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TOWARD EFFICIENT POLYNOMIAL PRECONDITIONING FOR

GMRES ∗

JENNIFER A. LOE† AND RONALD B. MORGAN‡

Abstract. We present a polynomial preconditioner for solving large systems of linear equations.
The polynomial is derived from the minimum residual polynomial (the GMRES polynomial) and is
more straightforward to compute and implement than many previous polynomial preconditioners.
Our current implementation of this polynomial using its roots is naturally more stable than previous
methods of computing the same polynomial. We implement further stability control using added
roots, and this allows for high degree polynomials. We discuss the effectiveness and challenges
of root-adding and give an additional check for stability. In this paper, we study the polynomial
preconditioner applied to GMRES; however it could be used with any Krylov solver. This polynomial
preconditioning algorithm can dramatically improve convergence for some problems, especially for
difficult problems, and can reduce dot products by an even greater margin.
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1. Introduction. We present a new approach for polynomial preconditioning
the Krylov method GMRES [29] for solving Ax = b. While we assume that the ma-
trix A is large and nonsymmetric, the same approach could also be applied effectively
in the symmetric case. We also assume that A is real-valued; minor modifications
allow using the same polynomials for a complex-valued matrix. As in [15], we use
the minimum residual polynomial. This is derived from a preliminary GMRES run
and is also called the GMRES polynomial. So GMRES is used in two ways: initially
it finds the polynomial; then restarted GMRES with the polynomial preconditioner
solves the linear equations. The GMRES polynomial forms a general-purpose precon-
ditioner that is compatible with any system of linear equations and can be composed
with any standard preconditioner. Our new implementation gives a significant ad-
vancement over the method in [15], because it is naturally more stable for high degree
polynomials. And with a high degree polynomial, there is more potential for it to
accurately approximate A−1. Additional stability modifications via added roots al-
low us to stably use polynomials of even higher degrees. The algorithm to generate
the polynomial is simple to implement, and stability modifications can be automated.
This new polynomial preconditioner can significantly improve convergence of GMRES
for difficult problems and can also greatly reduce orthogonalization expenses.

We refer to polynomial preconditioning as being unstable when it does not give
accurate results for the final residual norm ‖b−Ax‖, where x is the solution generated
by the polynomial preconditioned GMRES. There can be different reasons for the
instability. For the power basis method in [15], coefficients for the terms of the
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polynomial p (given in the next paragraph) may be inaccurately computed because
the power basis becomes ill-conditioned. The polynomial p is computed differently
in [22] (coefficients of p are found from the Arnoldi iteration), but as pointed out
in [15], it can also be unstable. In this paper, the inaccuracy is not because of a poorly
computed polynomial, but instead due to the ill-conditioned nature of the polynomial
itself. High degree GMRES polynomials can have very steep slopes and when this
happens at an eigenvalue, it can cause inaccuracy in computations. We still refer
to this situation as being an unstable method rather than being badly conditioned,
because the use of such a polynomial causes the method to be inaccurate. Our solution
to this problem is not to attempt more accurate computation with this ill-conditioned
polynomial, but instead to adjust the polynomial to be better conditioned. In this
paper, we do not give theoretical results about this stability, but do illustrate with
computations.

With a polynomial p and right preconditioning, the linear equations problem
becomes

Ap(A)y = b, (1.1)

x = p(A)y. (1.2)

The rewritten system of linear equations uses the matrixAp(A), which typically has an
improved spectrum for solving with GMRES. We let φ(α) ≡ αp(α) be the polynomial
corresponding to Ap(A), where α is an independent variable for the polynomial. Then
equation (1.1) becomes

φ(A)y = b.

We let the degree of p be d− 1 so φ has degree d.
All Krylov methods find approximate solutions that involve polynomials of the

matrix A. However GMRES is limited to polynomials of fairly low degree if it is
restarted. Polynomial preconditioning allows the solution obtained from restarted
GMRES to be represented by high-degree polynomials. Suppose that GMRES restarts
after m iterations. Then GMRES builds the Krylov subspace Span{r, Ar,A2r, . . .
Am−1r}, where r is both the residual vector from the previous cycle and the right-
hand side of the current system of equations. An approximate solution from this sub-
space can be written as ω(A)r, where ω is a polynomial of degree m− 1. In contrast,
polynomial preconditioned GMRES has the subspace Span{r, φ(A)r, (φ(A))2r, . . . ,
(φ(A))m−1r}, so an approximate solution for φ(A)y = r can be written as y =
ω(φ(A))r. The composite polynomial ω ◦ φ has degree (m − 1) ∗ d. GMRES now
can have high-degree polynomials even though it only builds a subspace of dimen-
sion m. These high degree polynomials can give much faster convergence for some
problems, as will be demonstrated with examples.

Another way to explain the effectiveness of polynomial preconditioning is that
the spectrum with φ(A) is generally improved compared to the original spectrum of
A. The GMRES polynomial π(α) is one at the origin and tries to be near zero at
the eigenvalues of A, so φ(α) = 1 − π(α) is zero at the origin and near to one over
the spectrum of A. (See Figure 3.5 (a) for a φ polynomial graph.) If effective, the
polynomial maps most of the eigenvalues near to one and spaces out the smallest
eigenvalues, giving an easier problem for a Krylov method.

Many polynomial preconditioners have been proposed; see for example [12, 32,
24, 25, 26, 2, 31, 8, 3, 11, 36, 28, 33, 1, 13, 15]. However, they often are compli-
cated to implement for nonsymmetric problems and may require computing estimates
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to bound a complex spectrum. These polynomials can also be unstable and thus
have significant computational error even when the linear equations are reasonably
well-conditioned [14, 15]. Thus, polynomial preconditioners are not typically used in
practice. Recent work indicates renewed interest in polynomial preconditioning, but
this work has been mostly for the symmetric case (e.g. [13]). This renewed inter-
est likely arises from the need for scalable preconditioners for use on highly parallel
computers. Because of the many matrix-vector products used per iteration with poly-
nomial preconditioning, fewer iterations are needed and there can be a reduction in the
orthogonalization expense. With this comes a reduction in dot products and thus in
communication and global synchronization for parallel linear solvers. There is poten-
tial to avoid even more communication expense by applying matrix-vector products
using a Matrix Powers Kernel [6, 10] or by combining polynomial preconditioning
with pipelined methods. Furthermore, polynomial preconditioners are more suited
for GPU computing than standard preconditioners such as incomplete factorization,
which require sequential triangular solves.

The GMRES polynomial is the polynomial implicit in the residual from one cycle
of GMRES: r = π(A)r0, where r0 is the initial residual, r is the residual computed at
the end of the cycle, and π is the GMRES polynomial. The GMRES polynomial is
a good choice, because it is relatively easy to compute and can be made stable. The
GMRES polynomial also adapts to the whole spectrum of A instead of being based
on estimates of the hull of the spectrum like a Chebyshev polynomial. This could be
advantageous for a matrix with a spectrum that has large gaps. The GMRES polyno-
mial was previously investigated for a Richardson iteration by Nachtigal, Reichel, and
Trefethen in [22] and by Joubert in [11] (he combines several GMRES polynomials
to produce his polynomial for Richardson). The GMRES polynomial was first used
as a preconditioner for linear systems in [1, 15]. The approach in [1], which is also
the initial method in [15], uses a power basis and normal equations to compute the
coefficients of p(α). While this algorithm is very concise, it is only stable for low
degrees; in some cases the calculation even returns NaN’s for polynomial coefficients.
A more stable approach for p is applied to eigenvalue problems in [33]. However,
in [15] it is shown that this and another more efficient attempt at a stable approach
can suffer from instability when an eigenvalue of A is well-spaced from the others. In
this work, we give an approach that is more efficient than the more stable alternatives
in [15] and is also much more stable. Unlike in [15], we focus on computing the φ(A)
polynomial rather than the p(A) polynomial, though computing p is also needed.

Our new implementation of the GMRES polynomial preconditioner has two dis-
tinct components: We use one algorithm to apply φ(A) for (1.1) and a different
but related approach to compute p(A) in (1.2). We apply φ(A) using the formula
φ(A) = I−π(A). Here π is the GMRES polynomial, and it is factored using its roots,
which are the harmonic Ritz values [17, 23, 20, 9, 21] generated via an initial GMRES
run. This method of applying φ(A) is used in [7] to perform a spectral transforma-
tion for finding eigenvalues with the Arnoldi method. The paper [7] also introduces
the stability control method that we will use with linear systems: To improve the
stability of the polynomial, we add extra copies of roots corresponding to eigenvalues
that stand out in the spectrum. Background information from [7] will be presented
in Section 2.

Our work for linear equations deviates from the methods for eigenvalue problems
in [7] in several ways:

1. We present an original algorithm for applying p(A); details are in Section
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3. (This application of p(A) is not needed for eigenvalue problems.) For the
accuracy of the final computation of x using equation (1.2), it is important to
implement p using an algorithm related to the one for φ (both use GMRES
polynomial roots).

2. A unique feature for linear systems is that the polynomial can be composed
with a standard preconditioner such as incomplete LU factorization. In that
case, (1.1) and (1.2) become

φ(AM−1)y = b, (1.3)

x = M−1p(AM−1)y, (1.4)

where M−1 is the standard preconditioner. We give examples where polyno-
mial preconditioning is used to accelerate an ILU preconditioned solve.

3. Section 3 demonstrates the root-adding stability method from [7] applied
to linear equations. Then we address stability considerations that were not
presented in [7]: We discuss the effect of adding roots on convergence. A
newly developed test detects unstable polynomials. Additionally, we show the
importance of choosing a random starting vector (rather than the problem
right-hand side) to generate φ.

The remainder of our paper demonstrates the potential of polynomial precondi-
tioning and establishes its differences from related methods. Section 4 gives idealized
estimates of the effectiveness of polynomial preconditioning for difficult problems and
an example demonstrating this potential. Section 5 has a comparison to FGMRES [27]
and a new variation of Polynomial Preconditioned (PP)-GMRES where we change the
polynomial at every cycle. Finally Section 6 has double polynomial preconditioning
for additional reduction of dot products.

2. Review. Here we review relevant methods from [7] for applying the polyno-
mial and for adding roots for stability.

GMRES works to solve Ax = b by choosing an approximate solution x̂ that min-
imizes the norm of the residual vector over the Krylov subspace Span{b, Ab,A2b, . . . ,
Ad−1b}. Thus, we can write x̂ = p(A)b where the coefficients of p correspond to the
linear combination of Krylov vectors needed to form x̂. We can rewrite the residual
vector as

r = b−Ax̂ = (I −Ap(A))b = (I − φ(A))b = π(A)b.

As GMRES builds a bigger subspace, the degree of p(A) increases, the residual norm
decreases, and ideally p(A) becomes a better approximation to A−1. Thus, we choose
φ(A) = Ap(A) as our preconditioned operator. The work [7] runs one cycle of
GMRES(d) to find π(A) = I − φ(A) and then uses Arnoldi on the matrix poly-
nomial π(A) to compute eigenvalues and eigenvectors of A. The matrix polynomial
is implemented using

π(α) =

d
∏

i=1

(

1−
α

θi

)

(2.1)

where the θi’s are harmonic Ritz values, the roots of the π polynomial. The harmonic
Ritz values are ordered with a modified Leja ordering [4] for numerical stability. (If
A has complex entries, use a Leja ordering [5] rather than a modified Leja ordering,
and disregard the following information on avoiding complex arithmetic.)
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Since A is real-valued, any complex harmonic Ritz values occur in conjugate
pairs. The modified Leja ordering sorts complex conjugates consecutively, allowing us
to avoid complex arithmetic by combining conjugate pairs. Suppose that θk = a+ bi
and θk+1 = a− bi. Then

(

1−
α

θk

)(

1−
α

θk+1

)

= 1 +
α2 − 2αa

a2 + b2
. (2.2)

Thus, for π(A) with a complex Ritz value, we can apply two factors of the polynomial
together (see Algorithm 1).

Algorithm 1 φ(A) times v

Input: sparse matrix A ∈ Rn×n, v ∈ Rn×1, d harmonic Ritz values θi.

1: π = v, i = 1
2: while i <= d do

3: if imag(θi) == 0 then

4: prod = A ∗ π
5: π = π − (1/θi) ∗ prod
6: i = i+ 1
7: else

8: a = real(θi), b = imag(θi)
9: prod = A ∗ π

10: tmp = A ∗ prod − 2 ∗ a ∗ prod
11: π = π + (1/(a2 + b2)) ∗ tmp
12: i = i+ 2
13: end if

14: end while

15: φ = v − π
16: Return φ.

Sometimes π(α) will have a very steep slope near one of the roots θk. This means
that applying φ(A) to a vector can be ill-conditioned. To resolve this problem in
[7], π(α) is expanded to have extra copies of the term (1 − α/θk), i.e. to have a
root of higher multiplicity at θk. This flattens the polynomial near θk and makes the
preconditioner application more stable. (See more details in Example 6 and Figure
3.2.) To determine how many extra roots are needed at θk, we compute a ‘product
of other factors’ or ‘pof ’ which estimates the slope of π(α) near θk. Experiments in
[7] suggested that one should add an extra root θk when pof(k) > 104 and another
for every factor of 1014 beyond that. Algorithm 2 gives the procedure to automate
adding roots for stability. Subsections 3.3 and 3.4 further discuss advantages and
potential difficulties of adding roots. Problems which benefit from added roots appear
throughout the paper.

3. Polynomial Preconditioned GMRES using a GMRES polynomial.

3.1. The method. As mentioned, the new approach for preconditioning linear
systems lets φ(A) = I − π(A), where π is the GMRES polynomial. The π polynomial
is implemented using its harmonic Ritz value roots as in [7]. This has about the same
expense as the less-stable power basis approach in [15] but only about one-half the
vector additions and dot products as in the cheapest attempt at a more stable method
in [15].
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Algorithm 2 Adding Roots to π(α) for Stability [7]

1. Setup: Assume the d roots (θ1, . . . , θd) of π have been computed and then
sorted according to the modified Leja ordering [4, alg. 3.1]. For very high
degree polynomials, logs of products can be used to prevent overflow and
underflow during the ordering.

2. Compute pof(k): For k = 1, . . . , d, compute pof(k) =
∏

i6=k |1− θk/θi|.
3. Add roots: Compute least integer greater than (log10(pof(k)) − 4)/14, for

each k. Add that number of θk values to the list of roots. We add the first
to the end of the list and if there are others, they are spaced into the interior
of the current list, evenly between the occurrence of that root and the end of
the list (keeping complex roots together).

Unlike with eigenvalue problems, an algorithm is also needed to apply p(A) for
the final step (1.2). We give a method using harmonic Ritz values. Note in [30],
ways of finding roots of p from those of π are given, but only for special cases with
three-term recurrences such as Chebyshev, so they do not apply here.

To derive our approach, we start with the formula φ(A) = I − π(A) where π(A)
is written in factored form as in (2.1). Then we divide both sides by α and rewrite
the polynomial p(α) as

p(α) =
1

α
−

1

α

d
∏

i=1

(

1−
α

θi

)

.

We split the last term of the product into two factors and distribute the −1/α to get

p(α) =
1

α
−

1

α

d−1
∏

i=1

(

1−
α

θi

)

+
1

θd

d−1
∏

i=1

(

1−
α

θi

)

.

Next we split the second term and distribute the −1/α. Continuing this process and
canceling 1/α terms at the end gives

p(α) =
d

∑

k=1

uk where uk =
1

θk

(

1−
α

θ1

)(

1−
α

θ2

)

· · ·

(

1−
α

θk−1

)

. (3.1)

The algorithm for multiplying p(A) by a vector alternates between building out the
product for the next uk term and adding that term to the final sum.

For real-valued matrices, we again avoid complex arithmetic by combining com-
plex conjugates. Suppose all θi’s are real for i < k and then θk = a + bi with
θk+1 = a− bi. Then the sum of the next two terms of p(α) is rewritten as follows:

uk + uk+1 =

(

1−
α

θ1

)(

1−
α

θ2

)

· · ·

(

1−
α

θk−1

)(

2a− α

a2 + b2

)

.

Assuming θk+1 is not the last root, we next need to form the product uk+2. The last
two terms of uk+2 can be combined as in (2.2). Algorithm 3 details the full process
for applying p(A) while avoiding complex arithmetic.

We let the vector operations or vops be the total number of length-n vector
operations such as dot products, norms and daxpys (a daxpy is multiplying a vector
by a scalar and adding to another vector). Note that applying p(A) to a vector
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Algorithm 3 p(A) times v

Input: sparse matrix A ∈ Rn×n, v ∈ Rn×1, d harmonic Ritz values θi.

1: prod = v, p = zeros(n, 1), i = 1
2: while i <= d− 1 do

3: if imag(θi) == 0 then

4: p = p+ (1/θi) ∗ prod
5: prod = prod− (1/θi) ∗A ∗ prod
6: i = i+ 1
7: else

8: a = real(θi), b = imag(θi)
9: tmp = 2 ∗ a ∗ prod−A ∗ prod

10: p = p+ (1/(a2 + b2)) ∗ tmp
11: if i <= d− 2 then

12: prod = prod − (1/(a2 + b2)) ∗A ∗ tmp
13: end if

14: i = i+ 2
15: end if

16: end while

17: if imag(θd) == 0 then

18: p = p+ (1/θd) ∗ prod
19: end if

20: Return p.

requires more vops than applying φ(A). However, applying p becomes less expensive
as the number of complex harmonic Ritz values increases. If r is the number of real
harmonic Ritz values and c is the number of non-real harmonic Ritz values, then the
number of daxpys needed to apply p is 2r + (3/2)c − 1. This gives one reason to
compute φ(A)v using Algorithm 1 instead of using A times p(A)v: if all the harmonic
Ritz values are real, then applying p directly requires almost twice as many daxpys
as applying φ.

Algorithm 4 summarizes the new polynomial preconditioned GMRES using the
three previous algorithms. To combine the polynomial with a standard preconditioner
M−1, simply use the matrix AM−1 for the initial GMRES run and computation of
harmonic Ritz values. Then implement the second phase with (1.3) and (1.4).

3.2. Some experiments. This subsection has several examples of restarted
GMRES with polynomial preconditioning. The first three show that polynomial pre-
conditioning can give a big improvement with difficult problems for which restarted
GMRES converges slowly. The next two give information to help discern cases where
polynomial preconditioning can be effective.

We use GMRES(m), which restarts when the Krylov subspace reaches dimen-
sion m, both with and without the polynomial preconditioning. All experiments
have modified Gram-Schmidt orthogonalization with no reorthogonalization. PP(d)-
GMRES(m) refers to GMRES(m) with polynomial preconditioner of degree d. When
the degree is given with a plus sign, it means roots were added for stability, e.g.
150 + 2 has original degree 150 and 2 added roots. Unless stated otherwise, problem
right-hand sides are generated random Normal(0,1) and then normed to one. The
initial guess is always x0 = ~0. The experiments are run in Matlab on a Dell Optiplex
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Algorithm 4 GMRES with Polynomial Preconditioner of degree d

1. Construction of the polynomial preconditioner:

(a) Run one cycle of GMRES(d) using a random starting vector.
(b) Find the harmonic Ritz values θ1, . . . , θd, which are the roots of the GM-

RES polynomial: With Arnoldi decomposition AVd = Vd+1Hd+1,d, find
the eigenvalues of Hd,d+ h2

d+1,d fe
T
d , where f = H−∗

d,ded with elementary

coordinate vector ed = [0, . . . , 0, 1]T .
(c) Order the GMRES roots and apply stability control as in Algorithm 2.

2. PP-GMRES: Apply restarted GMRES to the matrix φ(A) = I −Πd
i=1(I −

A/θi) to compute an approximate solution to the right-preconditioned system
φ(A)y = b, using Algorithm 1 for φ(A). To find x, compute p(A)y using
Algorithm 3.

desktop computer with I7-6700 processor.

Example 1. We test the matrix E20r0100 from the Matrix Market collection. It
is nonsymmetric of size n = 4241 with an average of 31 non-zeros per row. The cor-
responding linear equations are fairly difficult since the matrix is indefinite and has
condition number 9.4 ∗ 106. We run GMRES(50) with a residual norm convergence
tolerance of 10−8. Table 3.1 has results for polynomial preconditioning of A (no stan-
dard preconditioning is used). The first row with d = 1 corresponds to no polynomial
preconditioning, while other rows correspond to a φ polynomial of degree d (so a p
polynomial of degree d − 1). The mvps column indicates matrix-vector products,
and vops gives total length-n vector operations. The dot products included in the
vops count are given in a separate column. The cycles column gives the number of
restarts of GMRES(50) plus 1. All results include the time and expense to create
the preconditioner. Standard GMRES(50) does not converge. Adding polynomial
preconditioning improves results, though it does takes a high degree polynomial with
d = 150 + 2 in order to get rapid convergence. The stability control with added
roots keeps the residual norm from stalling before it reaches the requested tolerance.
Without stability control, the problem with the polynomial of degree 150 does barely
reach the requested accuracy. However, if extra roots are not added for degree 200, the
residual norm only reaches 4.8 ∗ 10−6. For this example, polynomial preconditioning
is effective even with an indefinite spectrum. However, we note that a very indefinite
problem, especially with eigenvalues surrounding the origin, can be difficult for any
Krylov method, including with polynomial preconditioning. Another indefinite ma-
trix is in Example 8, but we do not attempt to fully address indefinite problems in
this paper.

We continue with matrix E20r0100 and add standard preconditioning. Table
3.2 has polynomials composed with several incomplete LU factorization precondition-
ers [16, 28]. The ILU(0) factorization is from the shifted matrix A + 0.01I (the ILU
factorization of the original matrix A fails due to zero on diagonal). Then ILU(.01)
uses the Matlab Crout ILU with fill-in tolerance of 0.01, also applied to A + 0.01I
(the factorization fails on A due to zero pivot). Finally, ILU(.001) is successfully
applied to the original matrix A. With ILU(0) preconditioning, GMRES(50) still
does not converge until polynomial preconditioning is added, but now the low degree
d = 10 polynomial is effective. The combination of the two preconditionings makes the
problem much easier for GMRES(50). Figure 3.1 shows the spectral transformation
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Table 3.1: Matrix E20r0100. Comparing no polynomial preconditioning to increasing
degree polynomial preconditioning. No standard preconditioning is used.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands) (seconds)

1 - - - - -
25 215 268 860 285 33.6
50 1231 3077 6468 1633 379
100 204 1020 1591 275 109

150 + 2 2 11.2 37.6 13.1 1.6
200 + 4 2 10.6 54.0 21.6 1.9
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Fig. 3.1: Spectrum of matrix E20r0100 (top left) and a closeup of this spectrum near
the origin (top right). The middle images show the spectrum after ILU(0) precon-
ditioning, and the bottom part has the spectrum after both ILU(0) and polynomial
preconditioning of degree 10.

brought by the ILU(0) and polynomial preconditionings. The top of the figure has the
spectrum of the matrix, along with a closeup showing that there are many negative
eigenvalues. The middle section has the spectrum with the ILU(0) preconditioning,
and while it is vastly changed, there are still many negative eigenvalues. Finally, the
bottom part of the figure shows that if polynomial preconditioning of degree 10 is
added to the ILU preconditioning, then the spectrum is much less indefinite and most
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Table 3.2: Matrix E20r0100 with several ILU preconditioners.

Regular GMRES With Poly, d = 10
Type of ILU mvps vops time mvps vops time
Preconditioner (thou’s) (sec’s) (thou’s) (sec’s)

ILU(0) of A+ .01I - - - 1001 6.44 0.65
ILU(.01) of A+ .01I 1397 77.9 2.0 411 2.27 0.56

ILU(.001) of A 52 2.71 0.52 91 0.71 0.58

Table 3.3: Matrix Ill Stokes. Comparing no polynomial preconditioning to polynomial
preconditioning both with and without standard preconditioning.

degree d cycles mvps vops dot products time

No Standard Preconditioning
1 485,042 2.43 ∗ 107 1.36 ∗ 109 6.43 ∗ 108 21.6 hours

50 + 5 1072 2.95 ∗ 106 5.90 ∗ 106 1.42 ∗ 106 29.9 min’s
100 + 20 277 1.66 ∗ 106 2.43 ∗ 106 3.71 ∗ 105 15.2 min’s

With ILU Preconditioning
1 958 47,902 2.69 ∗ 106 1.27 ∗ 106 211 sec’s
50 3 7051 16,978 4799 13.6 sec’s

100 + 10 2 7691 21,273 6668 14.8 sec’s

of the eigenvalues are better separated from the origin. In this example, polynomial
preconditioning is effective even with a significantly complex spectrum. Also, even
with standard preconditioning, polynomial preconditioning can be necessary to help
the problem converge or can be used as an accelerator.

Next, we look at the ILU factorizations with fill-in. GMRES(50) finally does
converge with ILU(.01), but adding polynomial preconditioning with d = 10 makes
it roughly four times faster in terms of matrix-vector products and time. Vector
operations are reduced by a factor of 34. ILU(.001) works well alone, and regular
GMRES needs only 52 matrix-vector products. This case shows that if standard pre-
conditioning is very effective, the problem may become easy enough that polynomial
preconditioning does not need to be added on. When polynomial preconditioning is
added, GMRES uses 91 matrix-vector products, but the solve time is about the same.
Vector operations, however, are still reduced by a factor of almost 4.

Example 2. We use the fluid dynamics matrix Ill Stokes from SuiteSparse. It is
nonsymmetric with dimension n = 20,896 and an average of 9.2 nonzeroes per row.
GMRES(50) is run to residual tolerance 10−8. We test first polynomial precondition-
ing without regular preconditioning. Then ILU(0.001) is applied to the shifted matrix
A + 0.001I (this was one of the best ILU preconditioners we found). Results are in
Table 3.3. With no regular preconditioning, polynomial preconditioning is essential
as it reduces the computational time from 21.6 hours to 15 minutes (with polynomial
of degree 100+20). With ILU preconditioning, it is still beneficial to add polynomial
preconditioning. The time is reduced from 211 seconds to about 14 seconds. Matrix-
vector products are reduced by a factor of about 7 and dot products by a factor of
over 250.
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Table 3.4: Biharmonic matrix with n = 40,000.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands)

1 229,740 11,487 643,729 304,404 14.6 hours
5 11,248 2,812 33,766 14,903 1.14 hours
10 4,159 2,079 13,522 5,509 34.6 minutes
25 742 927 2,969 983 10.4 minutes
50 196 489 1,029 260 4.89 minutes
100 47 235 374 137 2.29 minutes
200 11 105 174 33.9 54.9 seconds

400 + 3 4 73.7 245 85.1 47.9 seconds
800 + 19 1 41.7 688 322 1.33 minutes

Example 3. We consider the 2-dimensional biharmonic partial differential equa-
tion −uxxxx − uyyyy + uxxx = f on the unit square, with u = 0 on the boundaries.
The linear equations are challenging even without an extremely fine grid. We use a
uniform finite difference grid with both ∆x and ∆y of 1

201 , so that the matrix has
size n = 40,000. This matrix has 13 non-zeros in most rows. We stop when the
shortcut residual norm formula reaches 10−10 (for this residual we use ||βe1 − H̄y||,
with the notation from [29]). The actual residual does not always reach this level
due to the ill-conditioning of the problem. Interestingly, while GMRES(50) reaches
only 2.7 ∗ 10−9 for the true residual norm, all the polynomial preconditioned tests
reach 1.4 ∗ 10−10 or better. This matrix is very ill-conditioned with condition number
8.2 ∗ 107. The polynomial preconditioning improves this substantially; for instance
with d = 50, the condition number of φ(A) is 6.1 ∗ 104. Table 3.4 has the results
with some values of d. The computational time is reduced by a factor of about 1100
going from no polynomial preconditioning to a polynomial of degree 403. Looking at
a breakdown of the expenses, the matrix-vector products go down by a factor of 156
for that polynomial (and even more for d = 819). The vector operations are lowest at
d = 200, with a reduction factor of 3700. And the dot products go down even more,
by a factor of almost 9000. This is of particular interest for communication reduction.

It is reasonable to ask if there are certain classes of problems for which polynomial
preconditioning for restarted GMRES will be particularly worthwhile. We consider
some possibilities, including problems of increasing difficultly and increasing non-
normality.

Example 4. We use the same biharmonic matrix as in the previous problem, but
add standard preconditioning. We apply the incomplete factorization ILU(0) with
the matrix first shifted in the positive direction by 0.5 times the identity matrix.
This shift is needed for the ILU to be effective (otherwise the factors are essentially
singular). Note that a more expensive factorization with fill-in was also not effective
without the shift and did not improve results much with the shift. This standard
preconditioning makes the difficult problem easier, and so polynomial preconditioning
is not needed as much, but still can be very helpful. For the same matrix of size
n = 40,000, regular GMRES(50) now converges 368 times faster in terms of matrix-
vector products with the ILU(0) preconditioning. However with added polynomial
preconditioning (d = 50), it goes about another 13 times faster in mvps; see the next
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Table 3.5: Biharmonic matrix with ILU(0) preconditioning, changing matrix sizes.

Regular GMRES Polynomial prec with d = 50
Size mvps vops time mvps vops time
n (thousands) (thou’s) (seconds) (thou’s) (thou’s) (sec’s)

625 0.051 2.75 0.21 0.101 2.76 0.38
2500 0.320 17.6 0.64 0.451 3.22 0.48
10,000 2.81 160 7.6 0.751 3.69 0.86
40,000 31.2 1780 208 2.30 7.25 8.5
160,000 347 19,473 2.1 ∗ 104 16.1 36.1 233

to last line of Table 3.5. Not shown in the table, dot products are reduced by a factor
of 344 by adding polynomial preconditioning to the ILU preconditioning.

Next, we examine what happens as the difficulty of a problem increases. We
continue with Table 3.5 and compare the results with and without polynomial pre-
conditioning. We start with a smaller matrix with n = 625 and then increase the
size and thus the difficulty. For the matrix of size n = 625, GMRES(50) needs fewer
matrix-vector products and less time than PP(50)-GMRES(50), though vector oper-
ations are about the same. As the difficulty increases, polynomial preconditioning
passes up regular restarted GMRES, and by size n = 160,000 it needs more than 20
times fewer matrix-vector products and almost two orders of magnitude less time.
This points out that there is potentially a big advantage for polynomial precondition-
ing of difficult problems, while for easy problems, it may not be helpful.

We now attempt to give more specific guidance for when polynomial precondi-
tioning is worthwhile, at least for this situation. Let M = LU be from the incomplete
factorization. Then the condition numbers for AM−1 of sizes n = 625, 2500, 10,000,
and 40,000 are 9.4 ∗ 101, 1.1 ∗ 103, 1.6 ∗ 104, and 2.4 ∗ 105, respectively. (The last
one decreases to 1.9 ∗ 102 with d = 50 polynomial preconditioning.) This gives an
indication of how difficult the problem needs to be for the polynomial of degree 50
in the table to be effective. In terms of matrix-vector products, improvement occurs
soon after n = 2500, or soon after the condition number exceeds 103. In terms of
computational time, polynomial preconditioning already gives a little speedup at this
point. For a lower degree polynomial, there can actually be improvement in matrix-
vector products for the n = 2500 case, as well. With a polynomial of degree 5, only
191 matrix-vector products are used.

Example 5. In this example, we look at the effect of increasing the non-normality
of the matrix. We also consider moving a complex spectrum closer to the left half
of the complex plane. We use a simple two-dimensional convection-diffusion equation
−uxx−uyy+αux+βuy−γu = f with zero boundary conditions on the unit square. The
matrix is generated with finite differences to size n = 40,000. No ILU preconditioning
is used.

The symmetric problem with α = 0, β = 0, and γ = 0 is fairly difficult with
condition number 1.6∗104. Polynomial preconditioning is effective, reducing the time
by about a factor of 12; see the first line in Table 3.6. As convection coefficients α,
and β increase to 25, then to 100 and 400, (see next lines of the table), the problem
becomes easier: The eigenvalues become complex, but move away from the origin.
When α = β = 25, for instance, the condition number goes down to 5.5 ∗ 103. Even
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Table 3.6: Convection-diffusion equation matrix with n = 40,000 and with various
coefficients.

Regular GMRES Polynomial prec with d = 50
Coefficients mvps vops time mvps vops time
α, β, γ (thou’s) (thou’s) (sec’s) (thou’s) (thou’s) (sec’s)

0, 0, 0 3050 171 12.8 1051 4.16 0.95
25, 25, 0 950 53.0 4.3 951 3.98 0.96

100, 100, 0 1018 56.4 4.6 951 3.98 0.96
400, 400, 0 942 52.2 4.3 951 3.98 0.97

400, 400, 1000 1934 83.1 8.7 1001 4.07 0.96
400, 400, 1060 3462 194 14.4 1051 4.16 0.97
400, 400, 1070 - - - 1051 4.16 0.96
400, 400, 10,000 - - - 4901 12.7 2.2

though condition numbers go down further for the larger α’s and β’s, the results are
about the same (apparently the movement of the spectrum further into the complex
plane balances the movement away from the origin). Polynomial preconditioning is
not as effective for these non-normal but easier problems, but still reduces the solve
time by more than a factor of four.

In the last five lines of the table, we fix the convection coefficients at 400; here the
spectrum is roughly circular in shape. When γ = 0, the smallest eigenvalues are 0.15±
0.52i, which sit well away from the imaginary axis (relative to the largest eigenvalue,
which is near 8). To make the problem more difficult, we increase the value of γ so that
the spectrum approaches the origin and almost encircles it above and below. For this
non-normal matrix, regular GMRES(50) has difficulty well before the spectrum gets
to the origin, because the pseudospectrum [34] surrounds the origin first. However,
PP(50)-GMRES(50) is less affected by this. Without polynomial preconditioning, the
method does not converge when γ reaches 1070. On the other hand, with polynomial
preconditioning there is convergence even at γ = 10,000. As γ further increases,
convergence becomes slower and stalls by γ = 12,500. We conclude that polynomial
preconditioning can assist both normal and quite non-normal matrices.

3.3. Stability. Stability control is typically needed for high degree polynomi-
als when there is an eigenvalue that stands out from the rest of the spectrum. In
this situation, the polynomial will have large slope at the eigenvalue. This slope
gives ill-conditioning and causes significant numerical error and a lack of convergence.
However, extra roots can control the steep slope.

Example 6. We look at stability control with the matrix 1138 bus from Matrix
Market. It is symmetric of size n = 1138 with an average of 3.6 non-zeros per row.
No standard preconditioning is used. Results in Table 3.7 have stability control on
the left side and no added roots on the right side. We first observe that this is
a tough matrix, and as a result, polynomial preconditioning has room to be very
effective. Solve time is reduced by a factor of 400 for no preconditioning versus a
polynomial with either degree 50 + 15 = 65 or degree 75 + 61 = 136. It is interesting
that the stability procedure in Algorithm 2 adds such a large number of extra roots.
This example needs many added roots because the larger eigenvalues are in bunches
well-separated from the others. With stability control, the results stay accurate even
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Fig. 3.2: The matrix is 1138 bus. Graphs of the degree 25 GMRES polynomial (solid
line), the polynomial with one root added at 30,149 (dash-dot line) and with five
added roots (dashed line). Eigenvalues are marked with x’s.

for the degree 75 + 61 polynomial (accuracy does degrade after that point, as will
be mentioned in Example 9). We see in the right-most table column that without
stability control, accuracy decreases as the degree increases and by d = 35 there is
essentially no accuracy (beyond that degree, the iterations do not converge, even in
the shortcut residual.)

We now look at how the polynomial changes with added roots and why this
makes a better conditioned polynomial and, thus, a more stable method. The upper
left portion of Figure 3.2 has a graph of the GMRES polynomial of degree 25 and
has the eigenvalues of A marked with x’s. At first glance, it appears that there is a
single eigenvalue at 3 that the polynomial goes down through steeply. However, the
closeup in the upper right shows there are three eigenvalues near 3. The polynomial
is very steep at the largest one and somewhat steep at the other two (more so than
appears in the figure due to scaling). The steep slopes cause the polynomial to be
ill-conditioned. In the lower left portion of the figure, the dash-dot (blue) line shows
the degree 25 + 1 = 26 polynomial with one root added at the largest eigenvalue. It
has slope zero at the large eigenvalue due to the double root, but slopes are still steep
at the two nearby eigenvalues. The polynomial of degree 25 + 5 = 30 formed by the
stability control, shown with dashed (red) line, has roots added at all three of the
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Table 3.7: Matrix 1138 bus with and without stability control.

With Stability Control Without Stab. Control
degree added mvps time res. norm mvps time res. norm

roots (thou’s) (sec’s) (thou’s) (sec’s)
1 696 159 1.2 ∗ 10−10 696 159 1.2 ∗ 10−10

15 + 1 66.2 2.3 3.8 ∗ 10−12 59.8 2.1 6.3 ∗ 10−12

25 + 5 12.3 0.50 5.2 ∗ 10−12 106 3.2 1.4 ∗ 10−6

30 + 7 15.3 0.53 5.6 ∗ 10−12 65.7 1.9 5.4 ∗ 10−3

35 + 8 16.8 0.57 6.9 ∗ 10−12 14.6 0.53 3.3 ∗ 10+1

50 + 15 9.87 0.39 8.1 ∗ 10−12 - - -
75 + 61 7.96 0.36 1.1 ∗ 10−11 - - -

eigenvalues near 3 and two roots added near 2. It has much less steep slopes. The
scale on the y-axis of the lower right graph is six orders of magnitude smaller than
that of the other graphs; this shows how much milder the slopes are for the degree 30
polynomial.

3.4. Effect of adding roots. Here we examine the effect of adding roots on
the convergence rate. The added roots require extra matrix-vector products per outer
GMRES iteration, but if located to the outside of the spectrum, they typically make
the polynomial better. Of course, some slowing of convergence is acceptable if the
added roots make the answer more accurate. We start with the added roots in Ex-
ample 6.

Example 6 (cont.) The costs (mvps and time) for matrix 1138 bus are compared
with and without the stability control. The data in Table 3.7 is for achieving residual
tolerance of 10−10 in the shortcut residual formula, not the full accuracy that is
eventually attained. For original degrees 15 and 35, the method without added roots
is slightly more efficient, so this shows that adding roots can reduce the effectiveness.
However, for original degrees 25 and 30, the controlled method is much better. And
even with 61 roots added to the degree 75 polynomial, it still gives the best time of
all tests.

The following simple theorem shows that adding an extra root in the larger half
of the spectrum does not hurt a Richardson iteration with the GMRES polynomial.

Theorem 3.1. Assume A is symmetric, positive definite with largest eigenvalue
λn. The Richardson iteration with the GMRES polynomial applied to Ax = b computes
π(A)b, where π(α) =

∏n
i (1−

α
θi
). Adding a term (1− α

θk
) to the product, where θk is

a root of the GMRES polynomial and θk ≥ λn

2 , does not cause the residual norm to
increase. In other words, ‖(I − 1

θk
A)π(A)b‖ ≤ ‖π(A)b‖.

Proof. It is given that θk ≥ λn

2 . (We also know that θk ≤ λn, because θk is a
harmonic Ritz value and A is SPD, but this is not needed). The line y = (1 − α

θk
)

satisfies |y| ≤ 1 on [0, λn] and thus on the spectrum of A, and this gives the result.

We do not have a corresponding result for polynomial preconditioned GMRES,
but the outer GMRES for PP-GMRES does use this Richardson polynomial at each
iteration.

Next we look at how there can be a problem with adding roots: In rare cases,
it can create a preconditioned problem that is worse for GMRES. We have not seen
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Fig. 3.3: For the diagonal matrix of Example 7, plots show the degree 125 GMRES
polynomial (solid line), the polynomial with one root added at 30, (dash-dot line) and
then with two roots added at 30 and 60 (dashed line). The top shows the polynomials
in the small part of the spectrum and the bottom has the increased magnitude of
oscillations in the large part of the spectrum when roots are added.

this happen in definite application matrices that we have tested, because this requires
large gaps among the smaller eigenvalues (see Example 8 for an indefinite example).
For the SPD case, this cannot happen when only the smallest eigenvalue is isolated,
because a root is never added for the smallest harmonic Ritz value: If θ1 is the smallest
in magnitude harmonic Ritz value and θi is any other, then |1− θ1

θi
| < 1. This means

that in Algorithm 2, pof(1) < 1 and will not trigger an extra root. However, it
is possible to construct an SPD example with small (but not the smallest) isolated
eigenvalues and a high degree polynomial where adding roots has a bad effect.

Example 7. Let A be the diagonal matrix with entries 0.01, 0.02, . . .0.09, 0.1, 30,
60, 100, 101, . . .5087 and n = 5000. We run PP(125)-GMRES(50) and because of
the well-separated eigenvalues, the d = 125 polynomial has two roots added (one at
30 and one at 60). These added roots in the lower part of the spectrum cause the
polynomial to become large in the higher part of the spectrum. The top of Figure 3.3
shows the original GMRES polynomial in solid (green), and it has steep slope at
the eigenvalue at 30. Adding one root at 30 (blue dash-dot) tames this slope, and
adding roots at both 30 and 60 (red dashed) makes it even flatter in that region.
The lower half of the figure shows how the GMRES polynomial π with two added
roots has large oscillations in the high part of the spectrum. Before adding roots,
the polynomial oscillates between approximately −0.003 and 0.003 in the larger part
of the spectrum. With just the one root added at 30, the polynomial goes between
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Table 3.8: Stability check versus minimum residual norm attained for OLM1000 with
ILU(0) preconditioning. First two polynomials are without added roots and the others
do have added roots.

degree 10 12 25 30 35
(no added) (no added) + 6 + 8 + 15

StCh 1.2 ∗ 10−5 5.4 ∗ 10−3 4.3 ∗ 10−11 5.0 ∗ 10−8 1.9 ∗ 10−1

Res. Norm 3.6 ∗ 10−5 2.6 ∗ 10−2 1.4 ∗ 10−10 3.0 ∗ 10−8 6.0 ∗ 10−1

−0.5 and 0.5, and the method still converges, but four times slower than without the
added root. With the two added roots, the oscillations are much bigger, and this
turns the spectrum of φ(A) badly indefinite and the convergence is extremely slow.
A possible solution for this problem is to use a lower degree polynomial. Also, the
added roots are not actually needed to get residual norm below 10−10, so the pof
cutoff in Algorithm 2 can be adjusted if higher accuracy is not required (the pof ’s for
the degree 125 polynomial are 5.79e+05 and 3.12e+04 for 30 and 60, respectively).

3.5. Polynomial stability check. Even with stability control, there is a pos-
sibility that a high degree polynomial will be unstable. Here we give a test that can
suggest whether a particular polynomial will be stable. This stability check can be
applied once the polynomial has been determined, before the PP-GMRES linear solve.
Then the degree can be lowered if instability is predicted.

We compute a residual norm for a very rough approximate solution x̂ = p(A)b in
two ways and compare them. First r1 = b−Ax̂ = b−Ap(A)b, where p is implemented
with Algorithm 3. Then r2 = b − φ(A)b = π(A)b, using the factored form of π in
Algorithm 1. Then the stability check is StCh = ‖r1−r2‖. StCh gives an estimate of
the limit of the residual norm convergence to be expected in the PP-GMRES phase.
In our testing, the actual error is generally within an order of magnitude or two of
StCh.

Example 8. We use the matrix OLM1000 from Matrix Market. It has size n =
1000. It has some complex eigenvalues and is a little indefinite; all but 10 eigenvalues
have negative real parts. We look at polynomial preconditioning after first applying
ILU(0) preconditioning. The preconditioned spectrum is still indefinite, so extra roots
added on the left side of the spectrum can increase the slopes of the polynomial on the
right side. Thus, the stability control can actually cause instability. More research is
needed for indefinite problems, but for now we merely show that this difficulty can
be detected before the linear solve. Table 3.8 has some choices of polynomials. The
first two have d = 10 and 12 without the additional roots indicated by Algorithm
2, so they are ill-conditioned. Then the last three polynomials have roots added,
but still can have instability as the degree increases. These tests all show reasonable
correspondence between the value of StCh and the residual norm at the end of the
linear solve.

Example 9. We return to the matrix 1138 bus from Example 6. With polynomial
of original degree 100, there are 115 roots added for stability, however there is signif-
icant loss of accuracy. The actual residual norm reaches minimum value of 2.1 ∗ 10−5

and varies slightly at each iteration, so it can be higher depending on which iteration
one stops at. The reason that there are inaccurate results is probably due to the
ordering of roots given in Algorithm 2. The scalar polynomial with this ordering is
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Table 3.9: Stability check versus minimum residual norm attained for 1138 bus.

degree 75 90 100 110 120
+ 61 + 81 + 115 + 174 + 236

StCh 2.3 ∗ 10−13 1.0 ∗ 10−9 1.9 ∗ 10−6 2.4 ∗ 10−5 2.3 ∗ 10+1

Res. Norm 1.1 ∗ 10−11 9.0 ∗ 10−9 2.1 ∗ 10−5 8.1 ∗ 10−4 7.4 ∗ 10+1

not accurate when evaluated near the largest eigenvalue. Perhaps this could be fixed
with a better ordering of the roots, and this should be studied in the future. Table
3.9 has both the minimum residual norm and the value of StCh for different degree
polynomials. StCh again gives an indication of when there are problems with the
polynomial. Note that in Examples 7 and 8, there are three different sources of error,
and the StCh test works for all of them.

3.6. The starting vector for the polynomial. When generating the polyno-
mial preconditioner, it is typically best to run GMRES(d) with a random right-hand
side rather than using the problem right-hand side. The following experiment demon-
strates how polynomials generated using the problem right-hand side might ignore
certain eigenvalues and give bad preconditioners.

Example 10. We consider the electronic circuit matrix Memplus and its cor-
responding right-hand side available on Matrix Market. The matrix A is of size
n = 17,758. We let bprob denote the problem right-hand side and brand denote a vec-
tor generated from a random Normal(0, 1) distribution. We generate two polynomial
preconditioners of degree d = 15. The first is created by running GMRES(d) with
brand as a starting vector and the second by using bprob as a starting vector. For
the second polynomial, Algorithm 2 indicates that four additional roots are needed
for stability, and this gives a third polynomial with d = 15 + 4. Figure 3.4 shows
GMRES(50) residual norm convergence while solving Ax = bprob. Tests are without
polynomial preconditioning and with the three polynomials. While the problem does
converge in 41 cycles without a preconditioner, the brand polynomial gives a 90%
decrease in daxpys and a 94% decrease in dot products. This comes at a price of a
slight increase in mvps with the polynomial. However, the polynomial generated with
bprob stalls GMRES convergence and makes the problem much worse than with no
preconditioning. Since instability is not the dominant problem with this ineffective
polynomial, added roots give little improvement.

This inconsistent preconditioner behavior can be explained by considering how
the polynomials remap the eigenvalues of A. All eigenvalues of A lie in the right half
of the complex plane. The two non-real eigenvalues have very small magnitude and
are minimally affected by the polynomial preconditioners. Of the real eigenvalues,
four lie near 1.5, and the remainder have magnitude less than or equal to 0.5. Figure
3.5 shows the effect of the first two polynomial preconditioners on this subset of real
eigenvalues (note that though the spectrum is slightly complex, the polynomial is only
graphed on the real axis). While the brand polynomial effectively maps most of the
small eigenvalues to near 1, the bprob polynomial creates a more difficult spectrum
by making the problem highly indefinite. Outside of this figure, the brand polynomial
moves the eigenvalues of magnitude 1.5 closer to 1, but the bprob polynomial effectively
ignores those eigenvalues, mapping them to near 106.

Upon further examination of the vector bprob, it appears that bprob has components
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Fig. 3.5: The φ polynomials of degree 15 plotted over the real axis on [0, 0.5]. Stars
indicate eigenvalues of the Memplus matrix (horizontal axis) mapped to the eigen-
values of the preconditioned matrix (vertical axis). Observe the large difference in
scaling between the two vertical axes.

of significant magnitude in the direction of only a handful of the eigenvectors of A. The
components of brand are more evenly distributed among the eigenvectors. Experiments
in generating polynomials with other vectors yielded comparable results: A uniformly
distributed random vector worked almost as well as the brand vector, but a vector of
all ones again yielded stalled convergence. This phenomenon has been observed with
a number of other matrix problems. Thus, we recommend always using a random
vector to generate the polynomial preconditioner.
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4. Potential of Polynomial Preconditioning. In this section, we look at po-
tential effectiveness of polynomial preconditioned GMRES for difficult problems. We
use Chebyshev estimates to develop a theoretical estimate for how effective polynomial
preconditioning can be for improving restarted GMRES. There is dramatic reduction
in the number of matrix-vector products under idealized circumstances.

We assume that all of the polynomials in polynomial preconditioned GMRES can
be approximated with Chebyshev polynomials. This includes both the polynomial
for the preconditioning and the polynomials that underlie the GMRES method. We
assume all the eigenvalues of A are real and positive and lie between a and b with
0 < a < b. We also assume that the linear equations problem is very difficult, so
b is much larger than a. As a result of this assumption, it is possible to use the
approximation

Tm(1 + δ)
.
= 1 +m2δ, (4.1)

where Tm is the standard Chebyshev polynomial of the first kind of degree m and
δ is very small. For one cycle of GMRES(m), the GMRES polynomial is assumed
to be approximately the Chebyshev polynomial shifted and scaled so that it is one
at the origin and small and equal oscillatory over the interval from a to b. Then the
maximum value of the Chebyshev polynomial over the interval [a, b] is 1

Tm(1+2a/(b−a)) .

This quantity then gives approximately how much one cycle of GMRES(m) improves
the residual norm. With the approximation in (4.1), we have that the residual norm
is improved by approximately

1

1 + 2m2a
b−a

.
= 1−

2m2a

b− a

.
= 1−

2m2a

b
.

We next compare the improvement in residual norm for d cycles of GMRES(m)
with the improvement for one cycle of polynomial preconditioned GMRES(m) with
polynomial of degree d. The improvement factor for the d cycles of GMRES(m) is
approximately

(

1−
2m2a

b

)d .
= 1−

2dm2a

b
. (4.2)

We view the one cycle of polynomial preconditioned GMRES as being a composition
of two polynomials with the preconditioner polynomial from GMRES(d) on the inside
and a GMRES(m) poly on the outside. This can be modeled with a composition of
shifted and scaled Chebyshev polynomials, giving residual improvement of

1

Tm(Td(1 +
2a
b−a ))

.
=

1

Tm(1 + 2d2a
b−a )

.
=

1

1 + 2d2m2a
b−a

.
= 1−

2d2m2a

b
. (4.3)

Comparing (4.2) and (4.3), we conclude that polynomial preconditioned GMRES
converges approximately d times faster. This is summarized in the following estimate.

Estimate 4.1. For A with real spectrum between a and b and with 0 < a ≪ b,
PP(d)-GMRES(m) converges approximately d times faster than GMRES(m) in terms
of matrix-vector products.

So where this estimate holds, we expect that if the degree of the polynomial
is doubled, then the number of matrix-vector products is cut in half. Note that
orthogonalization costs are reduced even more dramatically.
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Table 4.1: Example to demonstrate reduction in matrix-vector products that is
roughly proportional to the degree of the polynomial. A has n = 20,000 and is

diagonal with entries i2

n , i = 1 . . . n.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands)

1 1,395,850 69,792 3,911,170 1,849,500 3.85 days
2 386,303 38,630 1,101,790 511,850 23.2 hours
4 118,249 23,650 349,069 156,679 8.76 hours
8 33,557 13,423 105,775 44,465 2.49 hours
16 9,053 7,242 32,156 11,995 56.8 minutes
32 2,283 3,652 9,935 3,025 11.2 minutes
64 613 1,961 3,650 814 4.44 minutes
128 157 1,000 1,446 215 1.31 minutes
256 43 542 724 89.0 40.9 seconds

512+4 8 197 481 142 24.8 seconds
1024+24 1 52.4 1,107 527 1.20 minutes

Since this result uses two kinds of approximations (GMRES polynomials are ap-
proximated by Chebyshev polynomials and values of Chebyshev polynomials are ap-
proximated with an asymptotic result), it is natural to ask whether such a reduction
in matrix-vector products can happen in a computation. The next example tests this
for a simple but difficult problem.

Example 11. We let the matrix be diagonal with entries 12

n , 22

n , 32

n , . . . , n2

n , where
n = 20,000. The residual tolerance is 10−10. GMRES(50) is used both with and
without polynomial preconditioning. The degree of the polynomial is doubled for
each test and we look at how the matrix-vector products are reduced. The last two
tests have roots added for stability. Table 4.1 shows the results, and while the matrix-
vector products are not quite cut in half for each subsequent test, they do come close.
The last experiment with d = 1048 does reduce the matrix-vector products by a factor
of 1360 compared to d = 1, no polynomial preconditioning.

Although they are not included in Estimate 4.1, it is interesting to note the
reductions in solve time and other operations in this example. The vops go down
by a factor of over 8000 from d = 1 to d = 516. In this ideal situation with both
a difficult problem and cheap matrix-vector products so that most of the expense is
in the orthogonalization, the reduction in computational time is remarkable for these
degrees. The time goes down from 3.85 days to 24.8 seconds, a reduction by a factor of
about 13,400. The time then goes up for d = 1048 due to the initial cost of computing
the polynomial using one cycle of GMRES(1024). For high-performance computing,
dot products are expected to be a bottleneck, and they are reduced by a factor of
over 20,000 from d = 1 to d = 256.

To see if a PDE matrix can also give results in line with the idealized Estimate
4.1, we refer back to the biharmonic problem in Example 3. While the reduction
in matrix-vector products is not quite as large as in Example 11, it is substantial.
For example, going from no polynomial preconditioning to a degree 200 polynomial
reduces the matrix-vector products by a factor of about 110. This is over half of the
ideal reduction factor of 200.
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5. Comparison to FGMRES. Here we compare polynomial preconditioned
GMRES to the related method FGMRES and to a PP-GMRES variant where we
change the polynomial at each cycle.

5.1. Versus FGMRES. The methods FGMRES [27] and GMRESR [35] are
related to PP-GMRES. Both of these methods allow GMRES to have precondition-
ing that varies at every iteration. If we choose this preconditioner to be a cycle of
GMRES(d), this corresponds to using a new polynomial to precondition each iteration
of the outer GMRES. This is in contrast to PP-GMRES, which has a fixed polyno-
mial that is used to precondition all outer GMRES iterations. These polynomials
also differ in how they are generated: The polynomial for PP-GMRES is designed to
approximate a solution for a linear equations problem with a random right-hand side.
This constrains it to have small norm over the entire spectrum of A so that it can
effectively precondition for any right-hand side. Meanwhile the GMRES(d) used for
a step of FGMRES attacks the specific linear equations problem at that moment and
thus may be skewed for that problem instead of applying a polynomial that addresses
the overall spectrum of A.

In the comparisons that follow, we use the same degree polynomials for PP-
GMRES and FGMRES. FGMRES uses one more matrix-vector product per iteration
because its GMRES(d) has d matrix-vector products in order to build a p polynomial
of degree d− 1. Then FGMRES still has to apply the operator A.

Example 12. The matrix is diagonal with entries 12

n , 22

n , . . . , n2

n , the same ma-
trix from Example 11, except here n = 10,000. Comparison between polynomial
preconditioned GMRES and FGMRES is in Table 5.1. (The third method in the
table will be discussed in the next subsection.) For low degree polynomials, FGM-
RES is significantly better than PP-GMRES in terms of both matrix-vector products
and computation time. This probably is because FGMRES continually changes its
polynomial to be optimal for the current situation. However, FGMRES requires or-
thogonalization to implement its GMRES cycle at every iteration, and so for high
degree polynomials, PP-GMRES is much cheaper. PP(d)-GMRES(50) reduces solve
time to 5.7 seconds with d = 250, while the minimum solve time of FGMRES(50)
is 253 seconds with d = 200. Given a matrix with a more expensive matrix-vector
product, the orthogonalization expense of FGMRES would use a smaller proportion of
total solve time, and FGMRES might be the best method. However, in a highly par-
allel setting, the global communication costs of orthogonalization become increasingly
prohibitive so PP-GMRES may still have the advantage.

5.2. Polynomial preconditioning with the polynomial changed for each

cycle. We now introduce a new variation of PP-GMRES where the polynomial is
changed every time GMRES restarts. We recompute the polynomial at the start of
each GMRES cycle using the current residual vector as the starting vector for the
polynomial computation. This is contrary to our advice in Subsection 3.6; however
the strategy works well in the following example. We view this approach mainly as
an interesting phenomenon, rather than as a competing method.

Example 12 (cont.) Table 5.1 has columns labeled ChPoly where the polynomial
is changed for each cycle of PP-GMRES. This works surprisingly well for low degree
polynomials, but becomes more expensive for high degree polynomials. For low degree
polynomials, the ‘changing polynomial’ method needs far less iterations than FGM-
RES. We suspect that this is because even though FGMRES changes polynomials
more frequently, it is focused on solving a particular linear equations problem instead
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Table 5.1: Comparison with different degree polynomials between PP-GMRES (PP-
G), FGMRES (FG) and PP-GMRES with polynomial changing for each cycle (Ch-

Poly). GMRES(50) is used for all tests. The matrix is diagonal with entries i2

n and
with n = 10,000.

PP-G FG ChPoly PP-G FG ChPoly
degree mvps mvps mvps time time time

d (thousands) (thou’s) (thou’s) (seconds) (sec’s) (sec’s)

5 5765 2468 580 3006 1166 191
10 2798 1064 335 907 472 64.0
25 1213 693 293 168 454 32.7
50 593 383 365 39.6 386 36.7
100 322 209 550 18.4 367 61.5
150 223 155 636 12.0 389 88.9
200 202 76.4 747 11.3 253 125
250 95.4 82.5 626 5.7 338 128

of the overall problem. Even though the changing polynomial method struggles for
high degree polynomials, it still stays ahead of FGMRES in solve time. Ultimately
its fastest time does not match that of regular PP-GMRES. Changing the polynomial
for PP-GMRES loses its advantage for high degrees, because if a residual vector is
skewed at the beginning of a cycle, meaning some eigencomponents are much larger
than others, then the polynomial for the preconditioning is skewed and less effec-
tive. For low degree polynomials, a skewed polynomial is used for fewer matrix-vector
products and is quickly replaced by another polynomial that can compensate for the
previous one.

6. Double Polynomial Preconditioning. Some earlier examples showed that
polynomial preconditioning can greatly reduce dot products. Here we look at further
reducing dot products by using high degree composite polynomials.

In the results of Example 3 shown in Table 3.4, dot products are reduced by almost
four orders of magnitude going from no polynomial preconditioning to a polynomial
of degree 200. However, there is a limit to this reduction; at some point, creating
higher degree polynomials raises the total number of dot products. To study this,
we separate the two phases of PP-GMRES: polynomial creation and the linear solve.
When solving the linear equations, dot products keep going down as the cycles are
reduced, but the dot products needed to generate the polynomial increase as the
polynomial degree increases. With degree 200 in Example 3, there are about 20,000
dot products for generating the polynomial and about 14,000 for the linear solve.
Then with degree 400 (+3), only about 5,000 dot products are needed for the solve,
but about 80,000 dot products are needed for generating the polynomial.

For high-degree polynomials that reduce the total number of dot products, we
suggest double polynomial preconditioning [7]. First, a GMRES iteration for matrix
A of length d1 finds the polynomial φ1. Then GMRES with matrix φ1(A) is run to
length d2 to determine the polynomial φ2. The corresponding polynomials p1 and
p2 are such that φ1(α) = αp1(α) and φ2(α) = αp2(α). The composite polynomial,
φ2(φ1(A)), is used for the polynomial preconditioned GMRES phase. Plugging in to
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Table 6.1: Biharmonic matrix with n = 40, 000.

degree cycles mvps vops dot prod’s time
deg = d1 x d2 (thousands) (thou’s) (thou’s)

100 = 10 x 10 117 583 903 154 5.29 minutes
225 = 15 x 15 31 348 433 41.0 3.00 minutes
400 = 20 x 20 8 153 174 10.2 1.26 minutes
900 = 30 x 30 3 99.1 107 3.66 49.5 seconds
1600 = 40 x 40 1 75.3 81.0 2.76 35.8 seconds
2500 = 50 x 50 1 77.6 83.9 3.07 36.6 seconds
3600 = 60 x 60 1 79.3 87.4 3.95 38.3 seconds

(1.1) and (1.2), the linear equations problem becomes

φ2(φ1(A))z = b,

x = p1(A)(p2(φ1(A))z.

This approach allows for high degree polynomials with minimal storage and orthogo-
nalization for the initial GMRES iteration which creates the composite polynomial.

Example 13. We use the same matrix as in Example 3. The results are in
Table 6.1, which is somewhat a continuation of Table 3.4. We use d1 = d2 =
10, 15, 20, 30, 40, 50, and 60 (for simplicity, the degrees of φ1 and φ2 are the same,
but this is not necessary). These values of d1 and d2 give very high degree composite
polynomials, up to degree 3600. The best results are for degree 1600 with the fastest
time reduced from 47.9 seconds for a single degree 403 polynomial in Table 3.4 to
35.8 seconds here. However, the more significant improvement is that dot products
go down by a factor of more than 10 from the best single polynomial (degree 200) to
the best composite polynomial (degree 1600). Generating two polynomials of degree
40 takes many fewer dot products than generating one polynomial of degree 200.

The reduction in dot products is more remarkable when compared to unpre-
conditioned GMRES; the improvement is five orders of magnitude for this exam-
ple. As linear equations become larger and computer architectures necessitate low-
communication algorithms, double polynomial preconditioning is one possible tool to
create high-degree polynomials in a cost-effective manner.

7. Conclusion. Previous polynomial preconditioners for GMRES generally have
had complicated implementations or instability at high degrees. In this paper we ad-
dress both problems by presenting a new implementation of the GMRES polynomial.
It is cheaper and more stable than previous implementations of this polynomial. Fur-
thermore, it is simple: to run the new polynomial preconditioned GMRES algorithm,
the user only needs to specify the degree of the polynomial and when to restart GM-
RES (d and m). For some problems, the polynomial can greatly reduce computational
costs compared to regular restarted GMRES, and this is more likely when the problem
is difficult. We show that polynomial preconditioning can especially reduce dot prod-
ucts, which may help to avoid expensive global communication in a parallel setting.
Polynomial preconditioning can effectively accelerate standard preconditioners such
as ILU. It should be considered for problems that are slow to converge even with such
standard preconditioning.
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The polynomials are adjusted with multiple added roots for stability control.
Examples show that for many problems, these added roots are not needed except with
high degree polynomials; for other problems with outstanding eigenvalues, added roots
are essential. We also give a test to check whether the stability control is sufficient.

Polynomial preconditioning works well for Example 1 even though the matrix is
indefinite. However, several problems can appear for the indefinite case. One such
difficulty is that even with a real spectrum, the polynomial may not have a minimum
at the origin and, thus, the spectrum is still indefinite after polynomial precondition-
ing. Also, adding roots for stability on one side of the spectrum may increase the
volatility of the polynomial on the other side (see Example 8). Future work will ad-
dress indefinite matrices. Possible solutions include damping the polynomial [13, 7]
and shifting the operator used for generating the roots of the polynomial.

We also plan to apply this polynomial preconditioning to non-restarted meth-
ods, such as the conjugate gradient method for symmetric problems and BiCGStab
and IDR for nonsymmetric problems. These methods do not suffer slowing conver-
gence due to restarting, but there is still great potential to reduce orthogonalization
expense and improve stability for difficult indefinite and non-normal problems. We
could also apply this polynomial preconditioner to the eigenvalue deflated method
GMRES-DR [18, 19, 15]. In some sense, both polynomial preconditioning and eigen-
value deflation accomplish the same thing, so it would be interesting to analyze the
differences between them and study cases where both are needed.
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