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Abstract

There is an emerging interest in tensor factorization applications in big-data analytics and machine
learning. To speed up the factorization of extra-large datasets, organized in multidimensional arrays
(aka tensors), easy to compute compression-based tensor representations, such as Tucker and Tensor
Train formats, are used to approximate the initial large-tensor. Further, tensor factorization is used
to extract latent features that can facilitate discoveries of new mechanisms and signatures hidden
in the data, where the explainability of the latent features is of principal importance. Nonnegative
tensor factorization extracts latent features that are naturally sparse and parts of the data, which
makes them easily interpretable. However, to take into account available domain knowledge and
subject matter expertise, additional constraints often need to be imposed, which lead us to Canonical
decomposition with linear constraints (CANDELINC), a Canonical Polyadic Decomposition with rank
deficient factors. In CANDELINC, Tucker compression is used as a pre-processing step, which leads
to a larger residual error but to more explainable latent features. Here, we propose a nonnegative
CANDELINC (nnCANDELINC) accomplished via a specific nonnegative Tucker decomposition; we
refer to as minimal or canonical nonnegative Tucker. We derive several results required to understand
the specificity of nnCANDELINC, focusing on the difficulties of preserving the nonnegative rank
to its Tucker core and comparing the real-valued to the nonnegative case. Finally, we demonstrate
nnCANDELINC performance on synthetic and real-world examples.

Keywords: Nonnegative Tucker, Minimal cones, Nonnegative rank, Nonnegative multirank,
Nonnegative CANDELINC, linear constraints, data compression

1. Introduction

Large amounts of high-dimensional data are constantly generated by sensor networks; large-scale
scientific experiments; massive computer simulations; complex engineering activities; electronic
communications; social networks, and many other sources [1]. Utilizing such big-data for decision
making, emergency response, and data-driven science requires understanding the processes underlying
the data [2]. High-dimensional data are naturally organized in tensors (i.e., multi-dimensional arrays).
Tensor factorization is a cutting-edge factor analysis that can serve for latent features extraction,
dimensional reduction, blind source separation, data mining, pattern recognition, subspace learning,
data fusion, compression, and many other applications [3, 4]. A tensor factorization’s main objective
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is to decompose high-dimensional data into factor matrices and one, or in the case of tensor networks
[5], several core-tensors of a smaller size.

The number of the tensor entries scales exponentially with tensor dimension, which leads to
exponential scaling of the burden of any tensor computation, in terms of storage and floating point
operations. This phenomenon is known as the curse of dimensionality. One way to speed up tensor
calculations and decrease the needed storage is to use stable compression-based representations of
the large initial tensors, and then to extract the needed information from the compressed data [6].
Some of the proposed stable compression-based formats are Tucker [7] (related to the multirank of
a tensor [8]) and Tensor Train (TT) formats [5], which need O(dnr + rd) and O(dnr + (d − 2)r3)
parameters, respectively, vs. O(nd) entries of the full tensor (here d is the tensor dimension, n
is the number of entries in each dimension, and r is the Tucker/TT ranks used in compression).
Canonical Polyadic Decomposition [9, 10](CPD), related to the rank of the tensor [8], also offers
a good compression, however, computation of the tensor rank is an NP-hard problem [11], and
ill-conditioned decompositions and ill-posed optimization problems often remain unsolved [12].

Another problem is that the existing datasets are formed by directly observable quantities, while
the underlying processes (features or variables) usually remain unobserved, hidden, or latent [13]. This
necessitates the ability to identify and extract explainable latent features needed to identify essential
signatures that are manifestation of the processes and causalities hidden in large high-dimensional
datasets. Imposing various constraints on the factors, reflecting available prior information, usually
helps to mitigate this problem.

Many types of real-world data (e.g., density, energy, spectral power, population, pixels, proba-
bilities, frequencies of appearance, etc.) are naturally nonnegative and the extracted features will
lose their meaning if the nonnegativity is not preserved. Tensor factorizations with nonnegative
constraint extract nonnegative latent features formed by only positive combinations, which favors
parts based sparse representation where extracted features are parts of the original data [14]. Im-
portantly, because the extracted features are parts of the original data they are easy to understand
and interpret which makes the nonnegative factorization invaluable for scientific applications [15].
Classical tensor decompositions corresponding to nonnegative tensor ranks are nonnegative Canonical
Polyadic Decomposition (nnCPD) [15] and nonnegaive Tucker Decomposition (nnTD) [15]. In Tucker,
the minimum dimensions of the core tensor are often called multirank and the concept of nonnegative
multirank in nnTD is introduced in Section 3.

In addition to nonnegativity, various other constraints on the decomposition are often needed
to take into account the available domain knowledge and subject matter expertise and extract
explainable and meaningful latent features. The canonical decomposition with linear constraints
(CANDELINC) [16] is one of these decompositions. A preprocessing step in CANDELINC is Tucker
compression, which often leads to a larger residual error but also to interpretable latent features [17].

In this work, we derive formulation of nonnegative CANDELINC (nnCANDELINC). This is
accomplished via nnTDs we refer to as minimal nonnegative Tucker Decompositions: A minimal
TD/nnTD is where the Tucker core has the smallest shape possible (Definitions 2.8, 3.10). In
Section 2, we discuss the well-known fact that for real valued tensors minimal Tuckers always exist [8],
and preserve the rank of the original tensor to the Tucker core (Theorem 2.12). We then relate the
CPD to the minimal Tucker, which leads to CANDELINC (Theorem 2.13). The previous Theorem
guarantees CANDELINC will successfully find a rank factorization of the tensor. The nonnegative
counterpart to CANDELINC faces greater challenges however. In Section 3, we discuss nnCPD with
rank deficiency (aka PARALIND for real valued tensors [18, 19]), and its relation to the minimal
nnTD. We show that a minimal nnTD need not exist (Example 3.12) and even if it does exist,
it need not preserve the rank to the core (Example 3.13). However under some mild conditions,
some minimal nnTD will preserve the rank (Theorem 3.15). Unfortunately, these conditions do not
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guarantee that every minimal nnTD will preserve the rank (Example 3.16). This naturally leads to
the discussion of when the nonnegative rank is preserved (Theorem 3.17) and when we can overcome
the challenges just discussed. We therefore loosen our requirement on the shape of the Tucker core.
This leads us naturally to the definition of a canonical nnTD (Definition 3.19). We show that every
nonnegative tensor has a canonical nnTD which preserves the rank to the core (Theorem 3.20).
Finally, in Section 4, we perform numerical experiments with nnCANDELINC on synthetic and
real-world datasets. We consider two different algorithms for nnCANDELINC: (i) Performing, first
nnTD compression, and then nnCPD on the core, and (ii) First nnCPD, and then reconstruction of
the linear dependence of the extracted factors by Nonnegative Matrix Factorization (NMF). We also
investigate the effect of choosing the nonnegative canonical vs. nonnegative minimal multirank.

2. Decompositions of Real Valued Tensors

In this section, we review some of the basics of real-valued tensors decompositions. For notational
simplicity, we consider only 3-way tensors, although the analysis is valid for d-way tensors. A detailed
presentation of the basic results can be found in [15, 8, 20, 3]. We will begin with a few formal
definitions on tensors and tensor decompositions. This will include the concept of a minimal subspace,
which will motivate our definition of a minimal Tucker decomposition. We will then go on to provide
some results on rank perseverance to the core of a minimal Tucker decomposition. Precise notation
for n−mode multiplication and unfolding used throughout the text can be found in the Appendix.

Definition 2.1. For vectors a(1) ∈ RN1 , a(2) ∈ RN2 , a(3) ∈ RN3 , the tensor product is the 3-way
tensor a(1) ⊗ a(2) ⊗ a(3) given by(

a(1) ⊗ a(2) ⊗ a(3)
)
i,j,k

= a
(1)
i a

(2)
j a

(3)
k .

The tensor a(1) ⊗ a(2) ⊗ a(3) is referred to as a rank-1, elementary, or decomposable tensor. For
Ui subspace of RNi , the tensor product space U1 ⊗ U2 ⊗ U3 consists of all linear combinations of
elementary tensors where a(i) ∈ Ui.

The tensor product space RN1 ⊗RN2 ⊗RN3 is isomorphic to the linear space of 3-way arrays
R
N1×N2×N3 . Thus for ease of notation, we will often write X ∈ RN1×N2×N3 for a real 3-way tensor

of dimension N1 ×N2 ×N3, with components X = (Xi,j,k), for i, j, k ranging from 1 to N1, N2, and

N3, respectively. Every X ∈ RN1 ⊗RN2 ⊗RN3 can be written as X =
∑
i,j,k Xi,j,ke

(1)
i ⊗ e

(2)
j ⊗

(3)
k ,

where, {e(1)i }, {e
(2)
j }, and {e(3)k } are the canonical basis vectors of RN1 , RN2 , and RN3 , respectively.

However, every tensor X ∈ RN1×N2×N3 can be decomposed in many different ways. And perhaps
most significant is the decomposition as a weighted sum of rank-1 tensors:

Definition 2.2. For every tensor X ∈ RN1×N2×N3 , there exists a sufficiently large positive integer
r such that X may be written as

X =
r∑

n=1

λna
(1)
n ⊗ a(2)n ⊗ a(3)n , (1)

where λn ∈ R and a(i) ∈ RNi are unit vectors. Such a decomposition is a polyadic decomposition.
The rank of a tensor is defined as the smallest integer number r of rank-1 terms for which a polyadic
decomposition exists, or

rank(X ) = min

{
r
∣∣ X =

r∑
n=1

λna
(1)
n ⊗ a(2)n ⊗ a(3)n , λn ∈ R, a(i)n ∈ RNi , i = 1, 2, 3

}
. (2)
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𝑩

𝑪

𝒂𝒓

𝒄𝟏 𝒄𝒓
𝒃𝟏 𝒃𝒓

𝑩
𝑪

X
N1

N2

N3

TD for subspaces learning

CPD for features extraction [G is superdiagonal]

Nonnegative CPD and TD are derived by a
non-convex minimization with constraints:

𝒎𝒊𝒏 𝑿 − G ×!F1 ×"F2 ×#F3
$
𝟐

G≥ 0; F1 ≥ 0; F2 ≥ 0; F3 ≥ 0

Figure 1: Two classical tensor decompositions: A) Canonical Polyadic Decomposition (CPD) of a
3-dimensional tensor X of size N1×N2×N3 into a superdiagonal core tensor G ≡ D of size r× r× r
and three matrix factors, A, B, and C. B) Tucker Decomposition (TD) of a 3-dimensional tensor X
into a dense core tensor G of size r1 × r2 × r3 and three matrix factors, F (1), F (2), and F (3).

A corresponding decomposition is called a Canonical Polyadic Decomposition (CPD) of X .

Collecting the vectors a
(i)
n into factor matrices A(i) =

[
a
(i)
1

∣∣ . . . ∣∣ a(i)r ]
and the coefficients λn

into a superdiagonal tensor D allows us to represent CPD as the product of a superdiagonal tensor
D and factor matrices, or

X = D ×1 A
(1) ×2 A

(2) ×3 A
(3), (3)

as seen in Figure 1, panel A. Here the n−mode multiplication, ×n is defined in the Appendix (
Definition Appendix A.1). In general, X does not require the full ambient space RN1 ⊗RN2 ⊗RN3

to represent it. Indeed, X can be contained in the tensor product of subspaces U1 ⊗ U2 ⊗ U3 where
Ui is a subspace of RNi . This is the concept behind a Tucker Decomposition:

Definition 2.3. The Tucker Decomposition (TD) is a weighted tensor product decomposition of the
form

X =

r1,r2,r3∑
n1,n2,n3=1

Gn1,n2,n3
f (1)n1
⊗ f (2)n2

⊗ f (3)n3
, (4)

where the vectors f (i) ∈ RNi , for i = 1, 2, 3, and the core tensor G ∈ Rr1 ⊗Rr2 ⊗Rr3 .

Tucker decomposition factorizes tensor X into the product of a tensor core G and three factor

matrices F (i) =
[
f
(i)
1 | . . . |f

(i)
ri

]
∈ RNi×ri , for i = 1, 2, 3, as seen in Figure 1 panel B. Similarly to (3),

we can reformulate (4) as

X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) . (5)
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For a tensor X ∈ RN1 ×RN2 ×RN3 , the matrix factors F (i) in a Tucker decomposition are associated
with such subspaces of RNi . Given a matrix F ∈ RN×r we let col(F ) denote the column space of F .
Then the following is a direct consequence of Equation 4:

Proposition 2.4. Given three matrices F (1), F (2), and F (3), a tensor X admits the Tucker decom-
position X = G ×1 F

(1) ×2 F
(2) ×3 F

(3) if and only if X ∈ col(F (1))⊗ col(F (2))⊗ col(F (3)).

Every Tucker decomposition of a three-way tensor is linked to three integer numbers, namely, r1,
r2, and r3, from G ∈ Rr1×r2×r3 . The immediate question is: what are the permissible or minimal
values of r1, r2, and r3 such that there exists a Tucker decomposition with a core tensor of these
dimensions? The smallest such values would describe the maximal permissible lossless compression
within the shape of the tensor. This information is encoded in the concept of the minimal subspaces
and minimal tensor multirank [8].

Definition 2.5. Given a tensor X ∈ RN1 ⊗RN2 ⊗RN3 , the minimal subspaces associated with
X are subspaces Umin

i ⊂ RNi such that X ∈ Umin
1 ⊗ Umin

2 ⊗ Umin
3 and if X ∈ U1 ⊗ U2 ⊗ U3 then

Umin
i ⊂ Ui.

We remark that minimal subspaces always exist and are unique. Indeed, one can show that

(U1 ⊗ U2 ⊗ U3)
⋂

(U ′1 ⊗ U ′2 ⊗ U ′3) =

3⊗
i=1

Ui ∩ U ′i (6)

for any collection of subspaces Ui, U
′
i ⊂ RNi [8]. It then follows that

Umin
1 ⊗ Umin

2 ⊗ Umin
3 =

⋂
{U1 ⊗ U2 ⊗ U3 : X ∈ U1 ⊗ U2 ⊗ U3} .

Eq. (6) also shows that the minimal subspaces can be found coordinatewise rather than simultaneously.
Hence, if Umin

i are the minimal subspaces found such that

X ∈ Umin
1 ⊗RN2 ⊗RN3 ; X ∈ RN1 ⊗ Umin

2 ⊗RN3 ; X ∈ RN1 ⊗RN2 ⊗ Umin
3 ,

then by Eq. (6), we have X ∈ Umin
1 ⊗ Umin

2 ⊗ Umin
3 . Associated with the minimal subspaces of X is

the concept of the i-th minimal multirank of X .

Definition 2.6. The i-th minimal multirank of a tensor X , denoted by µranki(X ), is the dimension
of the i-th minimal subspace Umin

i . The minimal multilinear rank of X is the triple of dimensions

µrank(X ) =
(
µrank1(X ), µrank2(X ), µrank3(X )

)
.

We note that the i-th minimal multirank of X does not depend on the j-th tensor coordinate for
j 6= i. Formally, the first minimal multirank of X is given by

µrank1(X ) = min
{

dim(U1) | X ∈ U1 ⊗RN2 ⊗RN3 , U1 ⊂ RN1
}

with analogous definitions for the second and the third minimal multiranks. For any Tucker
decomposition X = G ×1 F

(1)×2 F
(2)×3 F

(3), it holds that rank(F (i)) ≥ µranki(X ), i = 1, 2, 3, since
by Proposition 2.4 the span of the columns of matrix factor F (i) must contain the corresponding
minimal subspace Umin

i , i.e., Umin
i ⊂ span(F (i)). We record the following well known connection

between the minimal multirank of X and its unfoldings (for definition of unfolding see Appendix,
Definition Appendix A.3).
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Proposition 2.7. Given a tensor X , Umin
i = col(unfoldi(X )) and µranki(X ) = rank(unfoldi(X ))

[8].

In general, a Tucker decomposition does not satisfy the identity rank(F (i)) = µranki(X ). This
fact motivates us to introduce the notion of minimal Tucker Decomposition (minimal TDs) in the
next definition, which is a Tucker decomposition with core dimensions corresponding to the minimal
multirank.

Definition 2.8. Consider tensor X ∈ RN1×N2×N3 . We say that the Tucker decomposition X =
G ×1 F

(1) ×2 F
(2) ×3 F

(3) is minimal if the dimensions of the core tensor G are equal to the minimal
multiranks, i.e., G ∈ Rµrank1(X )×µrank2(X )×µrank3(X ) and F (i) ∈ RNi×µranki(X ), i = 1, 2, 3.

In a minimal TD, F (i) ∈ RNi×µranki(X ) implies that rank(F (i)) ≤ µranki(X ). However by the
discussion above, rank(F (i)) ≥ µranki(X ), so that rank(F (i)) = µranki(X ). This is rather different
than the case of the loading matrices in a CPD, where rank deficiency can occur. The following
simple example demonstrates that a CPD need not be minimal TD.

Example 2.9. Let X ∈ R2,2,2 be the rank 2 tensor

X =

[
0 1 1 0
0 1 1 0

]
.

It is not hard to see that µrank1(X ) = 1, while µrank2(X ) = µrank3(X ) = 2. Hence any minimal
TD will satisfy G ∈ R1,2,2. However since X is rank 2, the rank decomposition will have the shape
D ∈ R2,2,2. Thus, a CPD of X does not need to be a minimal Tucker decomposition.

2.1. Real Rank Preservation to Minimal Tucker Core

Given a Tucker decomposition X = G ×1 F
(1) ×2 F

(2) ×3 F
(3), we say that the rank is preserved

to the core if rank(X ) = rank(G). Not every TD needs to preserve the rank to the Tucker core, as
the following simple example illustrates:

Example 2.10. Let X ∈ R2,2,2 be the rank 1 tensor

X =

[
1 1 1 1
1 1 1 1

]
.

Then X can be decomposed using a rank 2 core as

X =

[
1 0 1 0
0 1 0 1

]
×1

[
1 1
1 1

]
.

One always has the following simple rank and minimal Tucker relationships which we record in
the following lemma:

Lemma 2.11. For any Tucker decomposition X = G ×1 F
(1) ×2 F

(2) ×3 F
(3), rank(X ) ≤ rank(G).

Moreover, a minimal Tucker decomposition always exists for real factorizations.

Proof. Suppose X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) is a Tucker decomposition of X . Then consider a

CPD of G given by

G = DG ×1 A
(1)
G ×2 A

(2)
G ×3 A

(3)
G . (7)
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Then, substituting the CPD of G into the Tucker decomposition of X yields

X = G ×1 F
(1) ×2 F

(2) ×3 F
(3)

= DG ×1 A
(1)
G ×2 A

(2)
G ×3 A

(3)
G ×1 F

(1) ×2 F
(2) ×3 F

(3)

= DG ×1

(
F (1)A

(1)
G
)
×2

(
F (2)A

(2)
G
)
×3

(
F (3)A

(3)
G
)
.

The last right-hand side is a polyadic decomposition of X with rank(G) summands proving that
rank(X ) ≤ rank(G).

It is also not hard to see that a minimal Tucker always exists for real factorizations. Let F (i) be
basis matrices for Umin

i . Then by definition,

X ∈ Umin
1 ⊗ Umin

2 ⊗ Umin
3 = col(F (1))⊗ col(F (2))⊗ col(F (3)).

By Proposition 2.4, there exists a G such that X = G×1F
(1)×2F

(2)×3F
(3). As F (i) ∈ Rµranki(X )×Ni ,

this is a minimal TD.

Lemma 2.11 demonstrates that a minimal Tucker decomposition can be constructed by choosing
basis matricies for Umin

i . However, this is how all real minimal Tucker decompositions are formed.
Indeed if X = G ×1 F

(1) ×2 F
(2) ×3 F

(3) is a minimal Tucker, then by Proposition 2.4, X ∈
col(F (1)) ⊗ col(F (2)) ⊗ col(F (3)). Since rank(F (i)) = µranki(X ) and F (i) ∈ Rµranki(X )×Ni , this
implies F (i) are basis matrices for Umin

i .
While a minimal Tucker decomposition always exists, what we are interested in is the preservation

of the rank of X to the minimal core G. The next theorem establishes that minimal Tucker
decompositions do always preserve the rank to the core. While we believe this result is known, it does
not appear to be written explicitly down in the literature. Hence, we record it alongside its proof:

Theorem 2.12. Given a real tensor X , any minimal Tucker decomposition X = G×1F
(1)×2F

(2)×3

F (3) satisfies rank(X ) = rank(G).

Proof. The proof is constructive. Let Umin
i be the i-th minimal subspace of X according to the

definition of the minimal multirank. For every i = 1, 2, 3, we choose the basis matrix F (i) ∈
R
µranki(X )×Ni such that span(F (i)) = Umin

i . By construction, F (i) is a full column rank matrix,
its rank being equal to µranki(X ). Hence, F (i) admits the (left) Moore-Penrose pseudo-inverse

F (i)† ∈ RNi×µranki(X ), so that F (i)†F (i) = I. Moreover, the matrix P (i) := F (i)F (i)† is the projection
onto the column space of F (i) (which is Umin

i ). Let

G = X ×1 F
(1)† ×2 F

(2)† ×3 F
(3)†. (8)

We show that X = G ×1 F
(1) ×2 F

(2) ×3 F
(3). Indeed, by redistributing we verify that

G ×1 F
(1) ×2 F

(2) ×3 F
(3) = X ×1 P

(1) ×2 P
(2) ×3 P

(3).

Hence, it suffices to show that X ×iP (i) = X for each i. This happens if and only if col(unfoldi(X )) ⊂
col(P (i)) = col(F (i)) = Umin

i . By Proposition 2.7, these are equal. Therefore, G ×1 F
(1) ×2 F

(2) ×3

F (3) = X .
To prove the identity rank(X ) = rank(G), it suffices to show that rank(X ) ≥ rank(G). Let

X = DX ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X (9)
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be a CPD of X with matrix factors A
(i)
X ∈ RNi×r and superdiagonal core tensor DX ∈ Rr×r×r,

where r = rank(X ). Then, starting from (8) and using (9), a straightforward calculation yields:

G = X ×1 F
(1)† ×2 F

(2)† ×3 F
(3)†

= DX ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X ×1

(
F (1)†)×2

(
F (2)†)×3

(
F (3)†)

= DX ×1

(
F (1)†A

(1)
X
)
×2

(
F (2)†A

(2)
X
)
×3

(
F (3)†A

(3)
X
)
.

The last right-hand side is a polyadic decomposition of G with rank(X ) summands, proving that
rank(G) ≤ rank(X ).

2.2. Rank Deficiency in CPD Factors and the CANDELINC Solution

In this subsection, we discuss the challenges that arise from rank deficient factors in a CPD
and how the CANDELINC method [18, 3] can provide a suitable decomposition. Theorem 2.12
establishes that one can always construct minimal Tucker decompositions that will preserve the rank.
The following theorem relates the uniqueness of a CPD to the minimal TDs:

Theorem 2.13 (Ranks of CPD factors related to minimal TD). Let X = D ×1 A
(1) ×2 A

(2) ×3 A
(3)

be a CPD of X , then µranki(X ) ≤ rank(A(i)). Furthermore, if the CPD is unique, then µranki(X ) =
rank(A(i)). In this case, col(A(i)) = Umin

i .

Proof. Let X = D×1A
(1)×2A

(2)×3A
(3) be a CPD of X . Since D×1A

(1)×2A
(2)×3A

(3) is a Tucker
decomposition, by definition of minimal multirank we have µranki(X ) ≤ rank(A(i)). Now suppose
that X has a unique CPD, and consider a minimal TD of the form X = G ×1 F

(1) ×2 F
(2) ×3 F

(3).
We recall that rank(F (i)) = µranki(X ) by definition. On its turn, the Tucker core admits the
CPD G = DG ×1 B

(1) ×2 B
(2) ×3 B

(3). Substituting the CPD of G in the TD of X , we obtain the
alternative CPD X = DG ×1 F

(1)B(1) ×2 F
(2)B(2) ×3 F

(3)B(3). Since we assume that the CPD is
unique, with appropriate scalings and permutations, which are rank-preserving operations, we obtain
that A(i) = F (i)B(i). Therefore, rank(A(i)) ≤ rank(F (i)) = µranki(X ). It follows from Proposition
2.7 and rank arguments that Umin

i = col(unfoldi(X )) = col(A(i)).

Theorem 2.13 suggests why a direct CPD computation can be algorithmically problematic. Let
X = D×1 A

(1) ×2 A
(2) ×3 A

(3) be the unique CPD of a rank r tensor with µranki(X ) = ri. If ri < r,
as is the case with probability 1 for many shaped tensors [21, 22], then A(i) is a rank deficient matrix
by Theorem 2.13. Indeed, A(i) is an (Ni × r)-sized matrix with only ri linearly independent columns.
Algorithmically, finding rank deficient matrices without an explicit rank constraint for tensors of the
form X = X̃ + E is challenging, as the rank deficient subspaces of the factors of X̃ can always be
expanded to accommodate some of the noise, E .

The proof of Theorem 2 suggests a more suitable method for computing the CPD of X . First
compute a minimal TD of X (which will preserve the rank); then compute a CPD of the TD core
(which will lack rank deficiency); and finally substitute the CPD of the TD core into the TD and
obtain a CPD of the original tensor. Bro et al. followed this strategy in their construction of the
PARALIND models, cf. [18], and Carroll et al. followed this strategy in their construction of the
CANDELINC models, cf. [16]. Formally, if X = G ×1 F

(1) ×2 F
(2) ×3 F

(3) is a minimal TD, and

G = DG×1A
(1)
G ×2A

(2)
G ×3A

(3)
G is the CPD of the Tucker core, then each factor A

(i)
G is a full column rank

matrix, avoiding the algorithmic problems previously discussed. A simple substitution yields a CPD of

X where each loading matrix is rank factored, i.e., X = DG×1

(
F (1)A

(1)
G
)
×2

(
F (2)A

(2)
G
)
×3

(
F (3)A

(3)
G
)
,

and we have explicitly the linear constraints of the CPD factors.
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3. Nonnegative Decompositions of Nonnegative Tensors

Following [23, 24], we now present the nonnegative counterparts to the discussion for real
tensors above. This theory necessarily depends on some basic knowledge of nonnegative matrix
factorizations. For the unfamiliar reader, we have provided some background information in the
Appendix. Throughout, we let R+ denote the nonnegative real numbers. All of the basic definitions
from real tensors will carry over to nonnegative with some appropriate adaptations. While real rank
factorizations fundamentally rely on subspaces, nonnegative factorizations are concerned with the
nonnegative analog of subspaces - polyhedral cones.

Definition 3.1. A convex cone is a subset C ⊂ RN+ that is closed under addition of vectors and R+

scalar multiplication. Given W ⊂ RN+ , the non-negative span of W defines a cone. A subset of the
cone W ⊂ C ⊂ RN+ is a generating set if its span is equal to C. The order of the cone C ⊂ RN+ ,
denoted O(C), is the size of a minimal generating set. A cone is polyhedral if O(C) <∞. Given a

nonnegative matrix W ∈ RN,R+ , we define the cone of the matrix W to be

cone(W ) = {Wh : h ∈ RR+} ⊂ RN+ .

Every polyhedral cone C ⊂ RN+ is cone(W ) for some nonnegative matrix W ∈ RN,R+ . Furthermore,
every polyhedral cone can be equivalently described as the intersection of half spaces [25]. With the
precise definition of cone, we can now define the analogous tensor product space of cones, and the
associated nonnegative tensor decompositions.

Definition 3.2. For vectors a(1) ∈ RN1
+ , a(2) ∈ RN2

+ , a(3) ∈ RN3
+ , the tensor product is the 3-way

tensor a(1) ⊗ a(2) ⊗ a(3) given by(
a(1) ⊗ a(2) ⊗ a(3)

)
i,j,k

= a
(1)
i a

(2)
j a

(3)
k .

The tensor a(1)⊗a(2)⊗a(3) is referred to as a nonnegative rank-1, elementary, or decomposable tensor.
For Ci a polyhedral cone of RNi

+ , the tensor product space C1 ⊗ C2 ⊗ C3 consists of all nonnegative

linear combinations of elementary tensors where a(i) ∈ Ci.

Analogous to the real case, every tensor X ∈ RN1×N2×N3 can be decomposed in different ways.
The definitions of polyadic and Tucker decompositions for tensors will translate with the appropriate
nonnegative adjustments.

Definition 3.3. For every tensor X ∈ RN1×N2×N3
+ , there exists a sufficiently large positive integer

r such that X may be written as

X =

r∑
n=1

λna
(1)
n ⊗ a(2)n ⊗ a(3)n , (10)

where λn ∈ R+ and a(i) ∈ RNi
+ are unit vectors. Such a decomposition is a nonnegative polyadic

decomposition. The nonnegative rank of a tensor is defined as the smallest integer number r of
rank-1 terms for which a polyadic decomposition exists, or

rank(X ) = min

{
r
∣∣ X =

r∑
n=1

λna
(1)
n ⊗ a(2)n ⊗ a(3)n , λn ∈ R+, a

(i)
n ∈ R

Ni
+ , i = 1, 2, 3

}
. (11)

A corresponding decomposition is called a nonnegative Canonical Polyadic Decomposition (nnCPD)
of X . For brevity, if the nonnegative qualifier is clear from context we may omit it when discussing
various nonnegative ranks.
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It is immediately clear that for tensors rank+(X ) ≥ rank(X ), as the nnCPD is also a polyadic
decomposition. Analogous to the real case, X does not require the full ambient space of RN1

+ ⊗R
N2
+ ⊗

R
N3
+ to represent it. It is possible that X can be contained in the tensor product of cones C1⊗C2⊗C3

where Ci is a polyhedral cone of RNi
+ . This once again motivates the concept of a nonnegative Tucker

decomposition:

Definition 3.4. A nonnegative Tucker decomposition (nnTD) of a nonnegative tensor is a nonneg-
ative weighted tensor product decomposition of the form,

X =

r1,r2,r3∑
n1,n2,n3=1

Gn1,n2,n3
f (1)n1
⊗ f (2)n2

⊗ f (3)n3
, (12)

where the vectors f
(i)
ni ∈ RNi

+ , for i = 1, 2, 3, and the core tensor Gn1,n2,n3 ∈ R
r1
+ ⊗R

r2
+ ⊗R

r3
+ .

The factors of an nnTD are associated with nonnegative cones, and are inherently tied to the
tensor belonging to the tensor product space of these cones:

Proposition 3.5. Given nonnegative matrices F (1), F (2), and F (3), a tensor admits an nnTD:
X = G ×1 F

(1) ×2 F
(2) ×3 F

(3) if and only if X ∈ cone(F (1))⊗ cone(F (2))⊗ cone(F (3)).

One important subtle difference between polyhedral cones and subspaces is that cone intersection
does not commute with the tensor product. That is, if Ci, C′i ⊂ R

Ni
+ are cones for i = 1, 2, 3, then

(C1 ⊗ C2 ⊗ C3)
⋂

(C′1 ⊗ C′2 ⊗ C′3) 6=
3⊗
i=1

Ci ∩ C′i.

Example 3.6 shows that we cannot simply take the “smallest” cones via intersection as we could
with subspaces.

Example 3.6. Consider a 3× 3× 2 nonnegative tensor with the unfoldings,

unfold1(X ) =

 1 1 1 0 0 1
1 1 2 1 1 1
1 1 2 1 1 1

 ,

unfold2(X ) =

 1 1 1 0 1 1
1 1 1 0 1 1
1 2 2 1 1 1

 ,

unfold3(X ) =

[
1 1 1 1 1 1 1 2 2
0 1 1 0 1 1 1 1 1

]
.

One can easily verify that:

X ∈ C1 ⊗R3
+ ⊗R2

+ where C1 = cone(W (1)) and W (1) =

 1 0
1 1
1 1

 ,
X ∈ R3

+ ⊗ C2 ⊗R2
+ where C2 = cone(W (2)) and W (2) =

 1 0
1 0
1 1

 ,
X ∈ R3

+ ⊗R3
+ ⊗ C3 where C3 = cone(W (3)) and W (3) =

[
1 0
0 1

]
.
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Recall that in a linear system AX = B, if A has full column rank then there exists a unique
solution X. Consequently, by taking unfoldings, one finds that if X = G ×1 W

(1) ×2 W
(2) ×3 W

(3)

and each W (i) has full column rank, then there is a unique solution for G. Note in our example,
each W (i) is full column rank. Therefore, there is a unique core G with the loading matrices W (i).

One can show unfold1(G) =

[
1 0 0 1
0 1 1 −1

]
. Since G is not nonnegative, by Proposition 3.5

conclude that X 6∈ C1 ⊗ C2 ⊗ C3. However, if instead the cones corresponding to W̄ (1) =

 1 0
0 1
0 1

,

W̄ (2) =

 1 0
1 0
0 1

, and W̄ (3) =

[
1 0
0 1

]
were chosen, then X ∈ C̄(1) ⊗ C̄(2) ⊗ C̄(3).

Example 3.6 shows that we cannot take the intersection of cones to produce a “minimal” cone.
Therefore, we make the following mode-wise definition:

Definition 3.7. Given a nonnegative tensor X ∈ RN1
+ ⊗R

N2
+ ⊗R

N3
+ , a minimal 1-mode nonnegative

cone, denoted by Cmin
1 , is a cone such that X ∈ Cmin

1 ⊗ RN2
+ ⊗ R

N3
+ and if X ∈ C1 ⊗ RN2

+ ⊗ R
N3
+

for some cone C1, then O(Cmin
1 ) ≤ O(C1) (we recall that O(C) is the minimum number of vectors

generating C). We define the 2-mode and 3-mode minimal cones analogously.

Unlike minimal subspaces the minimal cones are generally not unique, and they are defined
mode wise because different mode cones are not necessarily interchangeable. We define the minimal
nonnegative multirank of a nonnegative tensor as the minimum number of extreme rays of minimal
nonnegative cones along each axis.

Definition 3.8. The i-th minimal nonnegative multilinear rank or i-th minimal nonnegative
multirank of a tensor X , denoted µrank+,i(X ) is defined as O(Cmin

i ). The minimal nonnegative
multilinear rank of X is the triple of orders:

µrank+(X ) = (µrank+,1(X ), µrank+,2(X ), µrank+,3(X )).

As before, we note that the i’th minimal nonnegative multilinear rank does not depend on the
j’th tensor coordinate for j 6= i. Concretely, we can compute the first minimal nonnegative multirank
as

µrank+,1(X ) = min
{
O(C1) | X ∈ C1 ⊗RN2

+ ⊗R
N3
+ , C1 = cone(W (1)) ⊂ RN1

+

}
and, similarly, for µrank+,2(X ) and µrank+,3(X ). As with the real case, it follows directly that for

any nTD rank+(F (i)) ≥ µrank+,i(X ). Additionally, we have an analogous nonnegative statement to
Proposition 2.7:

Proposition 3.9. For any nonnegative tensor X , µrank+,i(X ) = rank+(unfoldi(X )).

Proof. Without loss of generality we prove this for i = 1 through proving the inequality in both
directions. Let µrank+,1(X ) = k, then there exists a nonnegative cone C(1) with k extreme rays

such that X ∈ C(1) ⊗RN2
+ ⊗R

N3
+ . Thus X admits a decomposition of the form X = Didentity ×1

A(1)×2A
(2)×3A

(3) where the columns of A(i) are contained by their respective cones, C(1),RN2
+ ,RN3

+ .

Assemble the extreme rays of C(1) into a matrix W (1) ∈ RN1×k so that C(1) = cone(W (1)). Then
A(1) = W (1)H(1) for some H(1) ≥ 0, and with substitution we have

X = Didentity ×1 W
(1)H(1) ×2 A

(2) ×3 A
(3).
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Through distributing and applying unfoldings we have

unfold1(X ) = W (1) unfold1(Didentity ×1 H
(1) ×2 A

(2) ×3 A
(3)),

which proves rank+(unfold1(X )) ≤ rank+(W (1)) ≤ k = µrank+,1(X ).
Let rank+(unfold1(X )) = k. Since X is nonnegative, unfold1(X ) admits a nonnegative decom-

position as unfold1(X ) = W (1)H(1). Since each column of H(1) is nonnegative and is associated

with a fiber of the tensor, we write the decomposition X =
∑N2

j=1

∑N3

k=1W
(1)H:,j,k ⊗ ej ⊗ ek. This

demonstrates that X ∈ cone(W (1))⊗RN2
+ ⊗R

N3
+ , so µrank+,i(X ) ≤ rank+(unfoldi(X )).

Propositions 2.7 and 3.9 highlight a key difference between the real and nonnegative TD. In the
real case, one had that the minimal subspace was obtained via the unfolding. In the nonnegative
case, the unfolding does not result in a minimal cone. From the definition of the unfolding, one has

X =

N2∑
j=1

N3∑
k=1

unfold1(X ):,m(j,k) ⊗ ej ⊗ ek,

where m(j, k) = j +N2(k − 1), and ej and ek are the j-th and the k-th vector of the canonical basis

of RN2
+ and RN3

+ , respectively. Hence,

X ∈ cone(unfold1(X ))⊗RN2
+ ⊗R

N3
+ .

However, it may be the case that O(cone(unfold1(X ))) > µrank1,+(X ). Indeed from Proposition
3.9, µrank+,i(X ) = rank+(unfoldi(X )) and in general O(cone(A)) > rank+(A) for many nonnegative
matrices A since the nonnegative rank is equal to the order of the minimal cone that contains the
data.

Just as in the real case, we are interested when the nonnegative TD has no degeneracy in the
loading matrices F (i). When a tensor is simultaneously contained in the tensor product of minimal
nonnegative cones, we call the corresponding nonnegative TD a minimal nnTD.

Definition 3.10. An nnTD: X = G×1F
(1)×2F

(2)×3F
(3) of a tensor X is a minimal nnTD whenever

the core dimensions are equal to the minimal nonnegative multiranks, i.e., when F (i) ∈ RNi×µrank+,i(X )

and G ∈ Rµrank+,1(X )×µrank+,2(X )×µrank+,3(X )

+ .

We note that since F (i) ∈ RNi×µrank+,i(X ), and rank+(F (i)) ≥ µrank+,i(X ), it follows that

minimal nnTDs satisfy rank+(F (i)) = µrank+,i(X ). While Example 3.6 showed that one cannot take
intersections to achieve minimal cones, the next simple result connects the equivalence of simultaneous
minimal cones and a minimal nnTD:

Proposition 3.11. A nonnegative tensor X has a minimal nnTD if and only if there exists minimal
cones Cmin

i i = 1, 2, 3 for X such that X ∈ Cmin
1 ⊗ Cmin

2 ⊗ Cmin
3 .

Proof. Suppose that X has a minimal nTD X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) and let Ci = cone(F (i)).

By Proposition 3.5, X ∈ C1 ⊗ C2 ⊗ C3. Since F (i) ∈ RNi×µrank+,i(X ) we have O(Ci) ≤ µrank+,i(X ).

However for any matrix A, one has that O(cone(A)) ≥ rank+(A). Thus O(Ci) ≥ rank+(F (i)) =
µrank+,i(X ). Combining these two inequalities, we see that O(Ci) = µrank+,i(X ), so that Ci are

minimal order. Since X ∈ C1 ⊗C2 ⊗C3, we clearly have X ∈ C1 ⊗RN2
+ ⊗R

N3
+ so that C1 is a minimal

cone; likewise for C2 and C3.
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Conversely suppose that X has minimal cones Cmin
i (namely O(Cmin

i ) = µrank+,i(X )) such that

X ∈ Cmin
1 ⊗ Cmin

2 ⊗ Cmin
3 . Let F (i) be the matrix whose columns are the extreme rays of Cmin

i . Then
F (i) ∈ RNi×µrank+,i(X ) and cone(F (i)) = Cmin

i . Since

X ∈ Cmin
1 ⊗ Cmin

2 ⊗ Cmin
3 = cone(F (1))⊗ cone(F (2))⊗ cone(F (3)),

by Proposition 3.5 there exists a G such that X = G ×1 F
(1) ×2 F

(2) ×3 F
(3). By construction, this

nnTD is a minimal nnTD.

We further remark from the proof of Proposition 3.11 that the minimal cones associated with a
minimal nnTD are found by considering the extreme rays of the cone.

3.1. Nonnegative Rank Preservation to Tucker Core

Analogous to the real case it is natural to ask if a minimal nnTD always exists, or under what
conditions does an nnTD exist? For instance, if µrank+(X ) = (r1, r2, r3), then does there exist

nonnegative cones C(i) with number of extreme rays equal to ri such that X ∈ C(1) ⊗ C(2) ⊗ C(3)?
Example 3.12 demonstrates a tensor can fail to have a minimal nnTD:

Example 3.12. Consider the 4× 4× 3 nonnegative tensor with the unfoldings,

unfold1(X ) =


1 1 1 1 0 0 1 1 1 2 0 1
0 1 0 1 0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 0 1 0 1 0 2 0 2

 ,

unfold2(X ) =


1 0 0 1 0 0 0 0 1 1 0 0
1 1 1 1 0 0 1 1 2 1 1 2
1 0 0 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 2

 ,

unfold3(X ) =

 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1
1 1 0 0 2 1 1 2 0 0 0 0 1 0 1 2

 .

Suppose there exists a minimal nTD

X = G ×1 F
(1) ×2 F

(2) ×3 F
(3)

with G ∈ Rµrank+,1(X )×µrank+,2(X )×µrank+,3(X )

+ . From the decomposition

unfold2(X ) =


0 0 1
0 1 1
1 0 0
1 1 0


 1 0 0 1 1 1 0 0 0 0 0 0

0 1 1 0 0 0 1 1 1 0 1 2
1 0 0 1 0 0 0 0 1 1 0 0


it can be verified that µrank+,2(X ) = 3, and therefore F (2) ∈ R4×3

+ . From the decomposition

unfold1(X ) =


0 1 1
0 0 1
1 0 0
1 1 0


 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 0 0 0 0 0 1 0 1
0 1 0 1 0 0 1 1 1 1 0 0



13



it can be verified that µrank+,1(X ) = 3, and therefore F (1) ∈ R4×3
+ . This decomposition, and the

corresponding tensor decomposition X = H×1 W , where

W =


0 1 1
0 0 1
1 0 0
1 1 0

 ,unfold1(H) =

 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 0 1 0 1
0 1 0 1 0 0 1 1 1 1 0 0

 ,
is unique ([26] Theorem 6), which implies that with proper permutation and scaling W = F (1), and
H = G ×2 F

(2) ×3 F
(3). Note that the µrank+,2(H) = 4 since the second unfolding

unfold2(H) =


0 1 0 0 0 0 0 0 1
1 0 1 1 0 0 1 1 1
0 1 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0

 ,
contains Example Appendix B.2 as a submatrix. However, by Proposition 3.9

µrank+,2(H) = µrank+,2(G ×2 F
(2) ×3 F

(3))

= rank+(unfold2(G ×2 F
(2) ×3 F

(3))

= rank+(F (2) unfold2(G ×3 F
(3))) ≤ 3.

This is a contradiction, so the supposition that there exists a minimal nnTD is false.

A further question is: if the nnTD: X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) does exist, is the nonnegative

rank of X preserved to the nnTD, G, that is, is rank+(X ) = rank+(G)? Example 3.13 demonstrates
that even when the minimal nnTD does exist, the nonnegative rank of the tensor is not necessarily
preserved to the core.

Example 3.13. Let X = Didentity ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X , where Didentity is the diagonal identity

tensor and

A
(1)
X =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 , A
(2)
X =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 , A
(3)
X =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .
Kruskal’s theorem [27, 28] proves that rank+(X ) = 4, and the nnCPD of the tensor is unique. Using
Proposition 3.9, one can show that µrank+(X ) = (3, 4, 4). For example, from the first unfolding of
X , we have

unfold1(X ) =


2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1
2 2 2 1 2 2 2 1 2 2 2 1 1 1 1 1

 .
The rank of unfold1(X ) is 3, and this matrix admits a nonnegative decomposition,

unfold1(X ) =


0 0 1
0 1 1
1 0 0
1 1 0


 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

 .
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Using these decompositions, one can show that X admits a minimal nnTD of the form X = G ×1

F (1) ×2 I ×3 I where

unfold1(G) =

 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0


and

F (1) =


0 0 1
0 1 1
1 0 0
1 1 0

 .
Now, suppose to the contrary that rank+(X ) = rank+(G). Then, let G = DG ×1 A

(1)
G ×2 A

(2)
G ×3 A

(3)
G

be an nCPD of G. Since the nCPD of X is unique, we have up to permutation and nonnegative
scaling that

A
(1)
X = F (1)A

(1)
G . (13)

From Example Appendix B.2 we know that rank+(A
(1)
X ) = 4. But then

rank+(A
(1)
X ) > 3 = rank+(F (1)) ≥ rank+(F (1)A

(1)
G ),

which is a contradiction. Therefore, rank+(X ) 6= rank+(G).

Example 3.13 highlights a key difference between the real and nonnegative minimal Tucker
decompositions. By Theorem 2.13, if the CPD is unique then the column space of the CPD loading
matrices will recover the minimal subspaces. However when the nonnegative CPD is unique, the

loading matrices can still fail to capture the minimal cone (C(1)min and A
(1)
X in previous example). In

particular, the nnCPD cannot be a minimal Tucker decomposition in this case. This causes problems
with preservation of the rank to the core of the tensor. It turns out that this issue in Example 3.13 is
always hold. Namely, when X has a unique nnCPD and a Tucker has a factor with nonnegative rank
smaller then the loading matrix factor in the nnCPD, nonnegative rank cannot be preserved:

Theorem 3.14. Let X be a nonnegative tensor with unique nCPD X = Didentity ×1 A
(1)
X ×2 A

(2)
X ×3

A
(3)
X . Suppose that X has a nTD X = G ×1 F

(1) ×2 F
(2) ×3 F

(3) where rank+(A(i)) > rank+(F (i))
for some i = 1, 2, 3. Then rank+(X ) 6= rank+(G).

Proof. Without loss of generality, let i = 1, i.e. rank+(A(1)) > rank+(F (1)). Suppose to the contrary

that rank+(X ) = rank+(G). Let G = DG ×1 A
(1)
G ×2 A

(2)
G ×3 A

(3)
G be an nCPD of G. Then both

X = Didentity ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X and

X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) = DG ×1 (F (1)A

(1)
G )×2 (F (1)A

(2)
G )×3 (F (1)A

(3)
G )

are rank decompositions of X . Since the nCPD of X is unique, up to permutation and nonnegative
scaling one has

A
(1)
X = F (1)A

(1)
G .

Thus, rank+(A
(1)
X ) = rank+(F (1)A

(1)
G ). However, by assumption

rank+(A
(1)
X ) > rank+(F (1)) ≥ rank+(F (1)A

(1)
G ),

a contradiction.
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Theorem 3.14 gives condition on when the rank is not preserved based on the CPD. We believe
that for a large class of nonnegative tensors where compression is achieved, this implies that the
rank is not preserved. However, deriving precises probabilistic statements is challenging due to the
non-stochastic relationship between loading matrices and random tensors.

Examples 3.12 and 3.13 demonstrate the subtleties of the nonnegative factorizations compared to
the real valued. First, the minimal nnTD can fail to exist. Second, even if it exists, the nonnegative
rank of the minimal nnTD core may not be equal to the nonnegative rank of X . The following
Theorem provides sufficient conditions for a minimal nnTD to exist, and for the nonnegative rank of
the tensor to be preserved to the core of the minimal nnTD. We note that because of Theorem 3.14,
a rank requirement for nnCPD loading matrices is required. The following is the nonnegative analog
of Theorem 2.12.

Theorem 3.15. Suppose a nonnegative tensor X has an nCPD: X = DX ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X

with rank+(A
(i)
X ) = µrank+,i(X ) for 1 ≤ i ≤ 3. Then a minimal nTD: X = G ×1 F

(1) ×2 F
(2) ×3 F

(3)

exists such that rank+(X ) = rank+(G).

Proof. Since rank+(A
(i)
X ) = µrank+,i(X ) for 1 ≤ i ≤ 3, each A

(i)
X has a nonnegative decomposition

A
(i)
X = W (i)H(i). Substituting into the nCPD and distributing

X = DX ×1 A
(1)
X ×2 A

(2)
X ×3 A

(3)
X

= DX ×1 W
(1)H(1) ×2 W

(2)H(2) ×3 W
(3)H(3)

= (DX ×1 H
(1) ×2 H

(2) ×3 H
(3))×1 W

(1) ×2 W
(2) ×3 W

(3)

= G ×1 W
(1) ×2 W

(2) ×3 W
(3)

where G = DX ×1 H
(1) ×2 H

(2) ×3 H
(3). The core G is a nonnegative tensor with shape equal to the

nonnegative minimal multiranks of X , so X = G×1W
(1)×2W

(2)×3W
(3) is a minimal nTD. To prove

rank+(X ) = rank+(G), it once again suffices to show that rank+(X ) ≥ rank+(G). However from the
constructed decomposition G = DX ×1 H

(1) ×2 H
(2) ×3 H

(3) we know rank+(G) ≤ rank+(X ).

Theorem 3.15 demonstrates that a minimal nnTD exists that will preserve the rank. However
contrary to Theorem 2.12, it does not state that every minimal nnTD will preserve the rank to the
core. This is yet another fundamental challenge one must surmount in the nonnegative case - not
every minimal nnTD will necessarily preserve the rank. The following example illustrates this issue:

Example 3.16. Let X ∈ R3,3,3
+ be the tensor given by

X =

 2 8 3 1 5 2 2 8 3
4 15 5 2 8 3 4 15 5
2 6 2 1 3 1 2 6 2

 .
Then X has an nnCPD given by

A
(1)
X =

2 1 1
1 1 0
2 1 1

 , A
(2)
X =

1 1 0
2 1 1
1 0 0

 , A
(3)
X =

1 0 0
3 2 1
1 1 0

 .
One can check that rank+(A

(1)
X ) = 2 = µrank+,1(X ) and rank+(A

(2)
X ) = rank+(A

(3)
X ) = 3 =

µrank+,2(X ) = µrank+,3(X ). Thus, X satisfies the hypothesis of Theorem 3.15. We will now
show that there are two minimal nTDs

X = G1 ×1 F
(1)
1 ×2 F

(2)
1 ×3 F

(3)
1 = G2 ×1 F

(1)
2 ×2 F

(2)
2 ×3 F

(3)
2
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with rank(X ) = rank+(G1) < rank+(G2). Therefore, not every minimal nnTD can preserve the rank
to the Tucker core. Indeed, one can check

G1 =

 1 1 1 1 1 1
1 2 2 1 1 1
1 1 1 1 2 1

 , F
(1)
1 =

1 1
1 0
1 1

 , F
(2)
1 =

0 1 0
0 1 1
1 0 0

 , F
(3)
1 =

1 0 0
1 1 1
0 0 1


and

G2 =

 0 2 1 1 3 1
0 1 1 2 7 2
0 0 0 1 3 1

 , F
(1)
2 =

1 2
1 1
1 2

 , F
(2)
2 =

1 0 0
0 1 0
0 0 1

 , F
(3)
2 =

1 0 0
0 1 0
0 0 1


result in minimal nTDs of X . From the decomposition

G1 =

 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

+

 0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0

+

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0


we see that rank+(G1) ≤ 3. Since rank+(X ) = 3 by above, we have that rank+(G1) = 3. We now
show that rank+(G2) 6= 3. Indeed by Kruskal’s Theorem [27], X has a unique nnCPD. By Proposition

1 of [29], rank+(G1) = rank+(X ) = 3 if and only if A
(i)
X ⊂ cone(F

(i)
2 ). Since [1, 0, 1] /∈ cone(F

(1)
2 ),

we see that the rank cannot be preserved to the core G2.

Cohen et al. [29] (see Proposition 1) provide some necessary and sufficient conditions for the
nonnegative rank of a tensor to persist to the core of an nnTD under some geometric hypothesis. We
remark that their theorem, as stated, requires uniqueness of the nnCPD along with a full column
rank condition on the factors of the nnCPD. However the full column rank is not needed, and the
uniqueness of the nnCPD is only required for one direction. Namely, that if the nnCPD is unique
and the rank of the tensor is preserved to the core, then the (unique) nnCPD factors are contained
inside the cones from the nnTD loading matrices. We made the equivalent converse statement in
Theorem 3.17. It too, requires uniqueness of the nnCPD. However, since one half of our ‘if and only
if’ does not require uniqueness, we have opted to separate the two conditions.

3.2. Nonnegative Rank Deficiency in nnCPD Factors

We now discuss the difficulties associated from nonnegative rank deficent factors in a nnCPD.
We recap the work above to discuss the challenges facing a nonnegative analog of CANDELINC -
in particular, the issues surrounding the existence of a min nnTD. Following the subsection on real
valued CANDELINC above, we begin by exploring the relations between the nonnegative minimal
multirank and the nonnegative ranks of nnCPD factors. The following theorem relates the uniqueness
of a nnCPD to the minimal nnTDs:

Theorem 3.17. Let X = D×1 A
(1) ×2 A

(2) ×3 A
(3) be an nnCPD, then µrank+,i(X ) ≤ rank+(A(i)).

Furthermore, if the nnCPD is unique and there exists a minimal nnTD with rank+(X ) = rank+(G)
then µrank+,i(X ) = rank+(A(i))

Proof. That µrank+,i(X ) ≤ rank+(A(i)) follows from the fact that an nnCPD is a nnTD. Now suppose

that X has a unique nCPD, and consider a minimal nTD of the form X = G ×1 F
(1) ×2 F

(2) ×3 F
(3).

We recall that rank+(F (i)) = µrank+,i(X ) by definition. On its turn, the Tucker core admits an nCPD

G = DG×1B
(1)×2B

(2)×3B
(3). Substituting the nCPD of G in the nTD of X , we obtain the alternative

nCPD X = DG ×1 F
(1)B(1)×2 F

(2)B(2)×3 F
(3)B(3). Since we assume that the nCPD is unique, with

appropriate nonnegative scalings and permutations, which are nonnegative rank-preserving operations,
we obtain that A(i) = F (i)B(i), which proves that rank+(A(i)) ≤ rank+(F (i)) = µrank+,i(X ).
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Theorem 3.17 illuminates an algorithmic challenge of computing a nCPD directly. Suppose
X = D ×1 A

(1) ×2 A
(2) ×3 A

(3) has a unique nCPD with rank+(X ) = r and minimal multiranks
µranki(X ) = ri. In practice, many shaped tensors have ri < r. Thus, A(i) is a rank deficient matrix
by Theorem 3.17, which can be an algorithmically challenging task to overcome.

This motivates the need for nonnegative version of CANDELINC. Concretely, if X = G×1 F
(1)×2

F (2)×3F
(3) is a minimal nnTD such that rank+(G) = rank+(X ), and G = DG×1A

(1)
G ×2A

(2)
G ×3A

(3)
G

is the CPD of the Tucker core, then each factor A
(i)
G is a full column rank matrix This suggests that,

under some conditions, a stable way of computing nnCPD is to first compute a minimal nnTD, e.g.,
using approximate NMF, then compute nCPD on the nonnegative Tucker core, and finally substitute
the nnCPD of the core-tensor in the nnTD to obtain the final nnCPD of the original tensor.

Unfortunately, the previous work highlights some of the major challenges a nonnegative CAN-
DELINC must overcome. Indeed a min nnTD need not exist (Example 3.12), and even when it does,
it need not preserve the rank to the core (Example 3.13). Furthermore, a tensor may have a minimal
nnTD which preserves the rank, but this does not mean all minimal nnTD will preserve the rank to
the core (Example 3.16).

These issues indicate that minimal Tucker decompositions, while desirable, are perhaps not
feasible in the nonnegative case. To overcome this hurdle, we redirect our interest to nonnegative
Tucker decompostions we call canonical. In the next subsection, we define the canonical Tucker
decomposition and show that one always exists which preserves the rank to the core.

3.3. The Canonical Multirank and Canonical Tucker

Ultimately, we desire a decomposition that 1) preserves the nCPD rank to the core and 2) does
not require extraction of rank deficient matrices. While minimal nnTD’s are devoid of rank deficiency
in the loading matrices, they may not preserve the rank to the core (if they exist at all). This
conversation leads us to desire a less strict type of Tucker decomposition which not only preservers
the rank, but whose loading matrices are also devoid of rank deficiency. We therefore make the
following definition:

Definition 3.18. Let X ∈ RN1×N2×N3
+ have a unique nnCPD given by X = D×1A

(1)×2A
(2)×3A

(3).
The i-th canonical (nonnegative) multirank of X , denoted κi(X ), is the rank of the i-th nnCPD factor
rank+(A(i)). The canonical (nonnegative) multirank of X is the triple

κ(X ) = (κ1(X ), κ2(X ), κ3(X )) = (rank+(A(1)), rank+(A(2)), rank+(A(3))).

Corresponding to the canonical multirank we have a canonical Tucker decomposition.

Definition 3.19. Consider tensor X ∈ RN1×N2×N3
+ with unique nnCPD. We say that the Tucker

decomposition X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) is canonical if the dimensions of the core tensor G are

equal to the canonical multiranks, i.e., G ∈ Rκ1(X )×κ2(X )×κ3(X )
+ and F (i) ∈ RNi×κi(X )

+ , i = 1, 2, 3.

By definition µranki,+(X ) ≤ κi(X ). Therefore, a canonical Tucker is a less restrictive shape
constraint than a minimal Tucker. Unlike minimal Tuckers, one can always find a canonical Tucker
that will preserve the rank:

Theorem 3.20. Let X ∈ RN1×N2×N3
+ have unique nnCPD. Then there exists a canonical nnTD

which preserves the rank.

Proof. Let X ∈ RN1×N2×N3
+ have unique nnCPD given by X = D ×1 A

(1) ×2 A
(2) ×3 A

(3). For each

i = 1, 2, 3, consider the rank factorizations A(i) = W (i)H(i). Subbing these factorizations into the
nnCPD:

X = D ×1 A
(1) ×2 A

(2) ×3 A
(3)

=
(
D ×1 H

(1) ×2 H
(2) ×3 H

(3)
)
×1 W

(1) ×2 W
(2) ×3 W

(3).
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nnTDs

minimal canonical

rank preserving

Figure 2: Diagram of nonnegative Tucker decompositions for tensors with a unique nnCPD.

Let G := D ×1 H
(1) ×2 H

(2) ×3 H
(3). By construction, W (i) ∈ RNi×κi(X )

+ so that X = G ×1 W
(1) ×2

W (2) ×3 W
(3) is a canonical Tucker. Furthermore, rank+(G) ≤ rank+(X ) so that rank+(G) =

rank+(X ).

Theorem 3.20 states that there exists a rank preserving canonical Tucker. However, Example
3.16 shows that not every canonical Tucker can preserve the rank. Unlike its real counterparts, the
shape of a nonnegative Tucker decomposition does not guarantee that all such factorizations will
preserve rank.

In minimal nnTD, the rank of the loading matrix F (i) is equal to µranki,(X ) so that the matrix

is not degenerate. Note that in a canonical nnTD X = G ×1 F
(1) ×2 F

(2) ×3 F
(3), one has that

µranki,+(X ) ≤ rank+(F (i)) ≤ κi(X ). If one selects a canonical nnTD which preserves the rank to

the core, then rank+(F (i)) = κi(X ) so that once again, the matrix is not degenerate. The challenge
here lies instead in the selection of the correct cones that contains the minimal cones needed to
preserve the rank.

Proposition 3.21. Let X ∈ RN1×N2×N3
+ have unique nnCPD given by X = D×1A

(1)×2A
(2)×3A

(3).

Suppose X = G ×1 F
(1) ×2 F

(2) ×3 F
(3) is a canonical Tucker such that R = rank+(X ) = rank+(G).

Then rank+(F (i)) = κi(X ).

Proof. From the preceding comments, we have that rank+(F (i)) ≤ κi(X ). Since rank+(X ) =
rank+(G) from the canonical nnTD, we have that G admits a nonnegative rank R nnCPD

G = D ×1 B
(1) ×2 B

(2) ×3 B
(3).

Substituting into the canonical nnTD, we two rank R decompositions of X given by

X = D ×1 A
(1) ×2 A

(2) ×3 A
(3)

= D ×1 (F (1)B(1))×2 (F (2)B(2))×3 (F (3)B(3)).

Thus up to scaling and permutation, F (i)B(i) = A(i) so that rank+(F (i)) ≥ rank+(A(i)) = κi(X ).

What Theorem 3.20 and Proposition 3.21 indicate is that a nonnegative canonical Tucker
decomposition gives just enough breathing room to provide existence of a not rank degenerate Tucker
as seen in Figure 2. In the diagram, we see the relation that if a minimal nnTD also preserves the
rank, then the minimal multiranks are also the canonical multiranks. There are rank preserving
nnTDs that are neither minimal, nor canonical. These can be obtained, for instance, by taking a
rank preserving canonical and adding appropriate zeros. As noted above, not every nonnegative
canonical TD can preserve the rank, and identifying the correct extensions of the minimal cones
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to higher order cones to construct a rank preserving nnTD is a challenge. In the next section, we
compare the performance of different nonnegative CANDELINC algorithms to demonstrate these
challenges on synthetic and real data.

4. Numerical Experiments

Exact decompositions of tensors from real or experimental data are typically not attainable, so
we solve for approximations with optimization problems. To find a nnCANDELINC approximation
of a tensor X ∈ Rn1,n2,n3

+ , given a set of multirank dimensions [m1,m2,m3] and a tensor rank r, a
typical Frobenius norm optimization problem is,

minimize
F (i),B(i)

∥∥X − I ×1 F
(1)B(1) ×2 F

(2)B(2) ×3 F
(3)B(3)

∥∥2
F

Subject to: F (i) ∈ Rni,mi

+ for 1 ≤ i ≤ 3
B(i) ∈ Rmi,r

+ for 1 ≤ i ≤ 3 .

(14)

A similar optimization problem, without the nonnegativity constraints, is suitable for CAN-
DELINC. To compute CANDELINC decompositions, theory informs us of two procedures to find
approximate decompositions using the readily available tools of TD, CPD and SVD. One procedure
follows as: first compute a TD followed by a CPD on the core. Alternatively: first compute a
CPD followed by SVDs on each of the CPD factors. Theoretically, both of these two procedures
provide equally valid CANDELINC decompositions under perfect conditions. In practice the first
procedure is often preferred as it is typically less computationally expensive with the cheap dimension
reduction via Tucker compression before the more expensive CPD step. In this section, we explore
two procedures to compute nnCANDELINC decompositions. We discuss the theory, benefits and
drawbacks, and demonstrate their performance on synthetic and real data.

4.1. Algorithms and Scoring

While a multitude of methods can be applied to the nnCANDELINC optimization in Equation
14, we concentrate on procedures that can be built using readily available tools. Namely, we are
interested in procedures that compute nnCANDElINC decompositions using the sub-procedures:
nnTD, nnCPD, and NMF.

Algorithm 1 computes a nnCANDELINC decomposition by first nnTD compression, reducing
the dimension, and then by nnCPD on the resulting core. Much of the previously discussed theory
informs us of potential problems with this procedure in selecting various multiranks and ranks for
the nnTD and nnCPD dimensions. Namely, it is necessary, but not sufficient, for the nnTD to be
computed with dimensions greater or equal to the canonical multiranks, not the minimal multiranks,
to obtain a nnCANDELINC decomposition that expresses the tensors rank.

Algorithm 1 nnCANDELINC algorithm using nnTD and nnCPD.

Require: X ∈ RN1,N2,N3

+ ,m ∈ N3, r ∈ N
Ensure: F (i) ∈ RNi,mi

+ , B(i) ∈ Rmi,r
+

G, F (1), F (2), F (3) ← nnTD(X, (m1,m2,m3))
B(1), B(2), B(3) ← nnCPD(G, r)

Alternatively, Algorithm 2 computes a nnCANDELINC decomposition by first computing nnCPD,
followed by NMF on each of the nnCPD factors. Here, theory informs us that it is both necessary
and sufficient to use the canonical multiranks as the latent dimensions in their respective NMFs.

To demonstrate the performance of the Algorithms we utilize the functions
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Algorithm 2 nnCANDELINC algorithm using nnCPD and NMF.

Require: X ∈ RN1,N2,N3

+ ,m ∈ N3, r ∈ N
Ensure: F (i) ∈ RNi,mi

+ , B(i) ∈ Rmi,r
+

A(1), A(2), A(3) ← nCPD(X, r)
F (1), B(1) ← NMF(A(1),m1)
F (2), B(2) ← NMF(A(2),m2)
F (3), B(3) ← NMF(A(3),m3)

tensorly.decomposition.non negative tucker

and

tensorly.decomposition.non negative parafac

from the freely available high-level API for tensor decomposition methods in python, TensorLy [30],
and

sklearn.decomposition.NMF

from scikit-learn [31]. In all experiments, random initializations are used with each call and a constant
5000 iterations are used for each sub-optimization to ensure reasonable convergence, with no early
termination criteria.

To evaluate the resulting decompositions of these algorithms we utilize two different scores. The
congruence [32] between two rank one tensors, X = a1 ⊗ b1 ⊗ c1 and Y = a2 ⊗ b2 ⊗ c2 is,

cong(X ,Y) = cos(X,Y ) =
a>1 · a2
‖a1‖2‖a2‖2

· b>1 · b2
‖b1‖2‖b2‖2

· c>1 · c2
‖c1‖2‖c2‖2

.

The mean congruence of all rank one factors is relevant for two rank r tensors after the appropriate
permutation of the factors is applied to maximize the mean congruence [33]. We apply the mean
congruence to the appropriate products, F (i)B(i), in the nnCANDELINC decompositions. For a
tensor X , the Frobenius norm is defined as the square root of the sum of the squares or ||X ||F =√∑

i,j,k X 2
i,j,k. The relative reconstruction error (we call further relative error) of the decomposition

is the ratio of the Frobenius norm of the residual and the Frobenius norm of the tensor or matrix. In
addition to the mean congruence, we utilize the relative reconstruction error to evaluate the quality
of the nnCANDELINC decompositions.

To evaluate these algorithms and relate them to theory we apply them to both synthetic and
real datasets. Our first investigation of a synthetic tensor highlights the importance of using the
nonnegative canonical multiranks and not the minimal multiranks. We additionally construct a large
number nonnegative tensors with pre-determined nonnegative canonical multiranks, and show the
performance of each algorithm at recovering the factors to evaluate them in more generic situations.
For the first real dataset, we apply the nnCANDELINC algorithms to extract the nCPD features of a
well-known fluorescence data that has been previously analyzed in the PhD Thesis of Bro [34]. Next,
we apply nnCANDELINC to a computer generated 3D dataset with nonnegative rank deficient nCPD
factors that represents a microphase separation of block copolymers as a function of temperature
and was analyzed in [35].
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(a) Violin plots of relative errors of decomposi-
tions.

(b) Violin plots of congruence scores of decompo-
sitions.

Figure 3: Violin plots and means of the results of nnCANDELINC decompositons on the tensor
from Example 3.13 using the various nonnegative multiranks in Algorithms 1 and 2.

4.2. Various Multiranks

We first investigate the efficacy of Algorithms 1 and 2 when various multiranks are used for
the nnTD and NMF dimensions. Example 3.13 provides an instance where the nonnegative rank,
minimal multiranks, and canonical multiranks are all known. We evaluate nnCANDELINC on the
proposed in the Example 3.13 tensor with four different effective nonnegative multiranks:

• [3, 3, 3] which are less than the minimal multiranks of the tensor,

• [3, 4, 4] which are the minimal multiranks which is known not to preserve the rank to the core,

• [4, 4, 4] which are the canonical multiranks where it is feasible that the rank is preserved to the
core,

• [5, 5, 5] which are greater than the latent dimensions needed everywhere.

To evaluate the algorithms we decompose the Example 3.13 tensor 1000 times with each set of
assumed multiranks, each starting from random initial conditions.

Figure 3 reports violin plots of the relative errors and average congruence scores of the resulting
decompositions. In Figure 3a we see mild relative errors for the three smallest assumed nonnegative
multiranks [3, 3, 3], [3, 4, 4], and [4, 4, 4]. The multiranks [3, 3, 3] and [3, 4, 4] are not sufficient to
obtain a rank revealing nnCANDELINC decomposition resulting in moderate relative errors. Using
the canonical nonnegative multiranks, [4, 4, 4] is expectedly more successful with Algorithm 2. This
is unsurprising since for both Algorithm 1 and 2 the canonical multiranks are necessary to obtain
a low relative error, but for Algorithm 2 the use of the canonical multiranks is both necessary
and sufficient. Using an assumed multirank of [5, 5, 5] leads to disastrous performance with both
algorithms, on the surface this is surprising since the problem has more degrees of freedom than
necessary to perfectly reconstruct the tensor. Figure 3b reflects the mean and standard deviations
of the average congruences for each scheme. There is little correlation between the relative error
performances and the congruence scores. By the congruence score measure, Algorithm 2 shows better
scores than Algorithm 1 on this tensor.
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(a) Relative errors of decompositions of synthetic
dataset.

(b) Average congruence scores of decompositions
of synthetic dataset.

Figure 4: Scatterplots and projected histograms from results of nnCANDELINC decompositons
using Algorithms 1 and 2 on randomly generated synthetic dataset. Each point corresponds to a
tensor whose location indicates how well each algorithm performed.

4.3. Randomly Generated Tensors

To evaluate the performance of the nnCANDELINC Algorithms on a more varied dataset, we
randomly generate synthetic tensors that have a unique nnCPD with nonnegative rank deficient
factors and where the canonical multiranks are known. To do this, we randomly generate our
nnCPD factors as a product of two smaller nonnegative matrices, and confirm that they satisfy the
suppositions of Kruskal’s theorem [36]. For specified dimensions N1, N2, N3, nonnegative canonical
multiranks r1, r2, r3, and rank r, we randomly sample from a uniform distribution the factors
F (i) ∈ RNi×ri

+ and B(i) ∈ Rri×r+ to construct the decomposition X = I×1 (F (1)B(1))×2 (F (1)B(2))×3

(F (1)B(3)). We ensure that factors satisfy the Kruskal rank criteria, Kruskal-rank(F (1)B(1)) +
Kruskal-rank(F (2)B(2)) + Kruskal-rank(F (3)B(3)) ≤ 2r + 2.

Here we report the results of 1000 randomly generated tensors, each of size N1 = N2 = N3 = 40
with a nonnegative rank of 5 and canonical multiranks of [3, 4, 5]. Figure 4 depicts scatterplots of
the resulting relative errors and congruence scores using each algorithm for each of the 1000 tensors.
Both algorithms yield a low relative error and high average congruence score with Algorithm 2
demonstrating better scores than Algorithm 1.

4.4. Fluorescence Data Decompositions

The experimental fluorescence dataset includes five samples, each with different amounts of
amino acids of three types: tyrosine, tryptophan and phenylalanine dissolved in buffered water. We
consider this data to demonstrate the different algorithm performances when there is no strong linear
dependence of the factors. The fluorescence in these samples has been excited by UV irradiation
at wavelengths, λ ∈ (240− 300nm). The UV-emission was measured by the spectrofluorometer at
wavelengths λ ∈ [250, 450]nm by sampling at 1 nm intervals. The experimental data formed a 3D
array with size 5×61×201. If we assume that each amino acid gives a nonnegative linear contribution
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(a) Comparison of features F (i) as extracted from
the fluorescence tensor using both Algorithms 1
and 2

(b) Comparison of activations B(i) of the fea-
tures F (i) from the fluorescence tensor using both
Algorithms 1 and 2

Figure 5: Comparisons of the features, F (i), and mixings, B(i), obtained from nnCANDELINC
Algorithms 1 and 2 on the experimental fluorescence data of size (5× 61× 201) with nonnegative
multiranks [3, 3, 3], and nonnegative rank r=3.

to the fluorescence data-tensor, than the measured fluorescence, i.e., the output, X , is three-linear,
and its components, Xi,j,k are,

Xi,j,k =

r∑
n=1

A
(1)
i,n A

(2)
j,nA

(3)
k,n + εi,j,k.

Here, A
(1)
i,n is linearly related to the concentration of the nth fluorophore dissolved in the ith sample;

A
(2)
j,n to the relative emission of nth fluorophore at wavelength λj ; A

(3)
k,n to the relative amount of

UV light absorbed by nth fluorophore at excitation λk, and εi,j,k denotes the error. Although the
above formula represents an ideal physical situation, it has been shown that for small concentrations
of amino acids it is a valid approximation [34]. Here, we apply the nnCANDELINC Algorithms
described in the previous sections, compare their results, and validate that the final decompositions
coincides with the previously well-known results.

The scaled and appropriately permuted results presented in Figure 5 show minor differences
between the resulting decompositions obtained from Algorithm 1 with 2.79% relative error, and
Algorithm 2 with 2.51%. Figure 5a depicts the features extracted along the sample, emission, and
excitation axes. We see virtually no difference in the sample and emission extracted features, with
only slight deviations occurring in the excitation features. Similarly in Figure 5b the mixtures of the
sample and emission features are virtually identical, while there are slight deviations in the mixtures
of the excitation features between the two algorithms. A comparison with previously extracted
features from the same data [34] confirms that both nnCANDELINC algorithms are producing
correct results. It is also worth mentioning that the utilization of the nonnegative TD in Algorithm 1
does not results in a superdiagonal core-tensor G, and the products of the final factors of both
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(a) Comparison of features F (i) as extracted from
the copoloymers tensor using both Algorithms 1
and 2

(b) Comparison of activations B(i) of the fea-
tures F (i) from the copolymers tensor using both
Algorithms 1 and 2

Figure 6: Performances of nnCANDELINC Algorithms 1 and 2 on computer generated data with
size (11× 64× 64), nonnegative multiranks [2, 3, 3] and rank r = 4, representing phase separation
with temperature in a system of copolymers.

nnCANDELINC algorithms are indistinguishable from those obtained by a direct application of
CPD [34].

4.5. Decomposition of data generated by physics-based computer simulations

Here, we use nnCANDELINC to analyze a 3D data-tensor describing phase separation in a
system of blocks copolymers whose evolution with temperature has been introduced and analyzed in
a previous work [35]. We chose this system because of the natural nonnegativity of the data, the
already known nonnegative rank, r = 4, and the fact that the extracted factors have a rank deficiency
demonstrated in the previous analysis.

The multivariate function describing the phase separation is the order parameter of the system,
∆(T, fA, x, y), which in this case is a function of: (a) temperature, T , (b) length fA of the A-type
blocks, and (c) the spatial coordinates, (x, y), of the 2-dimensional 64× 64 lattice-space of the system.
The order parameter, ∆(T, fA, x, y), is simply the spatial density of the A-type blocks on the lattice,
and therefore the data is inherently nonnegative. For A-type blocks with a fixed length, fA, the
order parameter is represented by 3-dimensional data: ∆(T, fA, x, y) ≡ ∆(T, x, y), and the tensor
∆n,m,l that we analyze here has size 11× 64× 64.

The nonnegative ranks ri of each unfolding of the tensor ∆(T, x, y) has been previously estimated
[35] and the nonnegative multirank has been determined to be, µrank+(X ) = [2, 3, 3]. With this
nonnegative minimal multirank we applied both nnCANDELINC algorithms to X and compare the
results.

In Figure 6 we present the components of factors F (i) and B(i) from both Algorithm 1 with a
relative error of 11.29%, and Algorithm 2 with an error of 10.02%. In Figure 6a the extracted features
from the algorithms vary slightly, along the temperature axis we see relative shifts between the
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feature extracted by the algorithms, with similar shifts seen in the x-lattice and y-lattice axes. These
shifts result in slight differences of the mixing of these features seen in Figure 6b. The nonnegative
rank deficiencies become clear with the found combinations of features to represent the four rank one
tensors needed for an nnCPD.

Appendix A. Notation and Operations

Here we list the precise operations used throughout the paper. A useful operation often used is
the multiplication of a tensor by a matrix along a specific dimension, or n-mode multiplication.

Definition Appendix A.1. The 1-mode multiplication between a tensor X ∈ RN1×N2×N3 and a
matrix A ∈ RM×N1 is defined as

(X ×1 A)i,j,k =

N1∑
l=1

Xl,j,kAi,l.

We define the 2-mode and 3-mode multiplication analogously.

For i 6= j mode multiplications are commutative: (X ×i A(i))×j A(j) = (X ×j A(j))×i A(i), and
a matrix multiplication can be distributed through mode multiplication: X ×i AB = (X ×i B)×i A.

Definition Appendix A.2. A mode-i tensor fiber of X is a one dimensional vector obtained by
fixing all but the ith index in the tensor. We let X:,n,m, Xn,:,m, Xn,m,: denote the nth,mth mode-1,
mode-2 and mode-3 tensor fibers, respectively. For i = 1, 2, 3, unfoldi(X ) denotes an i-mode unfolding,
which rearranges all the mode-i fibers of a tensor into columns of a Ni ×NjNk matrix, for i 6= j 6= k.

Definition Appendix A.3. For i = 1, 2, 3, unfoldi(X ) denotes an i-mode unfolding, which
rearranges all the mode-i fibers of a tensor into columns of a Ni ×NjNk matrix, for i 6= j 6= k.

Each unfolding has an inverse mapping, which rearranges the columns of a matrix as fibers of a
tensor. Consider the tensor X = Y ×1 A

(1) ×2 A
(2) ×3 A

(3). A particularly useful relation between
unfoldings and mode multiplications is

unfoldi(X ) = A(i) unfoldi(Y ×j A(j) ×k A(k)), (A.1)

for i 6= j 6= k.

Appendix B. Basics of NMF

Nonnegative matrix factorization (NMF) decomposes a nonnegative matrix V ∈ RN×M+ , into a

product of two nonnegative matrices W ∈ RN×r+ and H ∈ Rr×M . The geometric interpretation of a
nonnegative decomposition, V = WH, is that that each column of V is a conic combination of the
columns of W . With this geometric interpretation, computing an NMF is identical to searching for a
polyhedral cone C which contains the columns of V , and is contained in the nonnegative orthant,
V ⊂ C ⊂ RN+ . Of particular interest are cones with a minimum number of extreme rays, which
correspond to the nonnegative rank.

Definition Appendix B.1. The nonnegative rank of a matrix is defined as

rank+(V ) := min

{
r

∣∣∣∣V =

r∑
n=1

wn ⊗ hn, wn ≥ 0, hn ≥ 0

}
.
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If rank+(V ) = r then there is a set of r nonnegative extreme rays {w1, . . . , wr} such that every
column of V is a conic combination of these extreme rays. When {w1, . . . , wr} are assembled into
the nonnegative matrix W , and the conic combinations are specified by a nonnegative matrix H,
this corresponds to the nonnegative matrix factorization V = WH.

The nonnegative rank of a matrix has several well-known properties. For example, if V is an
(N1 × N2)-sized matrix, then rank(V ) ≤ rank+(V ) ≤ min(N1, N2) [37]. A case illustrating the
inequality between rank and nonnegative rank can be seen in the following Example Appendix B.2,
which is mentioned in [37] as a private communication from H. Robbins.

Example Appendix B.2. Consider the nonnegative matrix:

V =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 (B.1)

and note that v1 + v4 = v2 + v3 where vi is the ith column of V. This linear dependence between the
columns proves that rank(V ) = 3. Also it was proved in [37] that the rank+(V ) = 4. This example
demonstrates a case when rank(V ) < rank+(V ).

In general, computing the nonnegative rank of a nonnegative matrix V ∈ RN1×N2 is an NP-hard
problem [15], and even providing a reliable estimate can be quite hard.
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