community. We will demonstrate the advantages of the geometric method over the
algebraic method, as well as show weak and strong scalability of the geometric algorithm on the sinker
benchmark used in the work of May et al.[20] and Rudi et al..[22]

2. Linear Solver for the Stokes Equations

We will consider the Stokes equations in the form

(1)
−∇ · (2µ ε(u)) +∇p = f in Ω

∇ · u = 0 in Ω
u = 0 in ∂Ω,

where u denotes the fluid’s velocity, p it’s pressure, and µ(x) it’s viscosity. Here we use the strain-rate tensor
ε (u) = 1

2

(
∇u + (∇u)T

)
as we will be considering non-constant viscosity. The right hand side f is a forcing

term that, inside ASPECT, typically comes from temperature variation, but for our purposes here, we will
only be considering Stokes with velocity and pressure variables and a manufactured right hand side. Finally
we are considering incompressible flow with homogeneous Dirichlet boundary conditions, but the developed
algorithms also apply to the more general case of ∇·u = g, as well as for no-normal-flux boundary constraints
∇u · n = 0.

2.1. Discretization. Following traditional finite element methods, and using the notation in the work of
Kronbichler et al.,[17] we seek coefficients uj and pj where, for finite element shape functions ϕu

j and ϕp
j ,

(2)
uh =

∑Nu

j=1 ujϕ
u
j

ph =
∑Np

j=1 pjϕ
p
j

such that the weak formulation

(3)
a(ϕu

i , uh) + b(ϕu
i , ph) = f(ϕu

i )
b(uh, ϕ

p
l ) = 0,

defined by

a(ϕu
i , uh) =

∫
Ω

2µ ε(ϕu
i ) : ε(uh) dx b(ϕu

i , ph) = −
∫

Ω

(∇ ·ϕu
i )ph dx f(ϕu

i ) =

∫
Ω

ϕu
i · f dx,
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holds for each 1 ≤ i ≤ Nu and 1 ≤ l ≤ Np where Nu and Np are the total number of degrees of freedom
for velocity and pressure respectively. We will choose the shape functions from the Taylor-Hood elements
[Qk+1]dim ×Qk, k ≥ 1, which are known to be stable for the system considered here.[10, 6]

Solving this system for coefficients U = {ui} and P = {pj} is then equivalent to solving the block linear
system

(4)

(
A BT

B 0

)(
U
P

)
=

(
F
0

)
where

Aij =

∫
Ω

2µ ε(ϕu
i ) : ε(ϕu

j ) dx Bij = −
∫

Ω

(∇ ·ϕu
j )ϕp

i dx Fj =

∫
Ω

ϕu
j · f dx.

2.2. Linear Solver. There are three common approaches used in the literature for solving (4) on large
scales: (i) a pressure corrected, Schur complement CG scheme, using multigrid as an approximation to the
velocity block,[13], (ii) a block-preconditioned Krylov method, also using multigrid on the velocity block,
and (iii) an all-at-once multigrid performed on the entire Stokes system, using Uzawa-type smoothers.[13, 4]
For method (ii), there are two main types:

(a) GMRES[20, 21] (or any Krylov method not requiring symmetry) with block-triangular preconditioner

(5) P =

(
A BT

0 −S

)
,

or
(b) MINRES[13] with block-diagonal preconditioner

(6) PD =

(
A 0
0 −S

)
where S = BA−1BT is the Schur complement.[9]

In the work of Gmeiner et al.,[13] a comparison is given for each method (using MINRES for (ii)), and
the all-at-once multigrid method (iii) was shown to give the fastest and most consistent convergence, as
well as the lowest memory overhead. However, there is no comparison that we are aware of for method
(ii) using the preconditioner P defined in (5), and both method have been used separately to demonstrate
impressive scaling results (see the work of Bauer et al.[4] for method (iii) and Rudi et al.[21] for method (ii)
with GMRES).

For the computations in this paper, we will choose method (ii), as this is the framework used in ASPECT.
For preconditioning, we choose P defined in (5), since, as illustrated by Table 1, this leads to roughly half
the solve time for a GMRES solve as compared to using PD. This is due to the fact that the block-triangular
preconditioner is roughly the same cost to apply as the block-diagonal preconditioner (only containing an
extra BT matrix-vector product), but leads to roughly half the total GMRES iterations.1

Now, for the preconditioner P , consider the following preconditioned system

(7)

(
A BT

B 0

)(
A BT

0 −S

)−1

=

(
A BT

B 0

)(
A−1 A−1BTS−1

0 −S−1

)
=

(
I 0

BA−1 I

)
.

This system has only 1 distinct eigenvalue λ = 1 and will converge in at most 2 GMRES iterations assuming
an exact preconditioner. Computing exact representations for A−1 and S−1 is highly impractical, therefore
we seek approximate Â−1 and Ŝ−1, respectively.

1It should be noted that the majority of the time PD is used with MINRES instead of GMRES. However, we do not expect

the MINRES to significantly outperform GMRES in runtimes.
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Preconditioner: P PD

iters Solve time Time/iter iters Solve time Time/iter
860K DoFs 26 0.671 0.026 54 1.294 0.020
1.8M DoFs 27 1.829 0.068 56 4.799 0.086
3.8M DoFs 28 5.320 0.190 55 10.457 0.190
7.7M DoFs 28 11.416 0.408 57 21.142 0.371

Table 1. Iterations required to reduce the residual by 106, time to solution (in seconds), and
average time per iteration of a GMRES solve for the Sinker benchmark defined in Section 3.2
(4 sinkers and a viscosity ratio of 104), on a series of adaptively refined meshes, and using

32 cores on a workstation . Â and Ŝ approximations are defined in Section 2.2. Here we test
the block-triangular preconditioner P against the block-diagonal preconditionerPD. Using
P results in roughly half the iterations and solve time compared to PD.

2.2.1. Choosing Â−1. Since A comes from a vector Laplacian equation, multigrid would appear to be a
logical choice given that these methods are widely known to have convergence independent of mesh size h
for elliptic boundary value problems.[5, 28]

Currently in ASPECT, Â−1 is approximated by 1 AMG V-cycle for each Krylov subspace iteration, however
the AMG method is not based on the matrix A in (4), but instead we consider the matrix Â defined as

(8) Âij =

dim∑
d=1

∫
Ω

2µ [ε(ϕu
i )]d,d :

[
ε(ϕu

j )
]
d,d

where [ε(ϕu
i )]d,d = [∇ϕu

i ]d,d is the dth diagonal entry of the gradient operator. The reasons for using this

partial coupling of velocity components are the following:

(i) AMG methods, which depend on the sparsity structure of the underlying matrix, tend to deteriorate
when coupling vector components in higher order computations,[11] and

(ii) the resulting matrix Â will have far fewer entries (1/3 the entries in 3D, see, e.g., Figure 1), and
therefore less storage requirements, faster AMG setup and faster application.

We will test this implementation of Â−1 using an AMG v-cycle against one using the GMG v-cycle
developed in the work of Clevenger et al.[8] For this geometric method, we consider a matrix-free v-cycle
based on a degree 4 Chebyshev smoother with one smoothing step per level. In contrast with the AMG
v-cycle, the level matrices of the GMG v-cycle are based on the fully coupled system A, not the partially
coupled system Â since, for the geometric method, there should be no deterioration when using a fully
coupled system (contrast to item (i) above), and, as we are using matrix-free operators where each matrix
entry is computed on-the-fly at the quadrature level, using the strain rate tensor only consists of adding the
off diagonal term in the correct place and dividing by 2; essentially, it is for free (contrast to item (ii) above).
From item (iii) above, this could give the GMG-based method an advantage over an AMG-based method
in terms of the effectiveness of the preconditioner, while not requiring any extra storage or computational
time.

2.2.2. Choosing Ŝ−1. A common choice for approximating S = BA−1BT is a weighted pressure mass matrix
Mp, where [Mp]i,j =

∫
Ω
µ−1ϕp

i , ϕ
p
j dx. [24, 9, 17] The reasons for this is that S and Mp are spectrally

equivalent for constant viscosity,[9] making M−1
p a good approximation to S−1, while M−1

p is far easier to

compute. The application of Ŝ−1 then is a simple CG solve with an ILU preconditioner (for matrix-based
AMG method) or a Chebyshev iteration (for matrix-free GMG method), converging in between 1-5 iterations.
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Figure 1. Sparsity pattern for the matrix (4) for full coupling of vector components (left)
and partial coupling (right). 3D Stokes with 402 degrees of freedom (375 velocity, 27 pres-
sure), ordered component-wise. A red pixel represents a non-zero matrix entry. We see that
for partial coupling we have approximately 3x fewer entries as with full coupling.

Compared with Â−1, it is not computationally significant.[17] Since the application of P now requires a CG
solve whose iteration count may change between applications, a flexible Krylov subspace method must be
used for the outer iteration. We will use the flexible variant of GMRES referred to as FGMRES. This
solver has the same guaranteed convergence property as GMRES[23], however it will require the storage of
2 temporary vectors per iteration (up to the restart length).

It should be noted that this Schur complement approximation begins to break down for large DR(µ) (see
the work of Rudi et al.[22]) and a more sophisticated approach may be required in those cases.

2.3. Viscosity Averaging. The viscosity µ(x) is evaluated at each quadrature point on the finest cells
and then averaged using harmonic averaging to obtain a piece-wise constant representation per cell. Since
in many applications the viscosity will not come from a functional representation (and therefore cannot
be easily evaluated on coarser grids), we must have a way to transfer this cell-wise viscosity on the active
mesh to a viscosity on the meshes throughout the level hierarchy. We accomplish this by transferring these
coefficients using the same grid restriction operator as discussed in the work of Clevenger et al.,[8] the work
of Brenner and Scott,[6] and the work of Janssen and Kanschat,[16] based on a Qdisc

0 element (one constant
per cell). Essentially, this involves averaging the active cells viscosity, and then recursively setting the the
viscosity of a parent cell in the hierarchy to the average of the viscosity of each of its children.

It should be noted that, for problems where the viscosity is represented by a smooth function, this
harmonic averaging of the viscosity on the active mesh can result in the loss of convergence order of the
solution. However from the work of Heister et al.,[14], for problems with highly discontinuous viscosity,
averaging viscosity can be beneficial for controlling under- and over-shoots in the numerical approximations
of the solution gradient. We do not consider alternatives to harmonic averaging here.

3. Results

3.1. Software. For all computations we will be using the open-source library deal.II,[1] which offers scal-
able parallel algorithms for finite element computations. The deal.II library uses functionality from other
libraries such as Trilinos[15] (for linear algebra, including Trilinos ML AMG preconditioner) and p4est[7]
(for mesh partitioning).
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As mentioned above, we will be comparing our solver to the one used by ASPECT. ASPECT is an open-source
library written on top of deal.II for the specific purpose of solving problems related to the earth’s mantle.
The method presented here is avialable in the current development version of ASPECT.

3.2. Benchmark Problem. We give results demonstrating the scalability of the GMG-based method de-
veloped here, as well as a comparison with the AMG-based method used in ASPECT. The test problem used
is the “Sinker” benchmark described in the work of May et al.[20] and the work of Rudi et al..[22] It consists
of solving the Stokes problem (1) on the unit cube domain, with n randomly positioned “sinkers” of higher
viscosity throughout the domain. By specifying DR(µ), we define a smooth viscosity by µ(x) ∈ [µmin, µmax]
where for X(x) ∈ [0, 1]

X(x) =

n∏
i=1

[
1− exp

(
−δmax

[
0, |ci − x| − ω

2

]2)]
,

µ(x) = X(x)µmin + (1−X(x))µmax.

Here µmin = DR(µ)−1/2, µmax = DR(µ)1/2, ci are the center of each sinker, δ = 200 controls the exponential
decay of the viscosity, and ω = 0.1 is the diameter of the sinkers. The right hand side is given by f(x) =
(0, 0, β(X(x) − 1)) with β = 10 and we use homogeneous Dirichlet boundary conditions for the velocity.
Physically, this represents gravity pulling down the high viscosity sinkers. Figure 2 gives a representation of
both the velocity and the pressure solution of this benchmark.

The problem difficulty can be increased by increasing n or DR(µ). Table 2 gives the iterations required
to reduce the residual of the outer FGMRES solve by 106 for different values of these parameters. We see
that both AMG and GMG deteriorate as both n and DR(µ) increase, with GMG being slightly more robust.
This problem can likely be addressed using methods derived in the work of Rudi et al.[22], where it was
shown that this deterioration is due to the approximation loss in the Schur complement solve, and a more
sophisticated Schur complement approximation was proposed based on least squares communicators. For
the remaining results, we will only consider n = 4 and DR(µ) = 1e4, as this is within the range of problems
where our Schur complement approach is sufficient.

All timings in this section were from computations run on either Frontera or Stampede2, both at The
University of Texas at Austin’s Texas Advanced Computing Center. For the Frontera runs, we will be using
the Intel Xeon Platinum 8280 (Cascade Lake) nodes which have 56 cores and 192GB per node, and for the
Stampede2 runs, we will be using the Intel Xeon Platinum 8160 (Skylake) nodes which have 48 cores and
192GB per node. Both support AVX-512 instructions allowing for vectorization over 8 doubles. The deal.II
version used is 9.1.0-pre, and we compile using gcc 7.1.0, intel-mpi 17.0.3. The p4est version is 2.0.0, the
Trilinos version is 12.10.1 and the ASPECT version is 2.1.0-pre.

Each line in the timing plots connect the median time of 5 distinct runs, with all 5 runs shown as points.
We will test strong scaling (problem size stays constant, number of cores increase) and weak scaling (problem
size per core stays constant) for key parts of the computation. Tests run on adaptively refined meshes will
include the model for partition imbalance described in the work of Clevenger et al..[8] This model should
represent the ideal scaling we can expect to see for the GMG method given the imbalance of cells in the level
hierarchy.

3.3. AMG/GMG Comparison. For a comparison between the AMG and GMG preconditioners, we will
consider an adaptively refined mesh, where for each refinement, the number of cells are roughly doubled.
We start with a mesh of 4 global refinements and create each new mesh using a gradient based estimator to
refine roughly 1/7 of the cells from the previous refinement cycle, doubling the number of cells in our mesh.
Trilinos ML AMG is used with a Chebyshev smoother containing two sweeps and an aggregation threshold
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Figure 2. n = 8, DR(µ) = 1e4

DR(µ) 1e2 1e4 1e6

AMG
4 sinkers 46 48 52
8 sinkers 81 196 229
12 sinkers 76 171 237

GMG
4 sinkers 20 24 26
8 sinkers 37 72 128
12 sinkers 39 80 141

Table 2. FGMRES iterations required to reduce the residual by 106 for the sinker bench-
mark with increasing n and DR(µ). Run on a 3D mesh with 860K degrees of freedom
([Q2]dim ×Q1 element), distributed over 32 cores.

AMG GMG factor
Setup 12.6s 10.3s 1.2x
Assemble 32.5s 2.9s 11.2x
Solve 38.6s 14.8s 2.6x
Total 83.7s 28.0s 3.0x

Table 3. Timing comparison between AMG and GMG for an adaptively refined, 3D mesh,
with 18.5× 106 DoFs ([Q2]dim ×Q1 element) on one node (48 cores). Timings are from the
Stampede2 machine.

of 0.001. These values are chosen here as they are the default values in ASPECT and represent the values used
by the majority of the users of the code.

Table 3 gives the runtimes for such a mesh with 5 levels of adaptive refinement on 48 cores (18.5 × 106

degrees of freedom). The “Setup” time includes the distribution of the degrees of freedom, setting up of any
sparsity patterns necessary, as well as the setup of the data structures required for the matrix-free GMG
transfer. Here, our GMG method requires roughly 2x the work for distributing the degrees of freedom, but
does not need to build any sparsity patterns. This results in roughly equivalent setup times between AMG
and GMG, with GMG being slightly faster. In theory, we should easily be able to lower the requirement of
2x the work in degree of freedom distribution. The “Assemble” timing includes all matrix assembly (system
matrix, preconditioner matrix, AMG setup) as well as assembling the right hand side of the linear system
and vectors/tables related to the matrix-free operators. Here is where we see the largest advantage for the
GMG method as it has no matrices to assemble, resulting in more than a 10x faster assembly. Combining
setup and assembly with the linear solve, we have that the GMG method is around 3x faster for this problem.
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Procs DoFs AMG GMG
48 18M 53 27
96 36M 56 27

192 72M 62 28
384 141M 62 28
768 278M 68 28

1536 551M 75 28
3072 1.1B 80 28
6144 2.2B 83 28

Table 4. FGMRES iterations required to reduce the residual by 106 on problems depicted
in Figure 3(a).

However, for time dependent applications, many time steps will typically be solved without further refining
the mesh, in which case, we no longer need to call the “Setup” functionality. Then the program time will
be dominated by assembly and solve, in which case GMG will be about 4x faster here.

Expanding on this, we look at the weak scaling of each component up to 6,144 cores and mesh size of
2.2 × 109 degrees of freedom. Starting with the linear solve, as with the scaling plots for global refinement
above, Figure 3(a) gives the timing for the preconditioner application, and Table 4 gives the number of
FGMRES iteration required in the solve. Here we see that, while the AMG preconditioner is cheaper to
apply for all but the last data point, the iteration counts for GMG are much lower and stay constant while
the AMG iteration counts increase by over 50%. Figure 3(b) shows the solve time and Figure 3(c) shows the
speedup. The red dashed line in this plot represents the ideal weak scaling (black dashed line) multiplied by a
factor representing the imbalance of the parallel mesh partition that occurs on computations using adaptive
mesh refinement, explain in the work of Clevenger et al..[8] This factor represents the increase in runtime
one can expect with the current mesh partition (as opposed to a fair distribution), and is both dependent
on the mesh refinement scheme and the number of cores used. Here we see that, even with the imbalance
of the partition, the scaling for GMG is more efficient than AMG, and there is near perfect efficiency when
taking into account the imbalance of the mesh partition, which, according to the work of Clevenger et al.,[8]
should remain bounded.

The weak scaling of the setup is shown in Figure 4(a), and again we see that AMG and GMG are roughly
equivalent, with GMG being slightly faster. The setup of the linear system should be optimized in the future
since we are roughly on the same order of magnitude as the solve time, and efforts should be made to improve
the scaling. The weak scaling of the assembly is shown in Figure 4(b). Unsurprisingly, the GMG assembly
(consisting mostly of viscosity evaluation) is much cheaper than AMG as there are no matrices to assemble.

3.4. Memory Consumption. The storage requirements for FGMRES, required by the preconditioner in
ASPECT due to the non-constant nature of the CG solve for the mass matrix (discussed in Section 2.2.2), is
quite restrictive as one will need to store two additional vectors for each Krylov subspace iteration up to
the restart length. With a restart length of 50, as is the default inside ASPECT, one will have to allocate the
storage of up to 101 vectors inside the Krylov solve alone. This can greatly affect the overall storage of the
GMG-based method, as seen in Table 5.

Table 5 gives an estimation of the memory consumptions (in MB) of the largest global objects required
by each method on a globally refined mesh with 113K degrees of freedom run on a single core. While, for the
AMG-based method the temporary vectors make up around 35% of the total storage, these vectors represent
around 95% of the storage required by the GMG-based method. Therefore, we only see around 2.7x less
memory used for the GMG-based method, even though there are no matrices that need to be stored.
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Figure 3. Weak scaling comparison, adaptive refinement, 3D mesh, [Q2]dim×Q1 element.
Timings are from the Stampede2 machine.

The first step to remove this requirement for temporary vectors is to find a preconditioner which does
not require a flexible Krylov method. This can easily be done by considering a further approximation of
the Schur complement S by taking Ŝ = diag(Mp), as is done in the work of May et al.[20] Another option
is to approximate S as one multigrid v-cycle of the mass matrix Mp, which we will do for the remainder
of the results. As with the CG solve of the mass matrix (described in Section 2.2.2), the application of

the vcycle will not be computationally significant as compared to the application of Â−1. With this new
Schur complement approximation, one can use GMRES instead of FGMRES, which will reduce the number
of temporary vectors by half. Then, for the test in Table 5, we now have a total of 94.1MB of storage for
vectors out of a total of 104.4MB for the GMG-based method (90% of the total), and we see around 4.9x
less memory as opposed to the current AMG-based method in ASPECT.
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Figure 4. Setup/Assembly of the linear system. Timings are from the Stampede2 machine.

Memory (MB) AMG GMG
Triangulation 1.9 1.9
DoFHandlers 2.8 5.7
Constraints 1.0 2.7
A 174.2 -
B and BT 31.4 -

Â 58.5 -

Ŝ 1.4 -
Vectors(105) 179.6 179.6
AMG matrices 59.8 -
Total 510.6 189.9

Table 5. Memory consumption required for major components of AMG- and GMG-based
methods for globally refined, 3D mesh, with 113K DoFs ([Q2]dim ×Q1 element) on 1 core.
The total number of vectors required is set at 105. This estimates takes into account the
temporary vectors in the FGMRES solve as well as others required throughout the code
(right-hand side vector, solution vector, and two previous timesteps are common).

While this is a step in the right direction, we would like a method whose storage was constant with respect
to the number of iterations. We will seek further improvements using the IDR(s) method from the work
of Gijzen and Sonneveld.[25] These Krylov methods have a short-term recurrence, requiring the storage of
5 + 3s vectors for the solve, and there are s + 1 matrix-vector products and preconditioner applications
per iteration. Assuming the correct choice of parameters, IDR(1) is equivalent to BiCGStab, and, as s is
increased, the convergence rate has been demonstrated to approach the convergence rate of GMRES.[25] The
implementation in deal.IIis based on the preconditioned IDR(s) from the work of Gijzen and Sonneveld[12].
We consider IDR(2) for the computations in this section.

Table 6 gives a comparison between the strong scaling and storage requirements of GMRES and IDR(2)
for the Sinker benchmark run on a globally refined mesh with 27× 109 unknowns. Since the preconditioner
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GMRES IDR(2)
Cores iters solve time # of P−1 vectors iters solve time # of P−1 Vectors

14,336 30 40.5 30 31 11 42.1 33 11
28,672 30 23.1 30 31 11 21.8 33 11
57,344 30 13.0 30 31 13 13.5 39 11

114,688 30 7.74 30 31 13 7.90 39 11

Table 6. Iterations required to reduce the residual by 106, time to solution (in seconds),
number of preconditioner applications, and vectors stored for a solve of the Sinker benchmark
defined in Section 3.2 (4 sinkers and a viscosity ratio of 104), on a globally refined mesh
with 27× 109 DoFs. Timings are from the Frontera machine.

FGMRES(50) GMRES(50) IDR(2)
Memory (MB) AMG GMG GMG GMG
Triangulation 1.9 1.9 1.9 1.9
DoFHandlers 2.8 5.7 5.7 5.7
Constraints 1.0 2.7 2.7 2.7
A 174.2 - - -
B and BT 31.4 - - -

Â 58.5 - - -

Ŝ 1.4 - - -
Vectors 179.6 179.6 94.1 25.7
AMG matrices 59.8 - - -
Total 510.6 189.9 104.4 36.0

Table 7. Memory consumption required for major components of AMG- and GMG-based
methods for globally refined, 3D mesh, with 113K DoFs ([Q2]dim ×Q1 element) on 1 core.
FGMRES(50) (105 total vectors) estimates are given for both AMG and GMG, and both
GMRES(50) (55 total vectors) and IDR(2) (15 total vectors) estimates are given for GMG.

application dominates the overall runtime of the solve, it is no surprise that the IDR(2) method is slightly
more expensive. However, the times are comparable and both methods see similar scaling. The IDR(2)
method, on the other hand, requires roughly 1/3 of the total vector storage.

Returning then to the test in Table 5, consider Table 7 which gives the storage requirement for all
FGMRES(50), GMRES(50), and IDR(2). We see that, for the GMG-based method, switching from GMRES
to FGMRES leads to a 1.8x memory increase, and switching from IDR(2) to FGMRES leads to a 5.3x
memory increase. If we compare the increase in memory from IDR(2) with the GMG-based method to
FGMRES with the AMG-based method, we can expect a roughly 14x memory increase. This implies that
the capabilities of solving large scale problems inside ASPECT would be drastically increased by using the
GMG-based Stokes solve with IDR(2), allowing for runs with an order of magnitude more unknowns.

3.5. Large Scale Computations. Figure 5(a) gives the strong scaling for an application of the Stokes
preconditioner from a globally refined mesh with between 6-11 refinement levels, and Table 8 gives the
corresponding IDR(2) iteration counts to reduce the residual by 106. The dashed scaling lines here are all
computed based on the data point at 56 cores/6.7× 106 DoFs, and therefore the plot represents both strong
and weak scaling. We see scaling to around 30-60K DoFs/core for the preconditioner and roughly constant
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(a) One application of the Stokes block preconditioner.
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Figure 5. Strong and weak scaling for GMG-based method for globally refined, 3D mesh
with [Q2]dim ×Q1 element. Timings are from the Frontera machine.

Procs\DoFs 6.7M 53M 412M 3.4B 27B 217B
56 12 11

112 12 12
224 11 11 13
448 11 12 13
896 13 12

1792 11 12 12
3584 11 12 12
7168 12 12

14336 12 14 11
28672 13 12 11
57344 12 13

114688 12 13 12

Table 8. IDR(2) iterations required to reduce the residual by 106 for the GMG-based
preconditioner on problems depicted in Figure 5(a) (Globally refined mesh).

iteration counts. Figure 5(b) gives the timings for the IDR(2) solve, and unsurprisingly, since the iteration
counts are almost constant, we see the same scaling.

Lastly, we will compare the performance of the GMG v-cycle on the velocity block (representing approxi-
mately 70% of the preconditioner runtime) to the peak performance possible on the Frontera machine. Using
the tool LIKWID,[27] we find that we must perform approximately 1,575 Flops/DoF for a globally refined
mesh. If we consider that the v-cycle application on the velocity space for the problem containing 217× 109

Stokes DoFs (206× 109 velocity DoFs) takes 0.827s of compute time, we have an arithmetic throughput of
0.40 Petaflops/s. The Intel Xeon Platinum 8280 (Cascade Lake) nodes on Frontera can execute 16 double
precision floating point operations per cycle, with a clock speed of 2.7 GHz, and so on 114,688 cores we
have a peak performance of 5.0 Petaflops/s. This means that we are operating at 8% of peak performance.
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Similar performance for GMG v-cycles using deal.II was seen in the work of Arndt et al.,[2] where a GMG
preconditioner based on a scalar Laplacian discretized with a Qdisc

4 elements was calculated to be around
13% peak performance. There, they found the computations were memory bound,[2] which is also expected
for the computations here.

4. Conclusion

In this article we presented a geometric multigrid method for preconditioning of the velocity block in a
Stokes solve with variable viscosity. The presented method was designed using a matrix-free framework and
has capabilities to be run on adaptively refined meshes and in parallel. The parallel scalability of this method
was shown for both strong and weak scaling, for both global and adaptive refinement, with up to 114,688
cores and up to 217 billion degrees of freedom. We performed a comparison of the developed method with the
AMG-based preconditioner currently used in the ASPECT code and found that the GMG-based preconditioner
was both more robust (lower iteration counts and constant convergence with mesh refinement) and exhibits
better weak scaling than the AMG method, resulting in at least 3x faster computations than the AMG-based
method. The GMG-based method was also estimated to require 14x less memory. All-in-all, the GMG-based
Stokes solver in this paper (and implemented in ASPECT) has allowed for the solution of problems 2 orders of
magnitude larger than the largest problem ever solved by the AMG-based method in ASPECT (these largest
runs are given by the 2.2 billion degrees of freedom run in Section 3.3). Finally, the GMG-based method,
using IDR(2) as a solver, was shown to scaling to around 30K DoFs/core, and the GMG v-cycle for the
velocity block, which represents around 70% of the total preconditioner application, was shown to have a
throughput of 8% of peak performance on 114,688 cores.
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