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SUMMARY

The design of a Luenberger observer for large control systems is an important problem in Control
Theory. Recently, several computational methods have been proposed by Datta and collaborators.
The present paper discusses numerical aspects of one of these methods, described by Datta and Saad
(1991). Copyright c© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the control system

˙̂x(t) = Mx̂(t) +Bû(t), x̂(0) = x̂0, t ≥ 0,
ŷ(t) = Cx̂(t),

(1)

where M ∈ � n×n , B ∈ � n×k and C ∈ � m×n , and the functions x̂(t) ∈ � n and û(t) ∈ � k are
defined for t ≥ 0. Throughout this paper we will assume that n is large and m� n.

In many situations of practical interest neither the initial state x̂0 nor the states x̂(t) for
t > 0 are explicitly known. A popular approach to gain information about x̂(t) is to design a
control systems related to (1), whose states x(t) approximate x̂(t); see, e.g., Datta [9, Chapter
12] or Kailath [15, Chapter 4] for discussions.

Luenberger [16] proposed the construction of an approximation x(t) of x̂(t) as follows.
Introduce the control system

ẋ(t) = HTx(t) +GT ŷ(t) +Dû(t), x(0) = x0, t ≥ 0, (2)
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where H,G ∈ � m×m , D ∈ � m×k are matrices to be determined. The system (2) is commonly
referred to as a Luenberger observer. Assume that the spectra λ(H) of H and λ(M) of M
satisfy

λ(H) ∩ λ(M) = ∅. (3)

The property (3) secures that the Sylvester equation

XTM −HTXT = GTC (4)

has a unique solution XT ∈ � m×n ; see, e.g., [13, Chapter 4] for a discussion. Let

A = MT . (5)

For future reference, we express equation (4) in the form

AX −XH = CTG. (6)

We will now show that the difference between x(t) and XT x̂(t), where x̂(t) solves (1), converges
to zero as t increases, provided that the matrices H and D in (2) are chosen in a suitable
manner. Differentiating the difference

e(t) = x(t)−XT x̂(t) (7)

and using (1) and (2) yields

ė(t) = HTx(t) +GT ŷ(t) +Dû(t)−XT (Mx̂(t) +Bû(t)),

= HT e(t) + (HTXT +GTC −XTM)x̂(t) + (D −XTB)û(t). (8)

Letting D = XTB and substituting the relation (4) into (8) shows that

e(t) = exp(Ht)(x0 −XT x̂0), t ≥ 0. (9)

Assume that the matrixH is asymptotically stable, i.e., that every eigenvalue ofH has negative
real part. Then it follows from (9) that the difference (7) converges to zero as t increases.

The above construction of an approximation x(t) of x̂(t) showed necessary conditions on
the matrix H . However, no requirements were imposed on the matrices X and G. In order to
reduce the sensitivity of x(t) to perturbations, the following additional conditions are often
imposed:

1. All eigenvalues of H have smaller real part than any eigenvalue of A,
2. X is well conditioned, and
3. G is such that the matrix pair {H,G} is controllable, i.e.,

rank([G,H − zIm]) = m, ∀z ∈ � , (10)

where Im denotes the m×m identity matrix. Moreover, it is desirable that the distance
to uncontrollability

duc(H,G) = min
z∈ � σm([G,H − zIm])

is not “tiny,” where σm([G,H − zIm]) denotes the mth singular value of the matrix
[G,H − zIm] and the singular values are enumerated in decreasing order.
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LARGE SYLVESTER-OBSERVER EQUATIONS 3

We focus on control systems (1) with large, possibly sparse, matrices A, and therefore
ignore solution methods that require the transformation of the matrix A to a condensed form
or demand knowledge of all eigenvalues of A. For references to methods that are well suited
for small to medium sized systems (6); see Datta and Saad [11] as well as the survey papers
by Datta [7, 8].

One approach to solve (6) is to first choose the matrices G and H and then solve (6) for X
by a solution method for Sylvester equations, such as the iterative methods discussed in [4, 14].
However, these methods do not guarantee that the solution matrix X is well conditioned.

Datta and collaborators have developed several elegant methods for the solution of large-
scale Sylvester-observer equations (6); see [1, 8, 10, 11, 12]. These methods are based on the
Arnoldi process and use the matrix A, defined by (5), only to evaluate matrix-vector products.
Sparsity or other structure of A, such as Toeplitz structure, may enable rapid evaluation
of the matrix-vector products. Moreover, these methods yield well conditioned matrices X .
An insightful and thorough discussion on Sylvester-observer equations is provided in the
forthcoming book by Datta [9].

The present paper discusses numerical aspects of the Datta-Saad method [11]. This method
allows an arbitrary choice of distinct eigenvalues of the matrix H . We investigate how the
location of the eigenvalues of H affects the performance of the algorithm and propose a
strategy for choosing these eigenvalues. In order to keep our presentation simple, we only
discuss the method of Datta and Saad [11], however, our analysis and strategy for choosing
eigenvalues of H also applies, mutatis mutandis, to the related methods developed by Datta
and collaborators. A preliminary discussion of the topic of the present paper can be found in
[5].

2. THE DATTA-SAAD METHOD

The solution method for the Sylvester-observer equation (6) by Datta and Saad [11] is based
on the Arnoldi process. The matrix A is used only in matrix-vector product evaluations and
this makes the method well-suited to the solution of large-scale Sylvester-observer equations.
The method is designed for the special case when the right-hand side matrix CTG in (6) is of
rank one. Modifications that allow a right-hand side matrix of higher rank are presented by
Bischof et al. [1] and Datta and Hetti [10].

Let the matrices A and C be given by (1). Following Datta and Saad [11], we choose G to
be the identity matrix. Then, clearly, equation (10) is satisfied and duc(H,G) ≥ 1. We may
assume that the rank-one matrix CT is of the form ceTm, where c ∈ � n and em denotes the mth
axis vector. This particular form of C can be obtained by an initial orthogonal transformation.
Thus, we may write equation (6) as

AX −XH = ceTm. (11)

We will see below that H ∈ � m×m in (11) can be chosen to be an upper Hessenberg matrix,
and X ∈ � n×m can be chosen to have orthogonal columns, all of the same Euclidean norm.
With these choices of H and X , equation (11) is closely related to the Arnoldi decomposition
of A obtained by application of m steps of the Arnoldi process. Specifically, m steps of the
Arnoldi process applied to the matrix A with initial vector v1 of Euclidean norm one yields

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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the Arnoldi decomposition

AVm − VmHm = ηmvm+1e
T
m, (12)

where Vm = [v1, v2, . . . , vm] ∈ � n×m and V TmVm = Im, Hm ∈
� m×m is an unreduced upper

Hessenberg matrix, and vm+1 ∈
� n satisfies vTm+1vm+1 = 1 and V Tm vm+1 = 0. Another step

of the Arnoldi process would give the matrix Vm+1, whose last column is vm+1. We note for
future reference that the vectors v1, v2, . . . , vm+1 determined by (12) form an orthonormal
basis of the Krylov subspace

�
m+1 (A, v1) = span{v1, Av1, . . . , A

mv1}. (13)

For certain initial vectors v1, the Arnoldi process may break down before the decomposition
(12) has been determined. These (rare) cases allow certain simplifications and have to be
treated separately. For notational simplicity, we assume throughout this paper that m is chosen
small enough so that the Arnoldi decomposition (12) exists with ηm 6= 0.

The similar form of the equations (11) and (12) suggests that the Arnoldi process may be
applied to determine a solution of (11). This observation is the basis of the solution method for
(11) proposed by Datta and Saad [11]. The following results form the basis of their method.
Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the associated induced
matrix norm.

Theorem 2.1. Let the matrix Hm = [hi,j ]
m
i,j=1 ∈

� m×m be an unreduced upper Hessenberg
matrix with spectrum λ(Hm), and let {µj}mj=1 be a set of distinct complex numbers, such that
{µj}mj=1 ∩ λ(Hm) = ∅. Introduce the quantities

s =
m∏

j=1

(Hm − µjI)e1, α =
m−1∏

j=1

h−1
j+1,j . (14)

Then the upper Hessenberg matrix Hm−αseTm has the spectrum λ(Hm−αseTm) = {µj}mj=1. If

the set {µj}mj=1 is invariant under complex conjugation, then the matrix Hm − αseTm is real.

Proof. Slight modifications of this theorem are formulated by Datta [6] and Datta and Saad
[11]. The proof presented in [6] can be modified to show the theorem.

Lemma 2.1. Let the matrices A, Vm and Hm, vectors v1 and vm+1 and scalar ηm be those
in the Arnoldi decomposition (12). Assume that c ∈ �

m+1 (A, v1) and vTm+1c 6= 0. Then there
are a vector f ∈ � m and scalar βm ∈

�
, such that

AVm − Vm(Hm − feTm) = βmce
T
m. (15)

Proof. Let βm = ηm/v
T
m+1c and let the vector f ∈ � m satisfy

βmc = Vmf + βm(vTm+1c)vm+1 = Vmf + ηmvm+1. (16)

The Arnoldi decomposition (12) and formula (16) yield

AVm − Vm(Hm − feTm) = ηmvm+1e
T
m + Vmfe

T
m

= ηmvm+1e
T
m + (βmc− ηmvm+1)eTm.

This shows (15).

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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LARGE SYLVESTER-OBSERVER EQUATIONS 5

Note that the matrix Hm − feTm in (15) is of upper Hessenberg form. Therefore Lemma 2.1
shows that if we determine the vector v1 so that c ∈ �

m+1 (A, v1), then the equation (15) is
of the form (11) up to the scaling factor βm. The following lemmata and theorem show how
such a Krylov subspace can be determined and that λ(Hm − feTm) = {µj}mj=1.

Lemma 2.2. Let the matrices A, Vm and Hm and vector v1 be those of the Arnoldi
decomposition (12). Let p be a polynomial of degree less than m. Then

p(A)v1 = Vmp(Hm)e1. (17)

Proof. It is easy to show that

Ajv1 = VmH
j
me1, 0 ≤ j < m,

and the lemma follows.

Lemma 2.3. Let Hm+1 = [hi,j ]
m+1
i,j=1 ∈

� (m+1)×(m+1) be an upper Hessenberg matrix and p a
monic polynomial of degree m. Then

eTm+1p(Hm+1)e1 =
m∏

j=1

hj+1,j . (18)

Proof. The result can be shown by induction.

Theorem 2.2. Let A ∈ � n×n and c ∈ � n be defined by (11). Let {µj}mj=1 be a set of m
distinct complex numbers, such that {µj}mj=1 ∩ λ(A) = ∅. Introduce the monic polynomial

pm(t) =
m∏

j=1

(t− µj) (19)

and let x be the unique solution of the linear system of equations

pm(A)x = c. (20)

Let Vm, Hm, vm+1 and ηm be determined by the Arnoldi decomposition (12) with initial vector
v1 = x/‖x‖. Define βm = ηm/v

T
m+1c and f = βmV

T
m c. Then

c ∈ �
m+1 (A, v1) (21)

and

λ(Hm − feTm) = {µj}mj=1. (22)

Proof. Equation (21) follows from (19) and (20). In order to show (22), we note that

f = βmV
T
m c = βmV

T
mpm(A)x = βm‖x‖V Tmpm(A)v1. (23)

Let pm−1(t) =
∏m−1
j=1 (t − µj). Substituting pm(t) = (t − µm)pm−1(t) into the right-hand side

of (23) and applying Lemma 2.2 yield

βm‖x‖V Tmpm(A)v1 = βm‖x‖V Tm (A− µmI)pm−1(A)v1

= βm‖x‖V Tm (A− µmI)Vmpm−1(Hm)e1

= βm‖x‖(Hm − µmI)pm−1(Hm)e1

= βm‖x‖pm(Hm)e1 = βm‖x‖s,
(24)
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where we have used that Hm = V TmAVm and s is defined by (14). It follows from equation (20)
that

βm‖x‖ =
ηm

vTm+1c
‖x‖ =

ηm
vTm+1pm(A)x

‖x‖ =
ηm

vTm+1pm(A)v1
. (25)

Application of Lemmata 2.2 and 2.3 to the right-hand side of (25) yields

ηm
vTm+1pm(A)v1

=
ηm

vTm+1Vm+1pm(Hm+1)e1
=

ηm
eTm+1pm(Hm+1)e1

(26)

=
ηm∏m

j=1 hj+1,j
=

1∏m−1
j=1 hj+1,j

,

where Hm+1 ∈
� (m+1)×(m+1) is the upper Hessenberg matrix determined by applying m + 1

steps of the Arnoldi process with initial vector v1 to the matrix A. The last equality in (26)
follows from the fact that hm+1,m, the last subdiagonal entry of Hm+1, equals ηm.

Equations (25)-(26) show that

α = βm‖x‖,

where α is defined by (14). It follows from equations (23)-(24) that f = αs. Hence, (22) is a
consequence of Theorem 2.1.

In the remainder of this section, we outline the computations required in order to determine
the vectors x and f of Theorem 2.2. More details are provided in Sections 3-4. We first turn
to the system of equations (20). Introduce the partial fraction decomposition

1

pm(t)
=

m∑

j=1

αj
t− µj

, αj =
1

p′m(µj)
. (27)

The solution of (20) can be expressed as

x =
m∑

j=1

xj , (28)

where xj solves

(A− µjI)xj = αjc, 1 ≤ j ≤ m. (29)

The GMRES method is one of the most popular iterative methods for the solution of large
linear systems of equations with a nonsymmetric matrix. Following Datta and Saad [11], we
will apply this method to solve the linear systems (29). A recent description of the GMRES
method is provided by Saad [19, Chapter 6].

The standard implementation of the GMRES method for the solution of the jth equation
of (29) uses an Arnoldi decomposition of the matrix A− µjI of the form

(A− µjI)V` = V`H
(µj)
` + η

(µj )
` v`+1e

T
` = V`+1H

(µj)
`+1,`, V`e1 = c/‖c‖, (30)

where we note that

H
(µj)
` = H` + µjI` (31)

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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LARGE SYLVESTER-OBSERVER EQUATIONS 7

and H` is the upper Hessenberg matrix in the Arnoldi decomposition

AV` = V`H` + η`v`+1e
T
` , V`e1 = c/‖c‖. (32)

The matrix H
(µj)
`+1,` ∈ � (`+1)×` in (30) consists of the first ` columns of the upper Hessenberg

matrix H
(µj)
`+1 ∈ � (`+1)×(`+1) determined by application of `+ 1 steps of the Arnoldi process to

the matrix A− µjI . The matrix V`+1 in (30) is independent of the value of µj . This fact and

the simple form (31) of the matrix H
(µj)
` made it possible for Datta and Saad [11] to solve the

m linear systems (29) by the GMRES method by only applying the Arnoldi process once to
compute the Arnoldi decomposition (32) for some ` sufficiently large, and then determining
the decompositions (30) by modifying the matrix H` in (30) according to (31).

Using the Arnoldi decomposition (30), the GMRES method determines an approximate

solution x
(`)
j of the jth linear systems of equations (29), such that the associated residual

vector

r
(`)
j = αjc− (A− µj)x(`)

j (33)

satisfies

‖r(`)
j ‖ = ‖αjc− (A− µjI)x

(`)
j ‖ = min

x∈ � ` (A−µjI,c)
‖αjc− (A− µjI)x‖

= min
y∈ � ` ‖αjc− AV`y‖ = min

y∈ � ` ‖αjc− V`+1H
(µ)
`+1,`y‖

= min
y∈ � ` ‖αj‖c‖e1 −H(µ)

`+1,`y‖. (34)

Denote the solution of the minimization problem (34) by y
(`)
j . Having evaluated this solution,

we compute x
(`)
j = V`y

(`)
j .

The following theorem sheds light on the behavior of the linear system (29) as Re(µj)
decreases. In particular, the theorem shows that the condition number κ(A − µjI) = ‖A −
µjI‖‖(A− µjI)−1‖ is not large when Re(µj) is of large magnitude.

Theorem 2.3. Let x
(`)
j be the approximate solution of the jth linear system (29) determined

by the GMRES method by solving the minimization problem (34), and let r
(`)
j be the associated

residual vector (33). Then

r
(`)
j → 0, κ(A− µjI)→ 1 and x

(`)
j → xj as |µj | → ∞. (35)

Proof. It follows from equation (34) that

‖r(`)
j ‖ ≤ ‖r

(`−1)
j ‖ ≤ · · · ≤ ‖r(1)

j ‖.

It is straightforward to bound ‖r(1)
j ‖. Equation (34) with ` = 1 yields that x

(1)
j = γjc, where

the scalar γj solves

‖r(1)
j ‖ = min

γ∈ � ‖αjc− (A− µjI)(γc)‖.

Thus,

γj =
αjc

T (AT − µ̄jI)c

cT (AT − µ̄jI)(A− µjI)c
→ −αj

µj
as |µj | → ∞. (36)

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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Substituting x
(1)
j = γjc into (33) yields, in view of (36), that

r
(1)
j → αjc− (A− µjI)(−αj

µj
)c as |µj | → ∞, (37)

and the right-hand side expression in (37) converges to zero as |µj | increases.
To show that the condition number κ(A− µjI) approaches one as |µj | → ∞, observe that

‖A− µjI‖‖(A− µjI)−1‖ = ‖I − 1

µj
A‖‖(I − 1

µj
A)−1‖ → 1 as |µj | → ∞.

Finally,

x
(1)
j − xj = −(A− µjI)−1r

(1)
j → 0 as |µj | → ∞.

In applications of the GMRES method, we may, for instance, choose ` in the Arnoldi
decomposition (32) as the smallest integer, such that the residual errors satisfy the bound

‖r(`)
j ‖ ≤ ε, 1 ≤ j ≤ m, (38)

for some specified ε > 0.
The theorem suggests that for a fixed vector c and parameter ` > 0, the norm of the residual

error ‖r(`)
j ‖ and of the error ‖x(1)

j −xj‖ decrease as Re(µj) decreases. Indeed, we have observed
this behavior in numerous numerical examples, already for fairly small values of |Re(µj)|. This
indicates that in order for the GMRES method to give rapid convergence, we should choose
µj to have a negative real part of large magnitude.

On the other hand, choosing all the eigenvalues µj of the matrix H in (11) with real parts
much smaller than the real part of the leftmost eigenvalue of the matrix Hm in the Arnoldi
decomposition (12), makes it necessary to move the eigenvalues of Hm a long distance to the
µj in the eigenvalue assignment problem for the matrix H discussed in Theorem 2.1. The
sensitivity of this eigenvalue assignment problem increases the further the eigenvalues have to
be moved; see Mehrmann and Xu [17] for bounds for the condition number of the eigenvalue
assignment problem. Related results can be also be found in [3, 18]. Let the Hessenberg matrix
H = Hm − αseTm have spectral factorization

H = WHΛHW
−1
H ,

with a diagonal matrix ΛH . Then

κ(WH ) = ‖WH‖‖W−1
H ‖

provides an estimate of the sensitivity of the eigenvalue assignment problem, see [3, 18], and
is displayed in the numerical examples of Section 4.

Thus, we would like to choose the real part of the µj small enough to make the GMRES
algorithm converge rapidly and large enough so that the eigenvalue assignment problem
discussed in Theorem 2.1 is not too ill-conditioned.

The next section considers a further aspect of the choice of the µj ; there we discuss how the
choice of the µj affects the magnitude of the coefficients αj in the partial fraction representation
(27).

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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3. PARTIAL FRACTION REPRESENTATION

The eigenvalues µj of the matrix H in (11) determine the partial fraction representation (27).
The location of the eigenvalues determines how accurately the partial fraction can be evaluated
in finite precision arithmetic. Close poles can greatly compromise the accuracy of the computed
value of 1/pm(t). In addition coefficients αj of large magnitude in the representation (27) may
make it necessary to compute an Arnoldi decomposition (32) with a large value of ` in order

to satisfy the residual error bound (38) since residual errors r
(`)
j determined by the GMRES

method are proportional to αj .
Example 3.1. Let p2(t) = (t − ε)(t + ε) with |ε| > 0 tiny. Consider the evaluation of the

partial fraction representation

1

p2(t)
=

1

2ε

1

t− ε −
1

2ε

1

t+ ε
(39)

in finite precision arithmetic and assume that the computations are carried out with three
significant digits. Let ε = 1/900. Then evaluation of the representation (39) yields the value
0.00.

Evaluating the product form representation

1

p2(t)
=

1

(t− ε)(t+ ε)

with the same arithmetic and value of ε yields the value 1.00. In exact arithmetic we have

1

p2(1)
=

1

1− ε2
= 1.00000.

This example illustrates that the partial fraction representation may yield significantly lower
accuracy than the product form representation. The difficulty in the present example stems
from loss of significant digits due to partial fraction coefficients of large magnitude and opposite
sign. This in turn is caused by the poles being very close.

�

Example 3.2. This example shows that the magnitude of the coefficients in the partial fraction
representation depends not only on the distance between poles, but also on the distribution of
the poles. Let

pm(t) =
m∏

j=1

(t− j

m
).

Then the partial fraction coefficients (27) are given by

α` =
mm−1

m∏

j = 1
j 6= `

(`− j)
. (40)

In particular, for m = 10, we obtain

α6 = −α5 ≈ 3 · 105.

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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Thus, evaluation of the partial fraction representation (27) in finite precision arithmetic may
cause severe cancellation of significant digits despite the fact that 1/pm(t) does not have close
poles. Moreover, the large magnitude of the partial fraction coefficients may make the use of an
Arnoldi decomposition (32) with a large value of ` necessary. Note that some of the coefficients
(40) are of much larger magnitude than others. This is measured by the quotient

q(m) =
max1≤j≤m |αj |
min1≤j≤m |αj |

(41)

We have q(10) = 126. Note that q(m) is invariant under linear transformation of the zeros µj
of pm(t). In particular, the value q(10) is the same whenever the zeros µj are equidistant on
some interval in the complex plane.

�

Example 3.3. Let pm(t) = cos(m arccos(t/2)), i.e., pm(t) is a Chebyshev polynomial of the
first kind for the interval [−2, 2]. Its zeros are

µj = 2 cos(
2j − 1

2m
π). (42)

Then

p′m(µj) =
(−1)j−1m

2 sin( 2j−1
2m π)

yields

|αj | ≤
2

m
, 1 ≤ j ≤ m. (43)

The distance between some adjacent zeros µj is fairly small for large values of m. For instance,

|µ1 − µ2| = 2| cos(
π

2m
)− cos(

3π

2m
)| = 4| sin π

m
sin

π

2m
| < 2π2

m2
.

Nevertheless, the bound (43) shows that max1≤j≤m |αj | converges to zero as m increases.
Moreover, all partial fraction coefficients are of roughly the same order of magnitude. For
instance, we have q(10) = 6.4, where q is defined by (41). This value is much smaller than the
value for equidistant zeros reported in Example 3.2.

Numerical experiments indicate that the partial fraction representation (27) with the zeros
(42) does not suffer from severe loss of significant digits when evaluated in finite precision
arithmetic.

�

Further examples of difficulties of partial fraction representations, as well as a discussion on
how to ameliorate these difficulties, can be found in [2].

4. CHOICE OF EIGENVALUES OF H

The examples in Section 3 illustrate that the use of a partial fraction representation can,
but must not, lead to severe loss of accuracy when evaluated in finite precision arithmetic.
Partial fraction coefficients of large magnitude can give rise to severe loss of accuracy due
to cancellation of significant digits during evaluation of the partial fraction representation.
Conversely, numerical experiments display little loss of accuracy when evaluating a partial

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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fraction representation whose coefficients all are of roughly same, not very large magnitude.
Example 3.3 suggests that choosing the eigenvalues µj of the matrix H in (11) as zeros of
a Chebyshev polynomial gives coefficients αj in the partial fraction representation (27) of
roughly the same magnitude, which typically is not very large.

We propose the following selection of eigenvalues {µj}mj=1 of the matrix H . In order to secure
that the matrices A−µjI are nonsingular, we determine approximations of the eigenvalues of
A with smallest real part. The eigenvalues of the upper Hessenberg matrix H` in the Arnoldi
decomposition (32) used for the solution of the linear systems (29) by the GMRES method
furnishes approximations of the desired eigenvalues of A. If these approximations are not
sufficiently accurate then they can be improved, e.g., by the Implicitly Restarted Arnoldi
method proposed by Sorensen [20]. We choose the µj to be zeros of the Chebyshev polynomial
of the first kind of degree m for the interval [τ+iρ, τ−iρ], i =

√
−1, where τ < mint∈λ(A) Re(t)

and ρ = maxt∈λ(A) Im(t). The accurate determination of maxt∈λ(A) Im(t) is not crucial for the
performance of the the algorithm below, which computes the solution {H,X} of the Sylvester-
observer equation

AX −XH = βmce
T
m, (44)

where βm is the same as in Lemma 2.1. This equation is obtained by scaling the equation (11)
by the factor βm. Therefore, if {H,X} solves (44), then {H, β−1

m X} solves (11).

Algorithm 1 Input: A, c,m, `. Output: H,X .

1. Apply ` steps of the Arnoldi process with initial vector c to determine an Arnoldi
decomposition of the form (32). Compute approximations of the eigenvalues of A with
smallest and largest real parts.

2. If the eigenvalue approximations computed in Step 1 are not sufficiently accurate, then
compute improved approximations with the Implicitly Restarted Arnoldi method [20].

3. Choose the set of eigenvalues {µj}mj=1 of the matrix H in (11). We propose that µj be
chosen as zeros of Chebyshev polynomials for the interval [τ + iρ, τ − iρ] introduced
above. This set of eigenvalues is invariant under complex conjugation.

4. Solve the systems of equations (29) by the GMRES method as described in Section 3,
i.e., use the available Arnoldi decomposition (32) computed in Step 1 to determine the
decompositions (30) for 1 ≤ j ≤ m. The latter Arnoldi decompositions are used to

compute approximations x
(`)
j of xj for 1 ≤ j ≤ m by the GMRES method, i.e., by solving

the minimization problems (34). If the approximations x
(`)
j are sufficiently accurate, then

evaluate the approximate solution

x(`) =
m∑

j=1

x
(`)
j

of the linear system of equations (20), cf. the formula (28), otherwise increase ` in the
Arnoldi decompositions (32) and (30).

5. Apply m steps of the Arnoldi process with initial vector v1 = x/‖x‖ to determine the
Arnoldi decomposition (12). This gives the matrix Hm.

6. Compute the vector f ∈ � m , such that λ(Hm − feTm) = {µj}mj=1 by using the formulas

of Theorem 2.1 with βm defined in Lemma 2.1. Let X = Vm/βm, H = Hm − feTm.
�
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We remark that the vector f used for the eigenvalue assignment in Step 6 of the algorithm
can be computed either by the formulas of Theorem 2.1 or according to Lemma 2.1. When the
matrix A is large, we generally only solve the equation (20) approximately, and then these two
approaches to compute the vector f are not equivalent. When the system (20) is not solved
exactly and we compute f by the formulas of Lemma 2.1, the eigenvalue of the Hessenberg
matrix H in general are further away from the µj than when the formulas of Theorem 2.1 are
applied. We therefore use the latter approach in Algorithm 1.

5. NUMERICAL EXAMPLES

The computations reported in this section were carried out on an Intel Pentium workstation
using Matlab 5.3 and floating point arithmetic with 16 significant digits. In all examples,
we used the same matrix A ∈ � 500×500 , which we determined by generating its spectral
decomposition. The eigenvalues λj were distributed in the disk � = {z : |z + 1| = 1} ⊂ � as
follows. We let λj = ρj exp(iτj)− 1, i =

√
−1, where the ρj and τj were uniformly distributed

in the intervals [0, 1] and [0, π], respectively. When Im(λj) > 0, λ̄j = ρj exp(−iτj) − 1 was
also chosen as an eigenvalue. We determined the eigenvector matrix W with real or complex
conjugate columns, the real and imaginary parts of the entries uniformly distributed in the
interval [0, 1]. This gave an eigenvector matrix with condition number κ(W ) = ‖W‖‖W −1‖ =
5.1 · 104. The eigenvalues of A are marked by dots in the figures below.

The computations were carried out as described by Algorithm 1 and illustrate the numerical
consequences of the choice of eigenvalues µj of the Hessenberg matrix H in Step 3 of Algorithm
1.

Example 5.1. Steps 1-2 of Algorithm 1 with ` = 20 gave the approximations

min
t∈λ(A)

Re(t) = −1.9, max
t∈λ(A)

Im(t) = 0.9.

We let m = 8 and choose the µj to be the zeros of a Chebyshev polynomial of the first kind of
degree 8 for the interval [−1.9−0.90i,−1.9 + 0.90i], where i =

√
−1. The eigenvalues of A and

the µj are displayed by Figure 1. The solution of the equation (20) is determined by solving
the m systems of equations (29) using the Arnoldi decomposition (32) with ` = 20. Numerical
results are shown in Table I under the heading “Nearby µj .”

For comparison, we repeat the computations of Step 3-6 of Algorithm 1 with the µj allocated
further to the left in the complex plane. Specifically, we let the µj be the zeros of the Chebyshev
polynomial of the first kind of degree 8 for the interval [−5.7 − 0.90i,−5.7 + 0.90i]. The µj
are displayed in Figure 2 and the performance of Algorithm 1 is shown in Table I under the
heading “Distant µj .”

Table I. Effect of the choice of zeros on the solution of the Sylvester-observer equation (11)

Quantity Nearby µj Distant µj

‖AX −XH − βmc‖ 8.4 · 102 3.6 · 10−3

κ(WH) 1.3 · 103 5.1 · 1011

Copyright c© 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:1–16
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Figure 1. · : Eigenvalues of A, ∗ : Eigenvalues of Hm, � : µj , + : Eigenvalues of H = Hm − feTm

We see that the set of µj further away from the imaginary axis produce substantially lower
residual error. However, the condition number of the matrix H is larger for these µj and this
makes the pole placement problem more sensitive to perturbations.

�

Example 5.2. This example illustrates the effect of the distribution of the µj on the solution
of the Sylvester equation. We let m = 14 and solve the equation (20) using the Arnoldi
decomposition (32) with ` = 50. The µj are chosen to be zeros of the Chebyshev polynomial
of the first kind of degree 14 for the interval [−2.7− 0.96i,−2.7 + 0.96i]. Figure 3 shows the
spectra of A, H , and Hm, as well as the µj . Table II displays the performance of Algorithm 1.

For comparison, the computations were also carried out with the µj allocated equidistantly

Table II. Effect of the choice of the µj on the solution of the Sylvester-observer equation (11)

Quantity µj equidistant µj zeros of Chebyshev polynomials

‖AX −XH − βmc‖ 1.8 · 100 5.3 · 10−2

max1≤i≤m |αi| 1.6 · 104 8.9 · 102
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Figure 2. · : Eigenvalues of A, ∗ : Eigenvalues of Hm, � : µj , + : Eigenvalues of H = Hm − feTm

in the interval [−2.7 − 0.96i,−2.7 + 0.96i]; see Figure 4. Numerical results are presented in
Table II. Clearly, Algorithm 1 performs better when the µj are zeros of Chebyshev polynomials.

�

6. CONCLUSION

The performance of the method by Datta and Saad [11] for the solution of the Sylvester-
observer equations (11) depends on the choice of the set of eigenvalues {µj}mj=1 of the matrix
H . Let τ0 = mint∈λ(A) Re(t) and ρ = maxt∈λ(A) Im(t), and assume that τ0 ≤ 0 and ρ > 0. We
propose to choose the µj to be zeros of the Chebyshev polynomial of the first kind of degree
m for the interval [τ + iρ, τ − iρ] for some τ < τ0. The smaller value of τ , the more accurately
we can solve the linear system (20) for a fixed value of ` in the Arnoldi decomposition (32),
but the more ill-conditioned the eigenvalue assignment problem of Theorem 2.1. Typically, we
seek to choose τ small, but large enough to be able to solve the eigenvalue assignment problem
to desired accuracy.
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Figure 3. · : Eigenvalues of A, ∗ : Eigenvalues of Hm, � : µj , + : Eigenvalues of H = Hm − feTm
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