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AMG BY ELEMENT AGGLOMERATION AND CONSTRAINED
ENERGY MINIMIZATION INTERPOLATION

TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Abstract. This paper studies AMG (algebraic multigrid) methods that utilize en-
ergy minimization construction of the interpolation matrices locally, in the setting of
element agglomeration AMG. The coarsening in element agglomeration AMG is done
by agglomerating fine-grid elements, with coarse element matrices defined by a local
Galerkin procedure applied to the matrix assembled from the individual fine-grid ele-
ment matrices. This local Galerkin procedure involves only the coarse basis restricted
to the agglomerated element. To construct the coarse basis, one exploits previously
proposed constraint energy minimization procedures now applied to the local matrix.
The constraints are that a given set of vectors should be interpolated exactly, not only
globally, but also locally on every agglomerated element. The paper provides algorith-
mic details, as well as a convergence result based on a “local-to-global” energy bound
of the resulting multiple-vector fitting AMG interpolation mappings. A particular im-
plementation of the method is illustrated with a set of numerical experiments.

1. AMGe background

Element based AMG methods (or AMGe for short), were proposed in [2], [10], [5], [6],
see also [15]. The AMGe methods have the advantage that they can assess the quality of
their interpolation mappings by proving global estimates on the basis of easily ensured
in practice local estimates. A possible disadvantage of this class of methods is their
somewhat costly setup, both in terms of time and storage, since one has to assemble
local matrices and create coarse element matrices at every coarsening step. For difficult
finite element problems, such as anisotropic problems with anisotropy that is not grid
aligned, or thin-body elasticity, AMGe seem to be the only currently available method
that has the potential to be scalable (cf., [6]). The version of the AMGe method that
we study in the present paper seems to give satisfactory convergence and complexity
results for higher order elements (quadratics and cubics) and the high setup cost can be
justified if the constructed hierarchy of matrices is used for a sequence of problems.

The paper proposes a combination of the “vector preserving” construction of inter-
polation matrices introduced in [18] (see also [17]) and its additive Schwarz version in
[20], with the element agglomeration used previously. More specifically, we apply the
method of [20] locally, on every agglomerated element E to construct a local interpo-
lation matrix PE that fits the restriction of a given vector. If several vectors need to
be fitted, one uses the multiple vector interpolation procedure proposed in [16] (again
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locally). Then, a global interpolation matrix P is constructed from the local ones, by
proper averaging based on partition of unity. The averaging procedure guarantees that
the global P will also fit the given vector(s). We analyze the energy boundedness of P
and prove that local bounds on PE imply a global estimate. This yields the two-grid
convergence of the resulting method. Details are found in Section 3. Even though it
is not discussed in the present paper, another important feature of the method is that
it can be used adaptively, in the framework proposed in [4], [3]. This is possible due
to the algorithm from [16] which allows one to update a given P by hierarchically ex-
tending the previous coarse space, such that it interpolates a new adaptively computed
“algebraically smooth” vector. The remainder of the paper is structured as follows. In
Section 2, we describe the energy minimization interpolation procedure and provide an
algorithm to generate a global interpolation matrix from local ones. In the following
Section 3, we provide an estimate characterizing the global energy boundedness of the
interpolation operator assuming natural local energy bounds. We also comment on the
case of multiple vector interpolation. The final section contains a number of numerical
tests, including ones assessing the convergence properties of our implementation of the
method.

2. Constrained energy minimization interpolation

Consider a given (fine-grid) linear system with a symmetric and positive definite
(s.p.d.) matrix A. Let N denote the set of row indices of A (also called fine-grid degrees
of freedom, or dofs). Let {E}, the set of agglomerated elements, form an overlapping
partition of N . For any vector v we denote its restriction to E by vE. We assume that
A is assembled from local matrices AE in the sense that for any fine-grid vectors v and
w,

vT Aw =
∑
E

vT
EAEwE.

Let Nc ⊂ N be a given set of coarse degrees of freedom (or coarse-grid dofs). The
main task in AMG is the construction of the interpolation operator P , which maps a
coarse-grid vector to a fine-grid one.

In this section, we review the constrained energy minimization interpolation algorithm
originating in [18] (see also [17]) in the form studied in [20]. The difference, in our case,
is that we use it locally, namely, for every agglomerated element E and respective local
stiffness matrix AE we construct a local interpolation matrix PE. The global P will
then be obtained from these local matrices by proper averaging at the shared dofs, as
explained in Section 3. To construct P (and PE) we first have to select the coarse dofs
Nc, and also specify the sparsity pattern, or support Ωi ⊂ N , of each column ψi, i ∈ Nc

of the global P . In AMGe it is natural to define the support Ωi of ψi to be covered by
the union Ni of all agglomerated elements that share the coarse dof i. One excludes from
Ωi all other coarse dofs as well as fine dofs that belong to agglomerated elements outside
of Ni. Once the support Ωi is defined, its restriction, ΩE, i, to each E is also determined.
For a simple illustration, see Figure 3 in Section 4. The procedure to determine PE and
hence P , utilizes an a priori given vector e. More specifically, the local interpolation
matrix is the solution of the following problem:
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Find PE = (ψE, i)i∈Nc∩E, where each ψE, i is supported in ΩE, i, with minimal energy,
i.e.

(2.1)
∑

i∈Nc∩E

ψT
E, iAEψE, i 7→ min,

subject to the constraint that for some {gi}

(2.2)
∑

i∈Nc∩E

gi ψE, i = eE .

Each ψi is normalized, so that its ith entry equals one. Therefore, the coefficient gi

above equals the ith entry of e (due to the proper choice on the support of ψi).
We next describe the additive Schwarz based algorithm from [20] applied to each E

and AE. Let IE, i be the extension by zero of a vector defined on ΩE, i to a vector de-

fined on E. Then the ith Schwarz block is defined as TE, i = IE, i

(
IT
E, iAEIE, i

)−1
IT
E, i.

To build a PE such that PEec = eE, where ec = eE|Nc∩E one proceeds as follows.

Let TE =
∑

i∈Nc∩E

g2
i TE, i. Then, ψE, i = giTE, iT

−1
E eE defines the ith column of PE.

The vector xE = T−1
E eE is computed by the preconditioned CG method applied to

TExE = eE with a simple diagonal preconditioner DE =
∑

i∈Nc∩E

g2
i IE, iD

−1
E, iI

T
E, i, where

DE, i = diag
(
IT
E, iAEIE, i

)
. It is readily seen (by a local analysis) that DE is a spec-

trally equivalent preconditioner to TE. Thus, only few PCG iterations are needed to
compute xE = T−1

E eE. At any rate, since we are dealing with matrices of small
size the latter spectral equivalence is not a major issue here. By construction then,
PEec =

∑
i∈Nc∩E

giψE, i = eE. The fact that the resulting PE leads to a P T
E AEPE with

minimal trace is proved in [20]. For practical purposes, Gauss-Seidel iterations can be

used to evaluate (approximately) the actions of
(
IT
E, iAEIE, i

)−1
. We have to comment

that even tough AE can be only semi-definite, the principal submatrices IT
E, iAEIE, i can

be assumed invertible. The latter can be achieved if the set Nc ∩ E is sufficiently rich
noting that IE, i has zero rows corresponding to E ∩ (Nc \ {i}).

At this point, we stress upon the fact that the local constrained minimization problem
(2.1)–(2.2), gives a mapping PERE with minimal AE-trace norm. Here RE is the restric-
tion of fine-grid vectors vE to Nc∩E. Assuming that the size of each E is bounded, and
since all norms in finite dimensional vector space are equivalent, one may expect that
the thus computed PE will be small in other norms as well. In particular, we assume
throughout the rest of the paper the following local estimate, for any vector vE

(2.3) vT
E(I − PERE)T AE(I − PERE)vE ≤ ηE vT

EAEvE,

with a reasonable constant ηE ≥ 1. Note that, if vE is in the nullspace of AE, the latter
estimate implies that PE must interpolate that vector exactly, i.e., vE = PEREvE. We
address this property further in Section 3.2.

3. From local to global estimates

In this section, we derive energy norm bounds for projections Q = PR, where P is an
interpolation and R is a restriction mapping with RP = I.
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3.1. A general local to global norm bound. Recall that we are given a set of coarse
degrees of freedom (or coarse-grid dofs) Nc. We view Nc, as a subset of N . We have
vectors (or grid functions) defined on N (fine-grid vectors) and vectors defined on Nc

(coarse-grid vectors). Let n = |N | and nc = |Nc|, with nc < n, be the respective
size (cardinality) of N and Nc. The space of coarse-grid vectors is identified with Rnc

and, similarly, the fine-grid vectors are identified with Rn. We have global mappings
R : Rn 7→ Rnc and P : Rnc 7→ Rn. Respectively, there are local mappings RE and
PE, such that RE restricts a local fine-grid vector defined on E to a local (coarse-grid)
vector defined on E ∩ Nc, whereas the local interpolation mapping PE interpolates a
local coarse vector defined on E ∩Nc to a vector defined on E. The specific form of all
mappings involved will be given later on.

We assume that for another s.p.d. matrix M , which can be assembled from {ME}
in the same way as A, there is a stable local procedure that defines PE such that for a
mapping RE : REPE = I, one has the bound,

(3.1) (vE − PEREvE)T ME (vE − PEREvE) ≤ ηE vT
EAEvE ,

for any vE ∈ Rn. We comment that ME may equal AE.
Note that, in general, PE may not agree on dofs that are shared by more than one

subdomain E. That is why we need a partition of unity non–negative diagonal weight
matrices DE = (dE, i)i∈E, which are defined for vectors restricted to E. Let also IE be
the matrix representing extension by zero outside of E. It is clear that vE = IT

Ev and
M =

∑
E

IEMEIT
E . Note that we have also assumed that the row indices of PE are in E.

Partition of unity means that ∑
E

IEDEIT
E = I.

In other words,
∑

E: i∈E

dE, i = 1 for every dof i. To be specific, we will choose

(3.2) dE, i =
‖ME‖∑

E′ : i∈E′
‖ME′‖

.

Let Ic
E be the extension by zero of coarse vectors defined on E ∩Nc to a vector defined

on Nc. Therefore, (Ic
E)T restricts a coarse vector defined on Nc to a coarse vector defined

on E ∩Nc. The following matrix definitions are then in place:

RT =

[
0
I

]
} N \ Nc

} Nc
, RT

E =

[
0
I

]
} (N \Nc) ∩ E
} Nc ∩ E

,

and

IE =

[
0
I

]
} N \ E
} E

, Ic
E =

[
0
I

]
} Nc \ E
} E ∩Nc

.

Finally, we assume the following form of PE,

(3.3) PE =

[
∗
I

]
} E \ Nc

} E ∩Nc.
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With the help of the partition of unity diagonal matrices we are in a position to define
a global P as follows,

(3.4) P =
∑

E

IEDEPE (Ic
E)T .

The global Q = PR takes the form

Q =
∑

E

IEDEPEREIT
E .

The latter holds since REIT
E = (Ic

E)T R. One can also see that RP = I, that is, Q is a
projection.

Assuming that PE, or rather QE = PERE, are bounded in the ME-energy norm in
terms of AE as in (3.1), we would like to prove a similar M -energy bound for the global
P .

One has, v −Qv =
∑
E

IEDE(I − PERE)IT
Ev. Hence, letting wE = (I − PERE)IT

Ev,

one gets

vT (I −Q)M(I −Q)v = ((I −Q)v)T M
∑
E

IEDE(I − PERE)IT
Ev

≤
(
((I −Q)v)T M(I −Q)v

) 1
2

×

((∑
E

IEDEwE

)T ∑
E′

IE′ME′IT
E′
∑
E

IEDEwE

) 1
2

.

Assume now the estimate (cf. [11] for a different application) to be verified in what
follows

(3.5) sup
(wE)

∑
E′

‖IT
E′
∑
E

IEDEwE‖2
M

E
′∑

E

wT
EMEwE

≤ K.

Then the following bound on P (or Q = PR) holds,

(3.6)

vT (I −Q)M(I −Q)v ≤
∑
E′

(∑
E

IEDEwE

)T

IE′ME′IT
E′
∑
E

IEDEwE

≤ K
∑
E

(
(I − PERE)IT

Ev
)T

ME(I − PERE)IT
Ev

≤ K
∑
E

ηE vT IEAEIT
Ev

≤ K
(
max

E
ηE

)
vT Av.

Assuming the specific form (3.2) of the weight matrices, next we show how to estimate
K in (3.5). Let wi stand for the ith entry of w. One has

‖IT
E′
∑
E

IEDEwE‖2
M

E
′ ≤ ‖ME′‖ ‖IT

E
′
∑
E

IEDEwE‖2

= ‖ME
′‖
∑

i∈E
′

( ∑
E: i∈E

dE, iwi

)2

=
∑

i∈E′

( ∑
E: i∈E

‖ME′‖ 1
2 dE, iwi

)2

.
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Therefore, ∑
E

′

‖IT
E′

∑
E

IEDEwE‖2
M

E
′ ≤

∑
E′

∑
i∈E′

( ∑
E: i∈E

‖ME′‖
1
2 dE, iwi

)2

.

Since ‖ME′‖dE, i ≤ ‖ME‖ for i ∈ E ∩ E
′

and
∑

E: i∈E

dE, i = 1, using Cauchy-Schwarz

inequality, we get∑
E′
‖IT

E′
∑
E

IEDEwE‖2
M

E
′ ≤

∑
E′

∑
i∈E′

( ∑
E: i∈E

‖ME‖
1
2 (dE, i)

1
2 |wi|

)2

≤
∑
E′

∑
i∈E′

∑
E: i∈E

‖ME‖w2
i

∑
E: i∈E

dE, i

=
∑
E′

∑
i∈E′

∑
E: i∈E

‖ME‖w2
i

=
∑
E′

∑
i∈E′

∑
E: i∈E

Cond(ME)λmin(ME) w2
i

≤ max
E

Cond(ME) κ
∑
i∈E

λmin(ME) w2
i

≤ max
E

Cond(ME) κ
∑
E

wT
EMEwE.

Thus, K ≤ κ max
E

Cond(ME) where κ ≥ 1 is the maximum number of subdomains that

share a given dof, and Cond(ME) = λmax(ME)/λmin(ME) denotes the condition number
of ME. In summary, one has the following main result.

Theorem 3.1. Define the global P on the basis of the local ones, PE, and the set of
weighted matrices {DE} given in (3.2). Assume the local estimates (3.1). Finally, let
κ ≥ 1 be the maximal number of subdomains E that contain a given dof. Then, the
following global norm bound holds:

vT (I −Q)T M(I −Q)v ≤ κ max
E

Cond(ME)
(
max

E
ηE

)
vT Av.

The above theorem makes sense only if ME are non-singular. In particular, the fol-
lowing corollary holds (cf., [7]).

Corollary 3.1. Let M be well-conditioned, for example, M be the diagonal of A, hence
ME is the diagonal of AE. Then the local estimates (3.1) imply the global estimate
in Theorem 3.1, which in turn shows that A is spectrally equivalent to M in the sub-
space Range(I − Q). The latter space is complementary to the coarse space. Hence,
the two-grid method based on P and a smoother M (after proper scaling, such that
vT Av ≤ vT Mv) is optimally convergent with a convergence factor bounded by 1 − 1

η
,

where η = κ max
E

Cond(ME)
(
max

E
ηE

)
is the constant in the global norm estimate of

Q in Theorem 3.1.

3.2. Energy norm bounds. The results of the previous subsection were formulated
for arbitrary M , but in practice, we are mostly interested in the case M = A, when the
estimate (3.1) coincides with our assumption (2.3). Since we allow the matrices AE to
be singular, the assumption (3.5) is modified to read:

(3.7)
∑
E′

‖IT
E′

∑
E

IEDEwE‖2
A

E
′ ≤ K

∑
E

wT
EAEwE ,
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for any wE not in the nullspace of AE. With this modification, we can extend the
“local-to-global” energy norm estimate as follows.

Theorem 3.2. Define the global P on the basis of the local ones, PE, and the set of
weighted matrices {DE} given in (3.2) (with ME = AE). Assume the local estimates
(2.3), and in particular assume that vE = PEREvE for any vE in the nullspace of AE.
Finally, let κ ≥ 1 be the maximal number of subdomains E that contain a given dof.
Then, the following global norm bound holds,

vT (I −Q)T A(I −Q)v ≤ κ max
E

λmax(AE)

λ+
min(AE)

(
max

E
ηE

)
vT Av ,

where λmax(AE) and λ+
min(AE) denote the largest and the smallest nonzero eigenvalues

of AE.

Proof. First, note that, for {DE} given by (3.2), (3.7) can be obtained in the same
manner as (3.5), with a constant K ≤ κ max

E

(
λmax(AE)/λ+

min(AE)
)
. The rest of the

proof proceeds as in Theorem 3.1, taking into account that wE = (I −PERE)IT
Ev is not

in the nullspace of AE. �

The energy norm boundedness of PR guarantees a two-grid convergence of AMG
based on P and an appropriate smoother. The following result follows from Theorem
5.1 in [8].

Corollary 3.2. Under the assumptions of Theorem 3.2, the two-grid AMG method
based on P and Richardson smoother, for example, has a convergence factor bounded by

1− λmin(Aff )

‖A‖
1
η
, where Aff is the submatrix of A corresponding to fine degrees of freedom

not present on the coarse grid, and η = κ max
E

λmax(AE)

λ+
min(AE)

max
E

ηE.

The rest of this subsection deals with the practical construction of interpolation which
fits the null-vectors of AE exactly. One way to do this is to first coarsen the nullspace
and then proceed with the rest of the interpolation.

Specifically, let P0, E be local interpolation matrices (having the form (3.3)) with
columns forming a basis for the nullspace of AE. This gives an initial coarse grid N 0

c

together with the restriction mapping R0, E and the projection Q0, E = P0, ER0, E. Let
PE be standard interpolation matrices, that are defined on a complementary coarse grid
N ′

c . The resulting composite grid Nc equals N 0
c ∪N

′
c and we assume that N ′

c ∩N 0
c = ∅.

It is natural to assume that for every E, R0, EPE = 0. In particular, we assume that PE

have zero rows corresponding to the set N 0
c (viewed as a subset of the fine–grid dofs).

Define the composite interpolation

PE = [P0, E, PE] ,

and the composite restriction mapping

RE =

[
R0, E

RE(I − P0, ER0, E)

]
.

Then, the following simple identity holds:

(3.8) I − PERE = (I − PERE)(I − P0, ER0, E).
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Therefore, the composite interpolation will satisfy vE = PEREvE for any vE in the
nullspace of AE, as needed in the local estimate (2.3). Furthermore, QE = PERE is a
projection, as seen below,

REPE =

[
R0, E

RE(I − P0, ER0, E)

]
[P0, E, PE]

=

[
R0, EP0, E R0, EPE

RE(I − P0, ER0, E)P0, E RE(I − P0, ER0, E)PE

]
=

[
R0, EP0, E 0

0 REPE

]
=

[
I 0
0 I

]
.

We used the fact that R0, EP0, E = I, REPE = I and R0, EPE = 0.
Now, let Q be the global mapping defined using the partition of unity diagonal matrices

as in (3.4). The conclusion of Theorem 3.2 is that

‖(I −QE)vE‖2
AE

≤ ηE ‖vE‖2
AE

implies

‖(I −Q)v‖2
A ≤ η ‖v‖2

A,

where η depends only on local quantities (ηE and the spectrum of AE).
The subdomain-by-subdomain construction of P0 is not always as straightforward. In

the setting of element agglomeration AMGe (subdomains being agglomerated elements)
algorithms to build such an initial P0 that handles the nullspace components of AE are
found in [10] and [6]. If the nullspace components are given (the constant vector for
Laplace–like problems or the rigid body modes for elasticity equations), one can use the
multiple vector interpolation procedure of [16] in the local setting of Section 2.

4. Numerical experiments

In this section, we consider a specific implementation of the proposed AMGe interpo-
lation algorithm and discuss its numerical performance.

The solver is designed for unstructured finite element problems in 3D. It requires
the finite element topology, i.e., the table element dof (describing the set {E}) and the
matrices AE, as well as one, or few, vectors that are to be interpolated exactly on the
coarser grids. Those vectors can be nullspace components of the local stiffness matrices
or can be the representations, in the finite element basis, of some “smooth” functions.
For example, if a second order elliptic equation is to be solved with linear finite elements,
one can provide the constant vector as an input. Similarly, the six rigid body modes can
be prescribed for elasticity problems.

Given an initial finite element topology and some vectors to be interpolated, the setup
phase proceeds as follows:

(1) Based on the element element connectivity (which, for example, can be computed
from the element dof table, see [15]), perform one step of element agglomeration,
i.e., form the table AE element.

(2) Choose the new coarse grid dofs and compute the local interpolation matrices
PE.
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(3) Generate the coarse-grid finite element topology using a variational procedure
(i.e. the coarse-grid matrices are computed as P T

E AEPE). Compute the coarse
vectors that are to be interpolated exactly on the next step.

(4) If the so constructed coarse grid is small enough, stop. Otherwise, use it as an
input to generate the next coarse level.

The solution algorithm is then AMG, based on the global P (defined by (3.4)) and
the variationally computed global coarse-grid matrices. We used two smoothers in the
test runs: Gauss-Seidel and a multiplicative overlapping Schwarz with domains defined
by the coarse elements.

The agglomeration step above is a graph partitioning problem which can be solved
with tools such as METIS and its parallel version ParMETIS, see [12]. There are other
techniques, some of which are specifically designed for AMGe settings such as Algorithm
4.1 in [10]. For a survey of different AMGe coarsening strategies, see [19]. An example
of a “nice” sequence of coarse elements in three dimensions is shown in Figure 1.

Figure 1. Four levels of element agglomeration with coarsening factor 8.

Note that the element agglomeration step can be completely decoupled from the rest
of the setup, since the coarse grid element connectivity can be simply computed as the
following Boolean matrix product:

AE AE = AE element× element element× (AE element)t .

The main part of the setup process is step (2), which itself consists of three steps:
choosing the coarse grid (the columns of PE), defining the sparsity pattern of PE and
computing its actual entries. Here we use partitioning of the fine–grid dofs into groups
(referred to as minimal intersection sets in [16]). These groups form a non–overlapping
partition of the fine–grid dofs. They are uniquely determined after the set of the ag-
glomerated elements in terms of the table AE element has been constructed. Basically,
all dofs within a group belong to the same set of agglomerated elements. For an illus-
tration of this concept see Figure 2 (center). If a vector e is to be interpolated exactly,
the coarse grid is chosen (or updated) by bringing one dof per group to the coarse level;
namely, the dof in the group where |e| is maximized (locally over the dofs in the group).
This is illustrated in Figure 2. The sparsity patterns of PE are then given by the sets
ΩE, i, representing the element topology as discussed in Section 2. See Figure 3 for an
example. Finally, the constrained energy minimization algorithm is used to determine
the actual entries of PE.
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Figure 2. Fine elements with fine degrees of freedom to be agglomer-
ated into one coarse element (left). Groups of degrees of freedom in the
agglomerated element (center). Coarse degrees of freedom in each group
(right).

Figure 3. The restriction (to the given coarse element) of the support,
ΩE, i, corresponding to the highlighted coarse degrees of freedom.

When more than one vector needs to be interpolated, we use the multiple vector
preserving interpolation algorithm from [16]. For example, all linear functions can be
brought to the coarse grid, as shown in Figure 4.

In the rest of this section, we consider numerical examples involving various PDE
models, discretizations and “smooth” functions. We use an initial parallel version of the
algorithm, mainly to illustrate the convergence behavior on larger problems. Making
this parallel code scalable (especially in the setup phase) is a separate and ongoing
effort. In each test case we list the number of processors used np, the global size of the
linear system N , the commonly reported grid and operator complexities grid and op,
the number of PCG iterations nit needed to reduce the residual norm by six orders of
magnitude, and the average convergence factor %.

The grid and operator complexities are standard measures for the quality of the coars-
ening in AMG. The former is defined as the ratio of the sum of the number of nonzero
entries in the operator on all levels to the number of nonzero entries on the finest level.
The latter is the sum of the grid sizes on all levels divided by the size of the finest grid.

The goal of the current paper is to demonstrate that the proposed AMGe algorithm
can be a spectrally equivalent preconditioner to complicated problems, such as higher
order discretizations. That is why we concentrate on the above quantities whereas the
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Figure 4. Coarse elements after two agglomeration steps (top left), to-
gether with the level surfaces corresponding to the representations of the
functions 1, x, y and z in one of them.

time for setup and solution is given as an information. In the current implementation
the setup is not optimized and there is room for improvement.

Our first example problem is the Laplace equation

(4.1) −∇ · (a(x)∇u) = f

posed on the unit cube with zero Dirichlet boundary conditions and a ≡ 1. We consider
the linear system obtained from discretization with linear finite elements on a tetrahedral
grid and solve it with PCG using the proposed constrained minimization AMGe as a
preconditioner. The smoother is two sweeps of a parallel version of Gauss-Seidel with
minres-type scaling, and the initial smooth function is the constant one. We used a
coarsening factor of 8.

Since the coarse grid selection algorithm for dofs located in the vertices of the mesh
leads to very large coarse grids, in this particular example, we ignored all groups associ-
ated with faces and element interiors. This leads, see Table 1, to operator complexities
that are comparable with many coarsening schemes from classical AMG, cf. [9]. The
number of iterations appears to be bounded, as predicted by the theory from the previous
sections.

Table 1 also lists the times (in seconds) to setup and solve the problem on our test
machine, having 2.4GHz Xeon processors. For this problem, both times show a slight
and reasonable growth when the problem size is increased, while the size per processor
is kept approximately the same.
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np N grid op nit % setup solve
2 35937 2.30 5.24 3 0.01 14.4 1.62
4 68705 2.11 4.85 4 0.03 16.1 1.95
8 145505 2.06 5.15 5 0.04 20.5 2.61
16 320705 1.96 4.63 5 0.05 22.9 2.76
32 536769 2.32 4.94 6 0.08 29.8 3.67
64 1089729 2.15 5.02 7 0.12 35.3 4.15
128 2625921 1.87 4.47 7 0.12 39.2 4.41

Table 1. Numerical results for the Laplace problem on the unit cube
discretized with linear finite elements. Reduced coarse grid by ignoring
face and element groups.

We next consider a discretization of the same problem using cubic finite elements.
Owing to the large size of the maximal intersection sets, we get very small grid and
operator complexities, as seen in Table 2. This is in contrast to classical AMG methods,
where such good complexities can be achieved only with a strength threshold very close
to 1.

np N grid op setup
1 29449 1.22 1.35 22.3
2 60361 1.27 1.48 32.4
4 117649 1.24 1.37 28.1
8 228241 1.26 1.45 38.4
16 468625 1.29 1.51 48.1
32 912673 1.26 1.41 44.9
64 1797409 1.28 1.49 57.2
128 3692833 1.30 1.50 68.5
256 7189057 1.26 1.41 78.0
512 14266945 1.29 1.52 111.

Table 2. Grid, operator complexities and setup times for the Laplace
problem on the unit cube, discretized with cubic finite elements.

Next, we compare two different smoother options. The first is the smoother from the
previous example, while the second is a parallel Gauss-Seidel with coloring. The results
in Table 3 show that Gauss-Seidel with coloring leads to better and stable number of
iterations, but the increase in the number of colors needed results in worse total run
times.

Finally, in Table 4, we illustrate the influence of varying the agglomeration algorithm
on the same problem with an added mass term and no boundary conditions. We compare
our default option—coarsening in each processor using METIS followed by processor
agglomeration with ParMETIS, with two approaches similar to the bottom-up and the
“rgb” methods from [19]. All methods result in solvers with comparable convergence
properties, which suggests that the quality of the agglomeration may not be crucial. Note
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np N nit % solve nit % solve
1 29449 6 0.07 2.5 7 0.11 2.9
2 60361 7 0.12 4.8 6 0.09 7.2
4 117649 7 0.13 4.8 6 0.09 12.0
8 228241 8 0.17 5.9 7 0.12 18.1
16 468625 9 0.19 7.0 7 0.13 25.8
32 912673 8 0.17 6.8 7 0.13 27.8
64 1797409 10 0.22 8.6 8 0.15 43.7
128 3692833 10 0.24 10.3 8 0.17 63.3
256 7189057 11 0.28 11.6 9 0.18 74.6
512 14266945 13 0.33 15.4 9 0.20 104.

Table 3. Solve times for the Laplace problem on the unit cube discretized
with cubic finite elements, using Gauss-Seidel with minres scaling (left
columns) and Gauss-Seidel with coloring (right columns) smoothers.

that, while we can specify the coarsening factor (8) in METIS, the other agglomerations
have smaller initial coarsening factors (around 6), which explain why their complexities
are worse for this particular example.

np N grid op setup grid op setup grid op setup
1 29449 1.22 1.35 22.2 1.31 1.51 25.6 1.27 1.57 43.5
2 60361 1.27 1.47 32.5 1.31 1.51 28.1 1.26 1.45 52.8
4 117649 1.24 1.37 28.2 1.34 1.60 35.2 1.33 1.59 56.9
8 228241 1.26 1.45 38.6 1.34 1.60 41.1 1.32 1.63 86.1
16 468625 1.29 1.51 48.2 1.34 1.58 48.7 1.28 1.49 94.8
32 912673 1.26 1.41 45.3 1.37 1.66 64.1 1.35 1.62 135.
64 1797409 1.28 1.49 58.4 1.37 1.65 88.5 1.34 1.67 208.
128 3692833 1.30 1.50 67.5 1.29 1.52 103. 1.29 1.52 200.
256 7189057 1.26 1.41 78.6 1.39 1.68 124. 1.36 1.63 218.

Table 4. The default METIS/ParMETIS agglomeration (left) compared
with two other agglomeration algorithms similar to the bottom-up ap-
proach (center) and the “rgb” method (right) from [19].

Our third example problem is, again, a discretization of (4.1), but this time posed on
the hexahedral approximation of the unit ball shown in Figure 5. The coefficient a(x)
is piecewise constant and has a lot of jumps. We employ trilinear finite elements for
discretization, and as before, provide only the constant smooth function on input. The
coarsening factor was 8, except for the finest grid, where a factor of 64 was used in order
to try to reduce the size of the first coarse space. This aggressive coarsening requires a
more powerful smoother, and we used a parallel version of multiplicative Schwarz with
coloring.

Numerical results on up to 1024 processors are reported in Table 5, where we see that
both the grid and the operator complexities are kept under control to quite acceptable
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Figure 5. The initial hexahedral mesh approximating the unit ball (left),
and its splitting into two subdomains where the coefficient a(x) has values
of 10−2 (center) and 102 (right).

levels. We also note that using the Schwarz smoother leads to low and constant number
of iterations (and corresponding convergence factors).

np N grid op nit %
2 7351 1.23 2.03 8 0.15
16 60483 1.30 2.71 11 0.28
128 489846 1.27 2.43 13 0.31
1024 3889285 1.26 2.30 12 0.31

Table 5. Numerical results for the Laplace problem on the unit ball
discretized with trilinear finite elements on hexahedral grid.

Next, we consider the Lame equations of linear elasticity, posed on the unit cube with
two materials having Poisson ratios ν = 0.2 and ν = 0.49, and Young’s moduli E = 100
and E = 1, see Figure 6. The matrix A corresponds to the bilinear form

E

1 + ν

∫
Ω

ν

1− 2ν
∇ · u∇ · v + ε(u) : ε(v) dx ,

where u is the displacement vector and ε(u) : ε(v) = 1
4

∑3
i,j=1(∂iuj + ∂jui)(∂ivj + ∂jvi).

Both Dirichlet and Neumann boundary conditions were imposed on different parts of
the boundary.

The problem was discretized with linear non-conforming finite elements on a tetrahe-
dral grid. We choose this example since elasticity problems are usually problematic for
algebraic multigrid methods, with the possible exception of smoothed aggregation, see
[14, 1].

We performed two sets of tests—one using the translation vectors as initial smooth
functions, and a second one where all six rigid body modes were used. In both cases,
the smoother was multiplicative Schwarz. The results, presented in Table 6, suggest a
definite improvement in the number of iterations when more smooth vectors are interpo-
lated. However, this leads to significantly larger operator complexities and ultimately,
slower running times. The obtained number of iterations is reasonable given that this is
a fairly challenging problem.
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Figure 6. The initial tetrahedral mesh on the unit cube (left), and the
subdomain where the Poisson ratio ν has a value of 0.49 (right). The value
in the rest of the domain is 0.2.

np N grid op nit % grid op nit %
1 19584 1.27 1.94 26 0.58 1.49 4.11 22 0.53
2 38016 1.28 1.73 34 0.66 1.47 2.98 25 0.57
4 76032 1.33 2.17 28 0.60 1.47 3.26 21 0.50
8 152064 1.29 2.07 29 0.61 1.54 4.64 21 0.51
16 299520 1.31 1.89 37 0.69 1.52 3.45 28 0.60
32 599040 1.35 2.29 32 0.64 1.49 3.54 22 0.52
64 1198080 1.30 2.14 38 0.69 1.57 4.95 19 0.48
128 2377728 1.33 1.97 46 0.74 1.55 3.67 28 0.61
256 4755456 1.36 2.32 49 0.75 1.51 3.71 30 0.63
512 9510912 1.31 2.20 41 0.71 1.58 5.14 22 0.53
1024 18948096 1.33 1.98 47 0.74 1.55 3.69 25 0.58

Table 6. Numerical results for the linear elasticity problem with non-
conforming finite elements. Three (left columns) and six (right columns)
smooth vectors corresponding to translations and rigid body modes.

To further investigate the practical solution of this problem, we replace the Schwarz
smoother with the previously used sweeps of Gauss-Seidel with minres scaling. We
present the results in Table 7 and compare them with those from Table 6. As expected,
we get worse number of iterations and convergence factors. However, the setup and
solution times are faster and practically acceptable.

Finally, we consider the same elasticity problem discretized with (vector) cubic finite
elements. The results from these experiments are reported in Table 8. We observe very
good complexities and relatively stable number of iterations and convergence factors.
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