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Abstract. In this paper we study the use of long distance interpolation methods with the
low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for
classical as well as long distance interpolation methods on parallel computers. It is shown
that the increased interpolation accuracy largely restores the scalability of AMG convergence
factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such
as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent
scalability properties on large parallel computers.

1. Introduction

Algebraic multigrid (AMG) [1] is a very efficient parallel algorithm for solving sparse linear
systems, Au = f , on unstructured grids. Unlike multigrid, it requires only the underlying matrix
and nothing else. Additionally, AMG solvers and preconditioners are potentially scalable.

However, when applied to large three-dimensional problems, the “classical” AMG algorithm
often generates unreasonably large complexities with regard to memory use as well as
computational operations. In order to counter this complexity growth, the Parallel Modified
Independent Set (PMIS) coarsening algorithm [2] was introduced. While the use of this
coarsening algorithm in combination with a slight modification of Ruge and Stüben’s classical
interpolation scheme [5] leads to significantly lower complexities, it also leads to degraded
convergence and reduced numerical scalability. For various test problems, such as isotropic
and grid aligned anisotropic diffusion operators, it is possible to obtain fairly scalable results
when AMG is used as a preconditioner in combination with Krylov methods. However, for
more complicated problems, such as problems with rotated anisotropies or highly discontinuous
material properties, this strategy is not sufficient. Therefore it was necessary to investigate
improved interpolation operators.

In this paper we focus on our new extension of classical interpolation, called extended+i

interpolation. Our investigation shows that this interpolation strategy significantly improves
AMG convergence factors compared to classical interpolation. However, it also showed increased
complexities. While the increase is not very significant for two-dimensional problems, it is
of concern in the three-dimensional case. Therefore we also investigated complexity reducing
strategies, such as the use of smaller sets of interpolation points and interpolation truncation.



The use of these strategies led to AMG methods with significantly improved overall scalability.
For further details on this work as well as the use of additional long-distance interpolation
operators see [3].

2. AMG Interpolation

In AMG, the central idea is that “smooth error,” e, that is not eliminated by relaxation must
be removed by coarse-grid correction. This is done by solving the residual equation Ae = r
on a coarser grid, then interpolating the error back to the fine grid and using it to correct the
fine-grid approximation. The coarse grid solution is achieved by recursion. AMG consists of the
following two phases:
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In the remainder of the paper we will use the following definitions and notations. One
of the concepts used is strength of connection. A point j strongly influences a point i if
−ai,j > αmaxk 6=i(−ai,k), where 0 < α ≤ 1. In the remainder of the paper, we will use
α = 0.25. We define the following sets: F is the set of all fine points, C contains all coarse
points, Ni = {j|aij 6= 0} is the set of neighbors of point i, Si is the set of neighbors that strongly
influence i, F s

i = F ∩ Si is the set of fine strong neighbor points of i, C s
i = C ∩ Si is the set of

coarse strong neighbors of i, and Nw
i = Ni \ (F s

i ∩Cs
i ) is the set of the remaining neighbors of i.

In classical AMG [5], the interpolation of the error at the F -point i takes the form

ei =
∑

j∈Pi

wijej , (1)

where wij is an interpolation weight determining the contribution of the value ej to ei, and
Pi ⊂ C is the coarse interpolatory set of F -point i. In most classical approaches to AMG
interpolation, Pi is a subset of the nearest neighbors of grid point i, i.e. Pi ⊂ Ni, and longer-
range interpolation is not considered.

The assumption that algebraically smooth error has small residuals after relaxation implies
that Ae ≈ 0, and can be rewritten as

aiiei ≈ −
∑

j∈Cs

i

aijej −
∑

j∈F s

i

aijej −
∑

j∈Nw

i

aijej . (2)

From this expression, various interpolation formulae can be derived, such as the interpolation
suggested by Ruge and Stüben in [5]. This interpolation (with a slight modification that was



proposed in [4] to avoid extremely large interpolation weights that can lead to divergence) is
defined as follows:

wij = −
1

aii +
∑

k∈Nw

i

aik
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





aij +
∑

k∈F s

i

aikākj
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m∈Pi

ākm




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



, j ∈ Pi, (3)

where

āij =

{

0 if sign(aij) = sign(aii)
aij otherwise.

We will refer to it as classical interpolation or ‘class’ in the remainder of the paper. Note
that, when the two F -points i and k do not have a common C-point in C s

i and Cs
k, such as

is illustrated in Figure 1, the second denominator in (3) is vanishing. Therefore when using
PMIS coarsening [2], we modified interpolation formula (3) such that if this case occurs, aik is
added to the diagonal term (the term aii +

∑

k∈Nw

i

aik in Eq. (3)), i.e., the strongly influencing

neighbor point k of i is treated like a weak connection of i. This modification can lead to inferior
convergence. Another problem when using PMIS with classical interpolation is that it does not
treat F-points like point p in Figure 1 correctly. Here we have an F -point that is not influenced
by any points and has no coarse neighbors. This situation can occur for example if we have a
fairly large strength threshold. For classical interpolation, the interpolated error in this point
will vanish, and coarse grid correction will not be able to reduce the error in this point.

Both of these issues can be overcome by extending the classical interpolation formula so
that the interpolatory set includes C-points that are distance two away from the F -point
to be interpolated, i.e. applying the classical interpolation formula, but using the following
interpolatory set Pi = P̂i := Cs

i ∪
⋃

j∈F s

i

Cs
j . In Figure 1, point i would now be interpolated

using points l,m, n and o, instead of just l and m. This new interpolation formula, which we
call extended interpolation deals efficiently with strong F − F connections that do not share a
common C-point, and in general leads to much better convergence. For numerical test results,
see [3].
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Figure 1. Example of a
grid typical for PMIS; black
points are C-points
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Figure 2. Finite difference
1D Laplace example.

While the use of extended interpolation with PMIS significantly improves convergence
compared to PMIS with classical interpolation, it does not always lead to the desired weights.
Consider the case given in Figure 2. Here we have a one-dimensional Laplace problem generated



by finite differences. Points 1 and 2 are strongly connected F -points, and points 0 and 3 are
coarse points. The interpolatory set for point 1 is {0, 3} when we include distance-two coarse
neighbors. If we use extended interpolation to calculate w1,0 and w1,3, we obtain

w1,0 = 0.5, w1,3 = 0.5.

This is a better result than we would obtain for classical interpolation,

w1,0 = 1, w1,3 = 0,

but worse than the intuitively best interpolation weights,

w1,0 = 2/3, w1,3 = 1/3. (4)

This can be remedied if we include not only connections ajk from strong fine neighbors j of i to
points k of the interpolatory set but also connections aji from j to point i itself. which leads to
interpolation weights

wij =
1

ãii



aij +
∑

k∈F s

i

aik

ākj
∑

l∈P̂i∪{i}
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

 , j ∈ P̂i, (5)

where

ãii = aii +
∑

n∈Nw

i

ain +
∑

k∈F s

i

aik

āki
∑

l∈Ĉi∪{i}
ākl

. (6)

We call this modification of extended interpolation extended+i interpolation and refer to it
by ‘ext+i’. If we apply it to the example in Figure 2 we obtain the weights in (4).

3. Numerical Results

We consider here a diffusion problem with highly discontinuous material properties on the
unstructured domain illustrated in Figure 3. The results were obtained on the Linux cluster
MCR at LLNL, using up to 1024 processors. Each processor owns about 90,000 rows of the
matrix. AMG was used as a preconditioner for GMRES(10). For further details see [3]. PMIS
is compared to the parallel coarsening scheme CLJP. The results in Figure 3 show that PMIS-
ext+i (PMIS coarsening with ext+i interpolation) restores the convergence that was previously
obtained with CLJP-class, however it also has larger operator complexities, Cop, than PMIS-
class, and while these are significantly better than those of CLJP-class, they are larger than we
would like them to be. (Here Cop =

∑m
i=0 nnz(A(i))/nnz(A), where nnz(A) denotes the number

of nonzeroes of A, m the number of multigrid levels and A(0) = A.) Therefore, it was necessary to
consider ways to reduce these complexities while (hopefully) retaining the improved convergence.
One of the strategies to achieve this is interpolation truncation. There are essentially two ways
we can truncate interpolation operators: by eliminating those weights whose absolute values are
smaller than a chosen truncation factor, or by limiting the number of coefficients per row, i.e.,
choose only the kmax largest weights in absolute value. In both cases the new weights need to
be re-scaled so that the total sums remain unchanged. Both approaches can lead to significant
reductions in setup times and operator complexities, particularly for 3-dimensional problems,
but if too much is truncated, the number of iterations rises significantly. In our experiment we
used truncation by restricting the number of weights to 4. Applying this strategy to CLJP-class
improved times significantly, but operator complexities were still too high. However we obtained
excellent scalability for PMIS-ext+i(4), which achieved very good convergence and the overall
best time with only slightly larger complexities than PMIS-class.

This work was performed under the auspices of U. S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.
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Legend:      ♦ CLJP-class 

■ CLJP-class(4)    ▲ PMIS-class 

× PMIS-ext+i     • PMIS-ext+i(4) 

Figure 3. Results for a diffusion problem with highly discontinuous material properties on the
domain illustrated in the upper left corner.
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