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Summary

The famous greedy randomized Kaczmarz (GRK) method uses the greedy selection

rule on maximum distance to determine a subset of the indices of working rows.

In this paper, with the greedy selection rule on maximum residual, we propose the

greedy randomized Motzkin-Kaczmarz (GRMK) method for linear systems. The

block version of the new method is also presented. We analyze the convergence of the

two methods and provide the corresponding convergence factors. Extensive numer-

ical experiments show that the GRMK method has almost the same performance

as the GRK method for dense matrices and the former performs better in comput-

ing time for some sparse matrices, and the block versions of the GRMK and GRK

methods always have almost the same performance.
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1 INTRODUCTION

We consider the following consistent linear systems

Ax = b, (1)

where A ∈ Rm×n, b ∈ Rm, and x is the n-dimensional unknown vector. As we know, the Kaczmarz method1 is a popular

so-called row-action method for solving the systems (1). Its update formula is

xk+1 = xk +
b(i) − A(i)xk

‖A(i)‖2
2

(A(i))T , (2)

where A(i) denotes the i-th row of A, b(i) denotes the i-th entry of b, and AT denotes the transpose of A. In 2009, Strohmer and

Vershynin2 show that the Kaczmarz method converges with expected exponential rate if the row of A in iteration is chosen ran-

domly with probability proportional to the square of the Euclidean norm of the row. Subsequently, many randomized Kaczmarz

type methods were proposed for different possible systems settings; see for example3–6 and references therein. These random-

ized methods have two obvious disadvantages. The first one is that the probability criterion will be equivalent to the uniform

sampling if the Euclidean norms of all the rows of the matrix A are the same. The case can happen by scaling the matrix A

with a suitable diagonal matrix. The second one is that it is possible to sample the same row twice in iteration. In this case, no

progress is made in such an update. To tackle these problems, in 2018, Bai and Wu7 constructed a greedy randomized Kacz-

marz (GRK) method by introducing a more efficient probability criterion for selecting the working rows from the matrix A.

The GRK method outperforms the ordinary randomized Kaczmarz methods in terms of the number of iterations and comput-

ing time, and the scheme in this method is very powerful in achieving efficient methods for solving linear problems8–10, least

squares problem11, 12 and ridge regression problem13.

http://arxiv.org/abs/2011.06687v1
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The greedy selection rule used in the GRK method is from the well known maximum distance rule because the index subset in

the method is built on the combination of the maximum and average distances. As we know, there are two main famous greedy

selection rules: the maximum distance rule and the maximum residual rule. Specifically, let x⋆ = A†b be the least-Euclidean-

norm solution of the systems (1). Then a sequence of vectors x0, x1, . . . produced by the iteration (2) is said to converge in square

to the solution x⋆ if and only if ‖xk − x⋆‖22 → 0 as k → ∞. Since the projections in iteration are orthogonal, we can check that

(see also the proof of Theorem 1 below)

‖xk+1 − x⋆‖22 = ‖xk − x⋆‖22 − ‖xk+1 − xk‖22.
Hence, the optimal projection is the one that maximizes the distances ‖xk+1 − xk‖22. Note that the update formula (2) implies

‖xk+1 − xk‖22 =
‖‖‖‖‖
b(i) −A(i)xk

‖A(i)‖2
2

(A(i))T
‖‖‖‖‖

2

2

,

which shows that in iteration we should select the tk-th index according to

tk = argmax
i

‖‖‖‖‖
b(i) −A(i)xk

‖A(i)‖2
2

(A(i))T
‖‖‖‖‖

2

2

= argmax
i

(b(i) − A(i)xk)
2

‖A(i)‖2
2

.

This greedy selection rule is the maximum distance rule14–16. The maximum residual rule16, 17 selects the tk-th index according

to

tk = argmax
i
(b(i) − A(i)xk)

2.

That is, it grasps the index corresponding to the largest magnitude entry of the residual vector rk = b − Axk, and hence the

largest magnitude entry of the residual vector rk can be preferentially annihilated as far as possible and make the tk-th equation

be ‘furthest’ from being satisfied. The maximum residual rule is also known as the Motzkin method18, 19, which can also make

sure that the same index will not be chosen twice in iteration and hence has better convergence rate compared with the ordinary

randomized Kaczmarz methods. Consequently, many analyses and applications about Motzkin type methods were published in

recent years; see for example20–26 and references therein.

However, to the best of our knowledge, there are few results in the literature that explore the use of greedy randomized Motzkin

scheme, i.e., the maximum residual rule, for Kaczmarz type algorithms for solving linear systems. To fill the research gap, in this

work, paralleling to the GRK method, we develop the greedy randomized Kaczmarz method induced from the Motzkin method,

i.e., the greedy randomized Motzkin-Kaczmarz (GRMK) method, for solving the systems (1). Moreover, to further accelerate

the GRMK method, we also present the block version of the new method using the index subset generated in the GRMK method

and refer to it as the greedy Motzkin block Kaczmarz (GMBK) method. Recently, many works on block Kaczmarz methods

were reported because, compared with the original methods, the block methods allows for significant computational speedup

and accelerated convergence to the solution; see for example27–30. The block update formula can be written as

xk+1 = xk + A†
�
(b� − A�xk), (3)

where � ⊂ {1,… , m}, A� and b� are the submatrix and subvector of A and b, respectively, with rows indexed by �, and A†
�

is

the Moore-Penrose pseudoinverse of A� . To avoid computing the pseudoinverse, a variant of the above block Kaczmarz method

is to project the current estimate onto each individual row that forms the submatrix A� , and average the obtained projections to

form the next iterate:

xk+1 = xk −
∑
i∈�

wi

A(i)xk − b(i)

‖‖A(i)‖‖22
(A(i))T , (4)

where wi represents the weight corresponding to the i-th row. This update is very suitable for distributed computing; see31–33

for detailed discussions on this topic.

The rest of this paper is organized as follows. In Section 2, some notation and preliminaries are given. The GRMK method

and its block version are discussed in Section 3 and Section 4, respectively. Finally, we present the numerical results in Section 5.

2 NOTATION AND PRELIMINARIES

Throughout the paper, for a matrix A, R(A) denotes its column space, and for a set , || denotes the number of elements of the

set. In addition, the smallest positive eigenvalues of ATA is denoted by �min(A
TA).

To analyze the convergence of our new methods, the following fact will be used extensively.
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Lemma 1. 7 Let A ∈ Rm×n and for any vector x ∈ R(AT), it holds that

‖Ax‖2
2
≥ �min

(
ATA

) ‖x‖2
2
.

For comparison later in this paper, we list the GRK method proposed in7 in Algorithm 1.

Algorithm 1. The GRK method for the systems (1).

INPUT: A ∈ Rm×n, b ∈ Rm, l , initial estimate x0

OUTPUT: x
l

For k = 0, 1, 2,… ,l − 1 do

Compute

�k =
1

2

⎛
⎜⎜⎜⎝
max
1≤ik≤m

⎧
⎪⎨⎪⎩

|r(ik)
k

|2
‖‖‖A(ik)

‖‖‖
2

2

⎫
⎪⎬⎪⎭
+

‖‖rk‖‖22
‖A‖2

F

⎞
⎟⎟⎟⎠
.

Determine the index subset of positive integers

k =

⎧
⎪⎨⎪⎩
ik

|||||
|r(ik)

k
|2

‖A(ik)‖2
2

≥ �k

⎫
⎪⎬⎪⎭
.

Compute the ith entry r̃
(i)

k
of the vector r̃k according to

r̃
(i)

k
=

{
r
(i)

k
, if i ∈ k,

0, otherwise.

Select ik ∈ k with probability Pr
(
row = ik

)
=

|r̃(ik)
k

|2
‖r̃k‖2

2

.

Set

xk+1 = xk +
r
(ik)

k

‖A(ik)‖2
2

(A(ik))T .

End for

The following greedy block Kaczmarz (GBK) method, i.e., Algorithm 2, was presented by Niu and Zheng34, which can be

seen as a block version of the GRK method.

Algorithm 2. The GBK method for the systems (1).

INPUT: A ∈ Rm×n, b ∈ Rm, l , � ∈ (0, 1], initial estimate x0

OUTPUT: x
l

For k = 0, 1, 2,… ,l − 1 do

Compute

�k = � ⋅ max
1≤ik≤m

⎧
⎪⎨⎪⎩

|r(ik)
k

|2
‖‖‖A(ik)

‖‖‖
2

2

⎫
⎪⎬⎪⎭
.

Determine the index subset of positive integers

k =

⎧
⎪⎨⎪⎩
ik

|||||
|r(ik)

k
|2

‖A(ik)‖2
2

≥ �k

⎫
⎪⎬⎪⎭
.
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Set

xk+1 = xk + A
†

k

(bk
− Ak

xk).

End for

3 THE GRMK METHOD

The GRMK method is presented in Algorithm 3. Compared with the GRK method, the main differences are the methods for

determining the index subsets and the probability criterions for sampling an index. Specifically, the GRMK method determines

the index subset k using the combination of the maximum and average magnitude entries of the residual, and samples an index

from the subset k with probability that is proportional to the corresponding distance. On a high level, the GRMK method seems

to change the order of the first two main steps of Algorithm 1. However, it essentially comes from the maximum residual rule.

Algorithm 3. The GRMK method for the systems (1).

INPUT: A ∈ Rm×n, b ∈ Rm, l , initial estimate x0

OUTPUT: x
l

For k = 0, 1, 2,… ,l − 1 do

Compute

�k =
1

2

(
max
1≤i≤m

|r(i)
k
|2 +

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2
)
.

Determine the index subset of positive integers

k =

{
ik

|||||
|r(ik)

k
|2 ≥ �k

}
.

Compute the ith entry d̃
(i)

k
of the vector d̃k according to

d̃
(i)

k
=

⎧
⎪⎨⎪⎩

|r(i)
k
|2

‖A(i)‖2

2

, if i ∈ k,

0, otherwise.

Select ik ∈ k with probability Pr
(
row = ik

)
=

d̃
(ik)
k‖d̃k‖1

.

Set

xk+1 = xk +
r
(ik)

k

‖A(ik)‖2
2

(A(ik))T .

End for

Remark 1. Note that if

|r(ik)
k

|2 = max
1≤i≤m

|r(i)
k
|2,

then ik ∈ k. This is because

max
1≤i≤m

|r(i)
k
|2 ≥

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2

and

|r(ik)
k

|2 = max
1≤i≤m

|r(i)
k
|2 ≥ 1

2

(
max
1≤i≤m

|r(i)
k
|2 +

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2
)
.

So the index subset k in Algorithm 3 is always nonempty.
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Remark 2. As done in8, 12, we can introduce an arbitrary relaxation parameter � ∈ [0, 1] into the quantity �k in Algorithm 3,

that is,

�k = � ⋅ max
1≤i≤m

|r(i)
k
|2 + (1 − �) ⋅

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2.

Then, the relaxed greedy randomized Motzkin-Kaczmarz method can be devised. In this case, setting � = 1, i.e., �k =

max
1≤i≤m

|r(i)
k
|2, and ik = argmax

i∈k

{
d̃
(i)

k

}
, we can recover the greedy Kaczmarz method proposed in35.

Now, we bound the expected rate of convergence for Algorithm 3.

Theorem 1. From an initial guess x0 ∈ R(AT), the sequence {xk}
∞
k=0

generated by the GRMK method converges linearly in

expectation to the least-Euclidean-norm solution x⋆ = A†b and

E‖x1 − x⋆‖22 ≤
⎛⎜⎜⎝
1 −

min
i

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

�min(A
TA)

‖A‖2
F

⎞⎟⎟⎠
‖x0 − x⋆‖22, (5)

and

E‖xk+1 − x⋆‖22 ≤
⎛
⎜⎜⎝
1 −

1

2

min
i≠ik−1

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

�min(A
TA)

‖A‖2
F

⎛
⎜⎜⎝

‖A‖2
F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠
‖xk − x⋆‖22,

k = 1, 2,… . (6)

Moreover, let � = min

{
min
i≠ik−1

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

}
, k = 1, 2,… . Then

E‖xk − x⋆‖22 ≤

⎛
⎜⎜⎝
1 −

�

2

�min(A
TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1)

⎞
⎟⎟⎠

k−1

×

⎛⎜⎜⎝
1 −

min
i

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

�min(A
TA)

‖A‖2
F

⎞⎟⎟⎠
‖x0 − x⋆‖22, k = 1, 2,… . (7)

Proof. From the update formula in Algorithm 3, we have

xk+1 − xk =
r
(ik)

k

‖A(ik)‖2
2

(A(ik))T ,

which implies that xk+1 − xk is parallel to (A(ik))T . Meanwhile,

A(ik)(xk+1 − x⋆) = A(ik)

(
xk − x⋆ +

r
(ik)

k

‖A(ik)‖2
2

(A(ik))T

)

= A(ik)
(
xk − x⋆

)
+ r

(ik)

k
,

which together with the fact Ax⋆ = b gives

A(ik)(xk+1 − x⋆) = (A(ik)xk − b(ik)) + (b(ik) −A(ik)xk) = 0.

Then xk+1 − x⋆ is orthogonal to A(ik). Thus, the vector xk+1 − xk is perpendicular to the vector xk+1 − x⋆. By the Pythagorean

theorem, we get

‖xk+1 − x⋆‖22 = ‖xk − x⋆‖22 − ‖xk+1 − xk‖22.
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Now, taking expectation of both sides, we have

E‖xk+1 − x⋆‖22 = ‖xk − x⋆‖22 − E‖xk+1 − xk‖22

= ‖xk − x⋆‖22 −
∑
ik∈k

d̃
(ik)
k

∑
ik∈k

d̃
(ik)
k

|r(ik)
k

|2
‖A(ik)‖2

2

≤ ‖xk − x⋆‖22 − 1

max
i∈k

‖A(i)‖2
2

∑
ik∈k

d̃
(ik)
k

∑
ik∈k

d̃
(ik)
k

|r(ik)
k

|2. (8)

For k = 0, according to Algorithm 3, we have

|r(i0)
0

|2 ≥ 1

2

(
max
1≤i≤m

|r(i)
0
|2 +

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
0
|2
)

=
1

2

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
0
|2(

max
1≤i≤m

|r(i)
0
|2

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
0
|2

+ 1)

≥
1

2

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
0
|2( 1

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

+ 1)

≥
1

2

min
i

‖A(i)‖2
2

‖A‖2
F

m∑
i=1

|r(i)
0
|2( 1

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

+ 1)

=

min
i

‖A(i)‖2
2

‖A‖2
F

‖r0‖22,

which together with Lemma 1 yields

|r(i0)
0

|2 ≥
min
i

‖A(i)‖2
2
�min(A

TA)

‖A‖2
F

‖x0 − x⋆‖22. (9)

Thus, substituting (9) into (8), we get

E‖x1 − x⋆‖22 ≤ ‖x0 − x⋆‖22 −
min
i

‖A(i)‖2
2
�min(A

TA)

max
i∈k

‖A(i)‖2
2
‖A‖2

F

‖x0 − x⋆‖22

≤

⎛
⎜⎜⎝
1 −

min
i

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

�min(A
TA)

‖A‖2
F

⎞
⎟⎟⎠
‖x0 − x⋆‖22,

which is just the estimate (5).

For k ≥ 1, to find the lower bound of |r(ik)
k

|2, first note that

r
(ik−1)
k

= b(ik−1) −A(ik−1)xk

= b(ik−1) −A(ik−1)

⎛
⎜⎜⎜⎝
xk−1 +

r
(ik−1)
k−1

‖‖‖A(ik−1)
‖‖‖
2

2

(
A(ik−1)

)T

⎞
⎟⎟⎟⎠

= b(ik−1) −A(ik−1)xk−1 − r
(ik−1)
k−1

= 0, (10)
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and

|r(ik)
k

|2 ≥ 1

2

(
max
1≤i≤m

|r(i)
k
|2 +

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2
)

=
1

2

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2(

max
1≤i≤m

|r(i)
k
|2

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2

+ 1)

≥
1

2

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2( 1

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

+ 1)

≥
1

2

min
i≠ik−1

‖A(i)‖2
2

‖A‖2
F

m∑
i=1,i≠ik−1

|r(i)
k
|2( 1

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

+ 1)

=
1

2

min
i≠ik−1

‖A(i)‖2
2

‖A‖2
F

(
1

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

+ 1)‖rk‖22.

Further, considering Lemma 1, we have

|r(ik)
k

|2 ≥ 1

2

min
i≠ik−1

‖A(i)‖2
2

‖A‖2
F

(
1

m∑
i=1,i≠ik−1

‖A(i)‖2
2

‖A‖2
F

+ 1)�min(A
TA)‖xk − x⋆‖22

≥
1

2

min
i≠ik−1

‖A(i)‖2
2
�min(A

TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1)‖xk − x⋆‖22. (11)

Thus, substituting (11) into (8), we get the estimate (6). By induction on the iteration index k, we can obtain the estimate (7).

Remark 3. According to (10), we know that r
(ik−1)
k

= 0, which implies that ik−1 ∉ k. So the GRMK method can make sure the

same index will never be chosen twice in iteration and we also have

min
i≠ik−1

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

≤ 1. (12)

Remark 4. For the GRK method, the error estimate in expectation given in7 is

E ‖‖xk+1 − x⋆
‖‖22 ≤

⎛
⎜⎜⎝
1 −

1

2

�min(A
TA)

‖A‖2
F

⎛
⎜⎜⎝

‖A‖2
F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠
‖xk − x⋆‖22. (13)

Combining (12) and (13), we can get

1 −
1

2

�min(A
TA)

‖A‖2
F

⎛
⎜⎜⎝

‖A‖2
F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1

⎞
⎟⎟⎠

≤ 1 −
1

2

min
i≠ik−1

‖A(i)‖2
2

max
i∈k

‖A(i)‖2
2

�min(A
TA)

‖A‖2
F

⎛
⎜⎜⎝

‖A‖2
F

‖A‖2
F
− min

1≤i≤m

‖‖A(i)‖‖22
+ 1

⎞
⎟⎟⎠
< 1.

That is, the convergence factor of the GRMK method is indeed smaller than 1 and is larger than that of the GRK method.

However, as pointed out in8, the convergence factor only describes the worst case of the algorithm and is just the upper bound of

the actual convergence rate. So, these convergence factors can not be used to evaluate the actual convergence speed of algorithms
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directly. To make this fact clearer, we present some numerical results in Fig. 1 to illustrate the convergence factors and the actual

convergence rates of the GRMK and GRK methods, where the definition of the actual convergence rate is taken from8

�k =

(
E ‖‖xk − x⋆

‖‖22
‖‖x0 − x⋆

‖‖22

)1∕k

, k ≥ 1. (14)

0 10 20 30 40 50 60 70 80
0.98

0.985

0.99

0.995

1

GRK-rate
GRK-factor
GRMK-rate
GRMK-factor

0 10 20 30 40 50 60 70 80
0.97

0.975

0.98

0.985

0.99

0.995

1

GRK-rate
GRK-factor
GRMK-rate
GRMK-factor

FIGURE 1 Convergence factors/rates of the GRK and GRMK methods with matrices whose entries are uniformly dis-

tributed random numbers between 0 and 1. (left) A is of order 2000 × 200; (right) A is of order 5000 × 200. GRK

(GRMK)-factor=convergence factor of GRK (GRMK) method; GRK (GRMK)-rate=actual convergence rate of GRK (GRMK)

method.

Numerical results show that the convergence factors of the GRMK are indeed a little larger than those of the GRK method.

However, the actual convergence rates of the GRMK method are a little smaller than those of the GRK method. In addition, we

can also find that the convergence factors are the quite loose upper bounds of the actual convergence rates.

4 THE GMBK METHOD

The GMBK method is presented in Algorithm 4. Unlike the GRMK method, after determining the index subset k, the GMBK

method projects the current iterate onto the solution space of this subset simultaneously.

Algorithm 4. The GMBK method for the systems (1).

INPUT: A ∈ Rm×n, b ∈ Rm, l , initial estimate x0

OUTPUT: x
l

For k = 0, 1, 2,… ,l − 1 do

Compute

�k =
1

2

(
max
1≤i≤m

|r(i)
k
|2 +

m∑
i=1

‖A(i)‖2
2

‖A‖2
F

|r(i)
k
|2
)
.

Determine the index subset of positive integers

k =

{
ik

|||||
|r(ik)

k
|2 ≥ �k

}
.

Set

xk+1 = xk + A
†

k

(bk
− Ak

xk).

End for
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Remark 5. In the GMBK method, we adopt the iterative format (3) to update the approximation. We can also update it in the

form of the formula (4) to avoid computing the pseudoinverse.

Remark 6. Similar to Algorithm 2, i.e., the GBK method, we can set the quantity �k in Algorithm 4 in the following form

�k = � max
1≤i≤m

|r(i)
k
|2,

where � ∈ (0, 1] is a parameter.

Next, we bound the rate of convergence for Algorithm 4.

Theorem 2. From an initial guess x0 ∈ R(AT), the sequence {xk}
∞
k=0

generated by the GMBK method converges linearly to

the least-Euclidean-norm solution x⋆ = A†b and

‖x1 − x⋆‖22 ≤ (1 − |0|
min
i

‖A(i)‖2
2

�max(A
T
0
A0

)

�min(A
TA)

‖A‖2
F

)‖x0 − x⋆‖22, (15)

and

‖xk+1 − x⋆‖22 ≤ (1 −
1

2
|k|

min
i∉k−1

‖A(i)‖2
2

�max(A
T
k

Ak
)

�min(A
TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
−
‖‖‖Ak−1

‖‖‖
2

F

+ 1))‖xk − x⋆‖22,

k = 1, 2,… . (16)

Proof. From Algorithm 4, using the fact Ax⋆ = b, we have

xk+1 − x⋆ = xk − x⋆ + A
†

k

(bk
−Ak

xk)

= xk − x⋆ − A
†

k

Ak
(xk − x⋆)

= (I −A
†

k

Ak
)(xk − x⋆).

Since A
†

k

Ak
is an orthogonal projector, taking the square of the Euclidean norm on both sides and applying Pythagorean

theorem, we get

‖xk+1 − x⋆‖22 = ‖(I − A
†

k

Ak
)(xk − x⋆)‖22

= ‖xk − x⋆‖22 − ‖A†

k

Ak
(xk − x⋆)‖22,

which together with Lemma 1 and the fact �min((A
†

k

)TA†

k

) = �−1
max

(AT
k

Ak
) yields

‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − �min((A
†

k

)TA†

k

)‖Ak
(xk − x⋆)‖22

= ‖xk − x⋆‖22 − �−1
max

(AT

k

Ak
)‖Ak

(xk − x⋆)‖22
= ‖xk − x⋆‖22 − �−1

max
(AT

k
Ak

)
∑
ik∈k

|r(ik)
k

|2. (17)

Now, the main task is to find the lower bound of |r(ik)
k

|2.
For k = 0, substituting (9) into (17), we quickly obtain

‖x1 − x⋆‖22 ≤ ‖x0 − x⋆‖22 − �−1
max

(AT

0
A0

)|0|
min
i

‖A(i)‖2
2
�min(A

TA)

‖A‖2
F

‖x0 − x⋆‖22

≤ (1 − |0|
min
i

‖A(i)‖2
2

�max(A
T
0
A0

)

�min(A
TA)

‖A‖2
F

)‖x0 − x⋆‖22,

which is just the estimate (15).
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For k ≥ 1, similar to the derivation of the inequality (11), we obtain

|r(ik)
k

|2 ≥ 1

2

min
i∉k−1

‖A(i)‖2
2
�min(A

TA)

‖A‖2
F

(
‖A‖2

F

m∑
i=1,i∉k−1

‖A(i)‖2
2

+ 1)‖xk − x⋆‖22

=
1

2

min
i∉k−1

‖A(i)‖2
2
�min(A

TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
−
‖‖‖Ak−1

‖‖‖
2

F

+ 1)‖xk − x⋆‖22. (18)

Then, substituting (18) into (17), we get

‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − 1

2
|k|

min
i∉k−1

‖A(i)‖2
2

�max(A
T
k

Ak
)

�min(A
TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
−
‖‖‖Ak−1

‖‖‖
2

F

+ 1)‖xk − x⋆‖22

= (1 −
1

2
|k|

min
i∉k−1

‖A(i)‖2
2

�max(A
T
k

Ak
)

�min(A
TA)

‖A‖2
F

(
‖A‖2

F

‖A‖2
F
−
‖‖‖Ak−1

‖‖‖
2

F

+ 1)‖xk − x⋆‖22,

which implies the desired result (16).

Remark 7. From Algorithms 3 and 4, we know that {x|Ak
x = bk

} ⊂ {x|A(ik)x = b(ik)}, where ik is the update index of the

GRMK method. Thus, similar to the analysis in23, we can obtain

‖xGRMK
k

− xk−1‖22 ≤ ‖xGMBK
k

− xk−1‖22,
which together with the fact

‖‖‖x
GRMK
k

− xk−1
‖‖‖
2

2
+
‖‖‖x

GRMK
k

− x⋆
‖‖‖
2

2
= ‖‖xk−1 − x⋆

‖‖22
=
‖‖‖x

GMBK
k

− xk−1
‖‖‖
2

2
+
‖‖‖x

GMBK
k

− x⋆
‖‖‖
2

2
,

leads to

‖xGMBK
k

− x⋆‖22 ≤ ‖xGRMK
k

− x⋆‖22.
In the above expressions, xGMBK

k
and xGRMK

k
denote the next approximations generated by the GMBK and GRMK methods,

respectively. Hence, the GMBK method converges at least as fast as the GRMK method.

In addition, since {x|Ak
x = bk

} ⊂ {x|A(lk)x = b(lk)}, where lk = arg max
1≤i≤m

|r(i)
k
|2, we can also get that the GMBK method

must converge at least as fast as the Motzkin method.

Remark 8. To compare Algorithms 2 and 4 fairly, in the following, we set � in Algorithm 2 to be

� =
1

2
+

1

2

‖‖b −Axk
‖‖22

‖A‖2
F

(
max
1≤ik≤m

{||bik −A(ik)xk
||2

‖‖A(ik)‖‖22

})−1

,

that is, set

�k =
1

2

⎛
⎜⎜⎜⎝
max
1≤ik≤m

⎧
⎪⎨⎪⎩

|r(ik)
k

|2
‖‖‖A(ik)

‖‖‖
2

2

⎫
⎪⎬⎪⎭
+

‖‖rk‖‖22
‖A‖2

F

⎞
⎟⎟⎟⎠
.

We refer to this block algorithm as the greedy distance block Kaczmarz (GDBK) method.

From Remark 4, we know that the convergence factor cannot accurately explain the convergence speed of a method. So, we

compare the actual convergence rates defined in (14) of the GDBK and GMBK methods using numerical experiments. The

numerical results are listed in Fig. 2, which show that these actual convergence rates are almost the same.



ZHANG AND LI 11

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

GDBK-rate
GMBK-rate

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

GDBK-rate
GMBK-rate

FIGURE 2 Actual convergence rates of the GDBK and GMBK methods with matrices whose entries are uniformly distributed

random numbers between 0 and 1. (left) A is of order 1000×200; (right)A is of order 5000×1000. GDBK (GMBK)-rate=actual

convergence rate of GDBK (GMBK) method.

5 NUMERICAL EXPERIMENTS

In this section, we mainly compare our new greedy Motzkin-Kaczmarz methods (GRMK, GMBK) with the greedy distance

Kaczmarz methods (GRK, GDBK) in terms of the iteration numbers (denoted as “Iteration”) and computing time in seconds

(denoted as “CPU time(s)”) with different matricesA ∈ Rm×n. In all the following specific experiments, we generate the solution

vector x⋆ ∈ Rn using the MATLAB function randn, and the vector b ∈ Rm by setting b = Ax⋆. All experiments start from

an initial vector x0 = 0, and terminate once the relative solution error (RES) or relative residual (RR) at xk is less than 10−10,

where RES and RR are defined by

RES =
‖‖xk − A†b‖‖22

‖‖A†b‖‖22
, RR =

‖‖b − Axk
‖‖22

‖‖b − Ax0
‖‖22

.

We first consider three main models of the coefficient matrix A: a Gaussian matrix with i.i.d. N(0, 1) entries gener-

ated by the MATLAB function randn, a sparse normally distributed random matrix generated by the MATLAB func-

tion sprandn(m,n,0.2,0.8), and a sparse uniformly distributed random matrix generated by the MATLAB function

sprand(m,n,0.2,0.8). Numerical results are reported in Figures 3–8, which describe the log10(RES) or log10(RR) against

the iteration number and CPU time. From these figures, we can find that for dense matrices, i.e., the matrices with i.i.d. N(0, 1)

entries, the performances of the GRMK and GRK methods are almost the same; for sparse matrices, the GRMK method

outperforms the GRK method in CPU time; for all the cases, the GMBK and GDBK methods have almost the same performance.

0 20 40 60

10-10

10-5

100

GRK
GRMK
GDBK
GMBK

0 2000 4000 6000

10-10

10-5

100

GRK
GRMK
GDBK
GMBK

FIGURE 3 Performance of the methods on A ∈ R5000×1000 with i.i.d. N(0, 1) entries.

We also compare the performance of the methods on a real-world matrix, mk9-b3, taken from36. Numerical results are

reported in Figures 9–10, which show the similar results obtained from the above experiments on dense matrices. That is, the

GRMK method and its block version have almost the same performance as the GRK method and its block version.
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FIGURE 4 Performance of the methods on A ∈ R1000×5000 with i.i.d. N(0, 1) entries.
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FIGURE 5 Performance of the methods on A generated by the MATLAB function sprandn(5000,500,0.2,0.8).
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FIGURE 6 Performance of the methods on A generated by the MATLAB function sprandn(500,5000,0.2,0.8).
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FIGURE 7 Performance of the methods on A generated by the MATLAB function sprand(5000,500,0.2,0.8).
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FIGURE 8 Performance of the methods on A generated by the MATLAB function sprand(500,5000,0.2,0.8).
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FIGURE 9 Performance of the methods on a real-world matrix, mk9-b3 (945 × 1260).
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FIGURE 10 Performance of the methods on a real-world matrix, mk9-b3 (945 × 1260).
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