Two Classes of Multisecant Methods for
Nonlinear Acceleration *

Haw-ren Fang! Yousef Saad'
June 1, 2007

Abstract

Many applications in science and engineering lead to models which
require solving large-scale fixed point problems, or equivalently, systems
of nonlinear equations. Several successful techniques for handling such
problems are based on quasi-Newton methods that implicitly update the
approximate Jacobian or inverse Jacobian to satisfy a certain secant con-
dition.

We present two classes of multisecant methods which allows to take
into account a variable number of secant equations at each iteration. The
first is the Broyden-like class, of which Broyden’s family is a subclass, and
Anderson mixing is a particular member. The second class is that of the
nonlinear Eirola-Nevanlinna-type methods.

This work was motivated by a problem in electronic structure calcu-
lations, whereby a fixed point iteration, known as the self-consistent field
(SCF) iteration, is accelerated by various strategies termed ‘mixing’.

1 Introduction

We consider the solution of large-scale fixed point problems with applications
such as electronic structure calculations [9], or complex transportation systems
[3]. The fixed point problem is to find x such that g(x) = = with g : R — R™.
For example, in the electronic structure problem, x is a certain potential and
g(z) is the result of a very complex calculation which delivers another potential.
The iteration is ‘self-consistent’ then the input and output potentials are the
same.

As is well-known, computing a fixed point is equivalent to solving the non-
linear system of equations f(z) = 0, by simply defining f(z) = « — g(x). The
problems of interest to us in this paper are those which have the following
characteristics [3]:

*Work supported by DOE under grant DE-FG02-03ER25585, by NSF under grant DMR-
0325218, and by the Minnesota Supercomputer Institute.

TDepartment of Computer Science and Engineering; University of Minnesota; Minneapolis,
MN 55455.

1. The dimensionality of the problem is large.

2. f(x) is continuously differentiable, but the analytic form of its derivative
is not readily available, or it is very expensive to compute.

3. The cost of evaluating f(x) is computationally high.

4. The problem is noisy. In other words, the evaluated function values of
f(x) usually contain errors.

Another critical consideration, which we now describe, is a practical one
which will underline the difference between the problem of solving a nonlinear
equation and that of accelerating a sequence of vectors. Specifically, there is
limited freedom in the use of f, in that f(x) is the result of some complex
calculation which would be too cumbersome to rewrite in the form of a sub-
routine call. In other words, one can consider that the problem is to accelerate
a sequence of vectors produced by a certain complex code. This is in contrast
with another common situation where we are given a procedure (subroutine) for
computing f(z) and an initial guess. For this reason, there is a very important
distinction to be made between the problem of solving a nonlinear system of
equations and that of accelerating a vector sequence. From one viewpoint, the
two problems are equivalent, since the sequence zx,1 = f(x) is attempting to
find the solution to the system x — f(x) = 0. However, there may be many
practical constraints that will not allow the use of certain types of nonlinear
techniques, in addition to the unavailability of the Jacobian. For example, in
some instances the sequence zp has physical meaning, and it may not be safe
or practical to calculate f(x;, +v) for an arbitrary v.

These characteristics restrict us from several existing methods. For example,
characteristic 1 suggests using matrix-free limited-memory algorithms. Because
of characteristic 2, standard methods, such as Newton’s method, which explicitly
require the derivatives cannot be directly applied. Characteristic 3 prevents us
from line search techniques. Newton-Krylov methods [5, 6] can be made matrix-
free by incorporating finite difference schemes but all finite difference schemes
are discouraged by characteristics 3 and 4. As a result, algorithms relying on
secant equations have become the preferred approach for tackling such problems.
These include Anderson mixing [1], Broyden’s methods [7, 22, 26], modified or
generalized Broyden’s methods [12, 16, 28].

This paper is organized as follows. Section 2 gives a brief review of existing
methods, including Anderson mixing [1], Broyden’s methods [7], generalized
Broyden’s methods [12], and the nonlinear Eirola-Nevanlinna-like method [29,
chapter 7). Inspired by existing work, we present two classes of multisecant
methods in Section 3, where limited-memory algorithms are also presented.
Treatments for numerical stability are given in Section 4. Experimental results
are reported in Section 5. Concluding remarks are given in Section 6.

2 Quasi-Newton methods

We consider a large system of nonlinear equations f(z) = 0 where f : R™ - R
is continuously differentiable. Then we can write

flz+ Az) = f(z) + J(z)Axz, (1)

where J(x) is the Jacobian matrix at z. At the iterate zy, the Newton step
Axy, is determined by
J(.’L‘k)ALL'k = —f(.%‘k) (2)

Then f(xr+Axy) = 0 if the solution Az, to (2) is small enough. The iterations
are repeated by setting

Tpi1 =2 + Axp = xp — J(2) " f(2n) (3)

for k =1,2,... until a good enough solution is obtained. If f(z) is linear with
a nonsingular Jacobian, then the solution is reached in one step.

Newton’s method requires that the Jacobian be available at each iteration,
which is often not practical. Quasi-Newton methods approximate J(zj) by
Ji, and obtain Jx41 from J; by adding a low-rank matrix at each iteration.
They implicitly take advantage of the analytic information without explicitly
computing the actual Jacobian.

2.1 Broyden’s method

Standard quasi-Newton methods require that property (1) be satisfied by the
updated Jy41; in other words, the following secant condition is imposed:

Jk+1A$k = Afk, (4)

where Afi = f(zp41) — fan).
Furthermore, another common requirement is the following so-called no-
change condition:

Jy1q9 = Jxqg, Vg such that ¢7 Az =0, (5)

which stipulates that there be no new information from Ji to Jiy1 along any
direction ¢ orthogonal to Axy.

Broyden [7] developed a method satisfying both secant condition (4) and the
no-change condition (5). By simply imposing these conditions he arrived at the
update formula,

T
Axy,

J) =J. + (Afr — J Az) —r—r—.
k1 = Jp + (Afr — Jk k)Afoxk

(6)

The matrix Ji11 in (6) is the unique matrix satisfying both conditions (4) and
(5). Dennis and Moré [15] showed that the Broyden update can also be obtained

by minimizing E(Jx4+1) = || Jk+1 — Jk||% with respect to terms of Jy1, subject
to the secant condition (4).

It may seem at first that Broyden’s first method can be expensive since
computing the quasi-Newton step Axj requires solving a linear system (2) at
each iteration. However, note that, typically, the approximate Jacobian is a
small rank modification of a diagonal matrix (or a matrix that is easy to invert)
so the cost of the solve is actually not too high as long as the number of steps
is not too large.

An alternative, is Broyden’s second method which approximates the inverse
Jacobian instead of the Jacobian itself. We use GGy to denote the estimated
inverse Jacobian at the k-th iteration. The secant condition (4) now reads,

Gr1Afy = Ay (7)

By minimizing F(Gg41) = ||Gr+1 — Gk||% with respect to Gy41 subject to (7),
one finds this update formula for the inverse Jacobian:

AfE

Gk+1 =G+ (Awk — GkAfk)m, (8)
k

which is also the only update satisfying both the secant condition (7) and the
no-change condition for the inverse Jacobian:

Grq=Gri1q, Y q suchthat ¢TAf, =0. (9)

We can also obtain the update formula (6) in terms of Gy, = Jk_1 by applying
the Sherman-Morrison formula:

Al’{Gk

G =G+ (Azp — G fr) ——=2——.
k1 i+ (Azy k fk)Aw{GkAfk

(10)
This shows, as was explained earlier, that the solve of the Jacobian system
associated with Broyden’s first approach can be reduced to a set of update
operations that are not more costly than those required by the second update.
Note however that the above formula requires the inverse of the initial Jacobian.

2.2 Broyden’s family

From (8) and (10) it is possible to define Broyden’s family of updates, in which
an update formula takes the general form

Grrr = Gr + (Azi — GRAfi)of (11)

where v A f; = 1 so that the secant condition (7) holds [7]. Note that the secant
condition (7) is equivalent to the condition (4). The pseudo-code of Broyden’s
two methods is given in Algorithm 1.

Some authors called Broyden’s first method Broyden’s good update, and
Broyden’s second method, Broyden’s bad update. These are two particular
members in Broyden’s family. In addition, listed below are three other types of
update that satisfy the secant condition:

Algorithm 1 Broyden’s methods for solving f(x) = 0.
Given the initial guess z1, G;.

f1:=f(21)
for all £ =1,2,... until convergence do
Axy, = =G fi

Tpt1 = Tk + Azy,
fey1 = f(xk+1)
Afy = fry1 — fi .
Axi G, if Afirst update:
~T Yk p ’
Select v, = { Aff if second update.
GkJrl = Gk+(Amk_Gk Afk

end for

o
){;kT kAfk

1. Direct update of factorizations. An algorithm of this type (e.g.,
[17, 20]) implicitly assumes the Jacobian being factorized as a product of
two matrices (typically LU factorization), and updates the two matrices
separately to satisfy the secant condition at each iteration. The sparsity
of the approximate Jacobian or its factorization is sometimes assumed and
taken into account for efficiency.

2. Structured methods. This type of methods relies on the property that
the Jacobian is in the form J(z) = C(x) + D(x), where C(z) is easy to
compute but D(x) is not. At each iteration we update Dy from Dy so
that Jyx41 := C(ag41) + Dry1 satisfies the secant condition.

3. Column-updating methods. Martinez introduced a column-updating
method on the Jacobian [19], which consists of updating one column of J,

at a time:
el
Jer1 = Ji + (Afr = JAzp) 72—,
€, Az,

where e}; is a column vector that is zero except for a 1 in its jith position.
This scheme is a member of the Broyden family with, using the notation
of the algorithm, 0, = e}; Gy for the first update and v, = eﬂ for the

second update method which was later proposed by the same author [21].

2.3 Generalized Broyden’s method

Inspired by the work of Vanderbilt and Louie [28], Eyert [12] proposed a gener-
alized Broyden’s method with a flexible rank of update on the inverse Jacobian,
satisfying a set of m secant equations

GipAf; = Ax; fori =k—m,... k-1, (12)

where we assume A fr_,...,Afr_1 are linearly independent and m < n. The
idea of taking multiple secant equations into account is not new. It has been

well-studied by several researchers (see, e.g., [2, 13, 14]). Aggregating (12) in
matrix form, we can rewrite it as

GrFr = X, (13)
where
Fr=[Afk—m - Afi_1], X =[Azp_pm -+ Azp_q] € R™™, (14)
The no-change condition corresponding to (9) is
(Gk = Gr-m)q =0 (15)

for all ¢ orthogonal to the subspace spanned by A fy_pm, ..., Afr_1, the columns
of Fi. This means that the null space of Gy — Gg_,, is the orthogonal of
Fi. Since Null(X)+ = Range(XT) this is equivalent to the condition that
(G — Gr_m)T = F.Z" for a certain unknown matrix Z. This matrix Z can
now be obtained from condition (13). Multiplying Gy — Gg—r, = ZF} to the
right by Fi, we get:

(G = Groen)Fe = ZFLFy = Z= (X — GrmFr)(FLFi) Y,
where we assume Fj, has full column rank. In the end this yields,
Gr = Grom + (X — G Fr) (FL Fi) FL (16)

a rank-m update formula. Note that rank(Fy) = m.
The update formula for x4 is obtained by substituting (16) into (3),

Tpr1 = Ti— Grfr
= @ — Ghomfr — (X — GronFR)(FEF) T FER (A7)
= o5 — Gi—mfr — (X — GremFr) k)

where the column vector v, is obtained by solving the normal equations (F, ;f Fi)vk =
fg fx, which is equivalent to solving the least squares problem

min [Py — fillz - (18)
Note that in (17), if F is square and of full rank, then for any Gi—,,
Tip1 = T — XpFy s (19)

the same form as that in the standard secant method (see, e.g., [14]).
The update matrix Gy, in the formula (16) is:

1. The only formula satisfying both the secant condition Gy Fj, = Xj in (12)
and the no-change condition (15).

2. The minimizer of E(Gy) = ||Gr — Gg—m||F subject to GpFr = Xj.

2.4 The nonlinear Eirola-Nevanlinna-like method

Eirola and Nevanlinna [11] proposed an iterative method to approximate A~*
by adding a rank-one update at each iteration while the approximation of the
solution to a linear system Az = b is improved simultaneously. Yang [29, chap-
ter 7] generalized this scheme to solve nonlinear systems. She called this the
nonlinear EN-like method. The pseudo-code is given in Algorithm 2.

Algorithm 2 Nonlinear Eirola-Nevanlinna-like method.
Given the initial guess z1, G;.

for all £ =1,2,... until convergence do
Te = f(zx)
e = —Grfr
ar = f(xk +pr) — fx ;
—— P, Gk k
Grer = G+ (pk — Gre) rg o > (%)
Tpy1 = Tk — Gra1 fr
end for

Note that the nonlinear EN-like method (Algorithm 2) requires two function
evaluations per iteration whereas Broyden’s method (Algorithm 1) needs only
one. Both methods perform a rank-one update per iteration. Yang showed that
the nonlinear EN-like method converges twice as fast as Broyden’s method in
terms of number of iterations [29, chapter 7]. In other words, the two methods
should in theory converge with a similar speed, requiring a similar number of
function evaluations.

2.5 Anderson mixing

Consider a procedure for solving a large nonlinear system of equations f(x) =0
by an iterative process. The most recent iterates are denoted by xx—m, ..., 2 €
R™ and the corresponding outputs fr—_m,..., fr € R™. Assuming evaluating
f(z) is expensive and no explicit analytic form of f(z) is available, the challenge
is to determine the next estimate x4 1 that approximates the solution to f(x) =
0 without additional evaluations of f(x).

The Anderson mixing scheme [1] takes the latest m steps into account!:

k—1
o= -y W Am = a — Xy, (20)
i=k—m
) k1
Fo = fo— > AAL = fu— Fan, (21)

i=k—m

I Anderson originally formulated his mixing scheme as Zj, = x5 + > Gg.k)(xk,j — x)

and fi, = fp + Z;”:l 0§.k) (ft—; — fx)- The formulation (20) (21) is equivalent to his by taking
k k
%'()= ki 93(').

where Az; = 241 — x; and Af; = fiqr — fi, & = [Azp_py --- Amp_q],

k k .
Fr = [Afp—m - Afg_1], and v, = [’yé)m 71(%)1]11' Expressing the
equations in the form Z, = Z?:k—m w;z; and fi, = Z?:k—m wj fj, we find
that Z?:k—nz w; = 1. In other words, Z; and fr are weighted averages of
Themy .- Tk and fx_m,..., [, respectively.

(k)

The arguments v; = [y, - fy,(gk_)l]T are determined by minimizing

E(yw) = (fi fr) = I1fx — Frvll3, (22)

whose solution can (but should not in practice) be obtained by solving the
normal equations
(FEFe)m = Fil fr- (23)

Combining (20), (21), and (23), we obtain

Thr1 = Tk + Brfr
= T+ Brfr — (X + BruFr) e
= 2+ Brfe — (X + BuFe) (FLEFr) L FiL fr, (24)

where we assume .7-',? Fi is nonsingular. In particular, if no previous iterate is
taken into account (i.e., m = 0), then (24) reads,

Tht1 = T + Bfr- (25)

This scheme is referred to as simple mizing.

The update formula (24) is the same as (17) by setting Gx_m = —fxI. In
this respect Anderson mixing implicitly forms an approximate inverse Jacobian
Gy, that minimizes |Gy + BrI||F subject to (13). In the context of mixing,
generalized Broyden’s second method is equivalent to Anderson mixing. This
equivalence relation was shown by Eyert [12]. Note that if 7} is square and
nonsingular, then (24) matches the formula (19) of the standard secant method.

3 Two classes of multisecant methods

Sections 3.1 and 3.2 derive generalized Broyden’s family and Anderson’s family,
respectively. Sections 3.3 and 3.4 give the Broyden-like class and the Eirola-
Nevanlinna-like class of multisecant methods, respectively. Section 3.5 presents
the hybrid methods.

3.1 Generalized Broyden’s family

At the kth iteration a quasi-Newton method minimizes the change of the ap-
proximate Jacobian Ji or the inverse Jacobian Gy, in the Frobenius norm (Gy =
Jy 1). The authors [3, 12] working on the generalized quasi-Newton methods
favored minimizing the change of G} rather than Jj in the Frobenius norm. An

observation made it possible to obtain an update formula in terms of Gy that
minimizes the change of Jj in the Frobenius norm.

Following the notation in Section 2.3 and in a similar vein to derive the
formula (16), we get the update formula for the approximate Jacobian J:

Tk = Jyem + (Fr = To—m&i) (XL XL, (26)

where Fj, and X, are defined in (14). The Jj, obtained in the above expression
is:

1. The only formula satisfies both the secant condition JpX, = Fj and
the no-change condition Jrq = Jx_,,q for g orthogonal to the subspace
spanned by the columns of X.

2. The minimizer of E(J;) = ||Jx — Jx—m||F subject to JyXx = Fi.

The formula (26) can be expressed in terms of Gj, = J, ' by applying the
Woodbury formula:

Gy = Gr_m + (X — Gk—m]:k)(X/?Gk—mfk)_lngk—m- (27)

Given a set of secant equations represented by Xj and Fj, we call Type-I
methods, those methods that update Gy by (27), by minimizing the change
of the approximate Jacobian in the Frobenius norm. Type-I methods differ
from each other by how the set of secant equations is chosen. We call Type-II
methods, those methods that update Gy by (16) by minimizing the change of
the approximate inverse Jacobian in the Frobenius norm. Likewise, Type-1I
methods differ from each other by how the set of secant equations is chosen.

Now we can write down the generalized Broyden family, in which an update
algorithm is in the form

Gi = Gi—m + (X — Gr_m Fi)ViL, (28)

where V,CT]-";c = I so that the secant condition GxF; = Aj in (13) holds.
The generalized Broyden’s first method (27) and generalized Broyden’s sec-
ond method (16) are two particular members in this family. Note that if Fy, is
square and nonsingular, then V,;I' = Fr !is unique and the resulting formula
Gi, = X, F; " corresponds to the regular secant method (19).

The column-updating methods by Martinez [19, 21] in Broyden’s family (11)
can also be generalized to be m-column-updating methods. The advantage is
that the cost of updating approximate Jacobian or inverse Jacobian is reduced.
In the context of mixing, the function evaluations are much more expensive and
therefore the convergence rate in terms of number of iterations is important.
Hence we use the optimal update formulas (16) and (27) in the sense of least
change.

3.2 Anderson’s family

Recall that Anderson mixing implicitly forms the approximate inverse Jacobian
Gy, and minimizes |G+ 81| subject to the available secant equations [12]. The
generalized Broyden’s second method is a particular member in the generalized
Broyden’s family (28), where V;I' = (FI'F;)"'Fy. Likewise, we can replace
(FIFe) 1 F in (24) by VI and obtain Anderson’s family:

Tg1 = Tt + Bifre — (X + BeFe) Vi fr, (29)

where Vj, € R™ ™ satisfies V,I F;, = I implicitly for the secant condition (13).
There are two particular members in the generalized Broyden family (28): the
Type-I method (27) and the Type-II method (16). The latter corresponds to
Anderson mixing (24) which is therefore a Type-II method. In a similar vein, to
obtain (27), we set Vi, = (X F,) 1AL in (29) and obtain the Type-I Anderson
mixing:

Tip1 = Tk + Bife — (X + BuFr) (XL Fi) XL fu, (30)

which minimizes ||.J;, + %I || subject to the available secant equations, where
Jy is the implicitly formed approximate Jacobian.

3.3 The Broyden-like class

Now we describe the Broyden-like class of multisecant methods. For large-scale
problems, we are interested in limited-memory algorithms. Consider solving a
nonlinear system f(x) = 0 and suppose we have the latest m iterates available,

which are denoted by z1,...,2z,. Let Ax; = xj40 —x; fori =1,...,m—1.
Partition Azq,...,Ax,,_1 into k groups,

Xl = [Axl,...,szl],

XQ = [A$21+1,...,A$22L

Xk = [szk71+1v---7Azzk]a

where z; be the index of the last entry in the ith group for i =1,...,k; 20 =0
and zp = m—1. Also partition Afy, ..., Af,,—1 into Fi, ..., Fk accordingly,
where Af; = fip1 — fi with f; = f(x;). We use s; := z; — z;_1 to denote the
sizes of the groups for ¢ = 1,...,k. Note that the indexing here is different
from that in Section 2. We iteratively approximate the inverse Jacobian at the
(zi+1)st iterate for i = 1,..., k by

Git1 =G+ (X — G F)VE, (31)

where V.I'F; = I for the secant condition. The update follows the formula of
the generalized Broyden family (28). In the context of mixing, the base case is

Gy = —pl,

10

where 3 is the mixing parameter. The next iterate is set by
Tyl = Tm — Gri1fm. (32)

The choice of V; satisfying V.I'F; = I in (31) is left for free. In practice,
we set V. as (XTGF)1xTG, or (FFF,)1FL, that minimize Ey(Git1) =
IG — G tlF or E2(Gig1) = [|Gis1 — Gillr as in (27) and (16), respectively.
In both cases, V; € R"*% is in the form

V' =M N], (33)
where M; € R**% and N; € R"*%. The two optimal choices are displayed in
Table 1.

Table 1: Two optimal choices of V;T = M; ' NI in (31) satisfying V;' F; = I.

Type I II
M, XTG,F; FLF;
NF xraG; Fr
Correspondence (27) (16)

Conceptually, there are two dimensions in this class of methods: the choices
of update arguments such as those displayed in Table 1, and the partitioning of
the available iterates. Four extreme subclasses are listed below.

1. If we partition the iterates into the groups each of which has one iterate,
then the resulting subclass is Broyden’s family.

2. If we put all available iterates into only one group, then we get Anderson’s
family.

3. If we use the Type-I update in Table 1, then the resulting subclass can be
seen as an interpolation between Broyden’s first method and the Type-I
Anderson mixing.

4. If we use the Type-II update, then the resulting subclass can be seen
as an interpolation between Broyden’s second method and the standard
Anderson mixing, a Type-II method.

Now we show how to avoid storing the potentially large matrices G; € R™*™
for large-scale problems with n > m. The sketch is similar to that described in
[22, section 5]. Let

E, =X —-GZF. (34)

Substituting (34) into (31) gets

Gi = Gia+E V5,

11

= G2+ E Vi, +E_ VT,

i—1
= G+ BV

j=1
1—1

= —BI+Y EV (35)
j=1

for i = 2,...,k+1. The matrices GG; need not be explicitly stored. We need G;
only to compute G;F; in (34) and Gi1 f, in (32), and also for V; if it depends
on G;. Substituting (35) into (34) gets

i—1
E; =X+ 8F;, - > _ E;(V'F) (36)

j=1
for i = 1,...,k. The computation is economic for large-scale problems with

n > m. The next iterate x,,+1 in (32) can also be computed in a similar way:

k
.'I,'m+1 = Tm — Gk+1fm = Tm + ﬁfm — ZE](‘/;Tfm)

Jj=1

Using the Type-II update (see Table 1), the computation of V; is straight-
forward from F;. On the other hand, the Type-I update involves G; to compute
Vi. By (35),

i—1
NP =x7Gy = —pxl +> (XE)V].
j=1
After obtaining N;, we compute M; = NI F; and then V' = M, 'N] for
i=1,...,k.

In practice, we fix the group sizes si, Sa, ... from one Newton’s iteration to
another. As a result, F1, Fs,... and Vi, V5, ... can be reused across iterations.
Note that all X;, F;, E;,V; are of the same size n x s;. We need X; and F;
only for computing E; in (36) and V; displayed in Table 1. After E; and V;
are computed, X; and F; are no longer required. In this respect X; and F; can

share the storage with F; and V; for i = 1,..., k. The storage required is listed
below.

1. Two column vectors of size n for x,, and f,,.
An n x (m—1) matrix for A, ..., X (shared with Fy,..., Ey).
An n x (m—1) matrix for F1,...,Fy (shared with Vq,...,V%).

L

For the Type-I update we also store the last group Vg, since its compu-
tation involves Gy.

12

3.4 The Eirola-Nevanlinna-like class

The nonlinear EN-like method proposed by Yang [29, chapter 7] is a Type-I
member that corresponds to Broyden’s first method. They have similar algo-
rithmic structures, as shown Algorithms 1 and 2. Broyden’s family was obtained
by generalizing Broyden’s methods to satisfy the secant condition. Likewise, we
can obtain the nonlinear EN-like family by replacing (*) in Algorithm 2 by

Gr+1 = Gr + (pr — Grar)vf

where v}'q; = 1 for the secant condition.
Generalizing the EN-like family to a class of multisecant methods is also
possible. We use the update formula in the form of (28):

Gr = Grom + (Pr — Grem Q1) Vi, (37)

where Py = [pr—m -+ pr-1), and Qr = [qh—m -+ qr—1] and V;I'Qp =T
to satisfy the secant condition GxQr = Pr. Note that p;,q; are defined in
Algorithm 2 for i = k—m, ..., k—1. In particular, choosing

Vi = (P{ Grem Q) (PF Grem) (38)
results in a Type-I method, whereas choosing
Vi =(QF Q)1 Qf (39)

corresponds to the Type-II update. Note that m is the number of secant equa-
tions to be satisfied and also the rank of the update. Setting m = 1 results in
the EN-like family.

Yang hinted at a limited-memory version of the nonlinear EN-like algorithm
[29, page 124]. Here we give a solution for large-scale problems. For all algo-
rithms in the EN-like class, it is straightforward to adapt the scheme in Sec-
tion 3.3 to avoid explicitly storing the approximate inverse Jacobian Gj. Now
we discuss the memory efficiency. Like the methods in Broyden-like class, only
one secant equation is created per iteration using a method in the EN-like class.
Hence the required memory is unchanged for the same number of iterations.
The methods in the EN-like class require two function evaluations per iteration
whereas the methods in the Broyden-like class need only one. Therefore, the
required memory is halved for the same number of function evaluations.

For the same amount of function evaluations, the methods in the EN-like
class take only half of the secant conditions of those in the Broyden-like class into
account to approximate the Jacobian or inverse Jacobian. Intuitively, the EN-
like class seems not to take the full advantage of the information of the available
iterates. However, empirical evidences showed that the EN-like methods are
often comparable to and sometimes faster than the Broyden-like methods in
terms of number of function evaluations to converge. At this stage, little is
known about theoretical convergence properties.

13

3.5 Hybrid methods

Broyden’s first method (10) and Broyden’s second method (8) are two optimal
updating schemes to minimize F1(Ggy1) = HG;il — Gyl lF and Ex(Gry1) =
|Gr+1 — G|l F subject to the secant equation (7), respectively. Instead of using
one updating method straight for all iterations, Martinez developed a scheme to
choose the update (8) or (10) at each iteration [23]. This method outperforms
Broyden’s first and second methods in his small numerical experiments.

Likewise, using a multisecant algorithm presented in Section 3.3 or 3.4, we
can choose either a Type-I or a Type-II update (displayed in Table 1) from one
iteration to another. Inspired by Martinez’ work [23], we develop a scheme to
choose V; = (FIF)7YFL or V; = (TG, F;) 1 XL G, for (31), the update of a
Broyden-like method at each iteration.

To simplify the discussion, we assume that all groups of iterates have the
same size fixed across iterations, except for the last group that may be smaller
due to fewer iterates. Let ¢ be the index of the last group. Since all updates
satisfy the secant condition, we have G;F;_1 = X;_1 for i > 1 (i.e., there are
at least two groups). When the last group &; is smaller than the others, we
trim some columns of X;_1 to form /E,l of the same size of X;. We also trim
the corresponding columns of F;_; to get ﬁi,l. In practice we keep the latest
secant equations. By abuse of notation, we still write X;_; for -)?i—l and F;_4
for ﬁi—l, and then Gi]:i—l = Xi—l-

Substituting G;F;—1 = X;_1 into the result of multiplying (31) by F;_1, we
obtain

Gip1Fic1 — Xio1 = (X — G F) Vi Fi_q,

which represents the secant error G;41F;,—1 — Xj;—1 governed by Vl-TFi_l, whose
norm ||V;I'F,_1|| can be used as a criterion to decide which V; to use. More
precisely, we choose V; = (FIF;)"1FL if

I(FF) N F Fio)ll < & GiF) & X)),

otherwise we use V; = (X1 G;F;)"1XT'G;. To reduce cost we replace the above
criterion by one based on the inequality:
[FLFiall 1 ||
|7 RN X Gl

(40)

Alternatively, we may consider the secant error in the form G;llXiT_l — Fi—1,
which leads to another decision criterion
1FEFioall 1" Xia]
R

(41)

Any norm can be employed in (40) and (41). In practice we use the Frobenius
norm.

Three remarks are given as follows. First, when a limited-memory algorithm
is required for large-scale problems, we use (35) to compute G;F; in (40) so that

14

G; does not need an explicit storage. On the other hand, the criterion (41) is
discouraged due to the factor G 1 Second, this scheme has no effect on the
methods in Anderson’s family, since all secant equations are put in one group
and therefore the secant error is undefined. Third, this scheme is also applicable
to the methods in the EN-like class.

Given a nonsingular square matrix A, an iterative method to solve a non-
linear system of equations is said to be invariant with respect to A in the range
space, if applying this method to f(z) = 0 and Af(x) = 0 results in the same it-
erates x1, o, Likewise, a method is called invariant with respect to A in the
domain space, if the iterates {z;} and {y;} resulting from applying this method
for solving f(xz) = 0 and f(Ay) = 0 respectively, are related by z; = Ay;, pro-
vided that 7 = Ay;. From (2) and (3), Newton’s method is invariant with
respect to linear transformation in both domain and range spaces, whereas a
Type-I method with update (26) is invariant in the range space, and a Type-
IT method with update (16) is invariant in the domain space. The invariance
property is not guaranteed with a hybrid method.

4 Practical details

The multisecant methods which we implemented and tested (see Section 5 on
numerical experiments) can be categorized as one of Broyden-like or EN-like, as
well as Type-I, Type-II, or hybrid update. A parameter of the method which is
denoted by s, is the size of the groups of the secant equations. Several of these
methods have appeared in the literature, as is displayed in Table 2. Note that
s = oo in the table means that Anderson mixing implicitly forms an approximate
inverse Jacobian subject to ‘all’ secant equations.

Table 2: Catalog of the multisecant methods.

Method Ref. Class Type | Group size
Anderson mixing [1] | Broyden IT §=00
Broyden’s first meth. [7] | Broyden I s=1
Broyden’s second meth. [7] | Broyden I1 s=1
Martinez’ scheme [23] | Broyden | Hybrid s=1
Nonlinear EN-like meth. | [29] EN I s=1

The regularized Householder QR factorization with complete pivoting (see
Section 4.1) has been utilized in our implementation to improve numerical sta-
bility.

The formulas of the multisecant methods involve inverting matrices. For
Type-II methods, these matrices are symmetric positive semidefinite, whereas
for Type-I methods no special structure is guaranteed (see, e.g., Table 1).

So far we have assumed that these matrices are nonsingular and therefore
their inverses are well-defined. In practice if these matrices can become singular

15

or ill-conditioned, so a careful treatment is required for numerical stability. The
simplest solution is to perform restarting whenever a singular or ill-conditioned
matrices is detected. Some of these issues are discussed next.

4.1 Type-II update

All the Type-IT methods introduced in this article involve a factor of the form
(AT A)~LAT (see, e.g., Table 1), or require to solve a least-squares linear system
of the form (22) which can be solved by various means, the simplest of which is
the normal equations (23).

When A does not have full column rank, it is nature to replace (AT A)~1 AT
from a Type-II update formula by a function that maps a given vector b to an
output z that satisfies AT Az = ATb.

Consider the least-squares systems to be solved in the rank-m update schemes
seen earlier. For notational convenience we rewrite these least-squares systems
(18) (22) as

m£n||b—Ax||2 (42)

and the corresponding normal equations system (23) as
AT Az = ATp, (43)

where A € R™™™ with n > m. Solving the system in this way can cause
instability in Anderson mixing when A is close to rank-deficient, a condition
that is bound to take place near convergence.

The method of choice for solving very ill-conditioned least-squares system
is a truncated form of the SVD, which is briefly discussed at the end of this
section. Since the SVD is somewhat expensive, it is common to use instead a
Householder QR approach with column pivoting.

The decomposition is denoted by AP = @QR, where Q € R™*™ consists
of orthonormal columns, R € R™*™ is upper triangular, and P € R"*" is a
permutation matrix for pivoting. The objective function (42) becomes ||b —
QR(PTz)||2, the minimizer of which is identical to that of

min Qb — RE||2,

where & = PTz. In the case of Householder QR with pivoting, the matrix R is

of the form
Ri1 Ry
R= , 44
e (44)

where R1; is nonsingular and upper triangular and Ra = 0. Such a factorization
is called a Rank-revealing QR [4]. Writing & = (2;) and QTb = (g;) then the
least-squares system to solve becomes

BRI

16

min
x1,T2

2

As is known, there are infinitely many solutions to the above problem, and the
one with smallest 2-norm is given by

~ . ~ _ p-17
{EQZO, xl—RHbl.

The resulting solution is
&= PRTQ"D, (45)

where RT is the Moore-Penrose pseudo-inverse of R. When A is ill-conditioned,
the solution is ‘regularized’, meaning that Ras in (44) also contains the elements
whose magnitudes are smaller than some tolerance. In practice we set the
tolerance to be the product of the machine epsilon and the maximum magnitude
of the diagonal elements in R.

Another option is to use the Singular Value Decomposition of A, denoted by
A=UXVT, where U € R"*™ consists of orthonormal columns, ¥ is diagonal,
and V is orthogonal. The pseudo-inverse solution to (43) is given by

& =VyTUuTs, (46)

where X7 is from Y with every nonzero entry replaced by its reciprocal. This is
known to be the (unique) least-squares solution when A is of full rank and the
solution of smallest 2-norm when A is not of full rank.

When A is ill-conditioned, the pseudo-inverse solution is often ‘regularized’,
meaning that the singular values below a certain threshold are dropped. The
solution obtained in this manner is more stable but also more computationally
expensive than the solution (45) by the QR decomposition.

4.2 Type-I update

All Type-I methods involve inverting a generally nonsymmetric matrix, denoted
by C, followed by a multiplication of C~! and another matrix or vector (see, e.g.,
Table 1). When C' is singular or ill-conditioned, the practical implementations
of Section 4.1 for Type-II methods are also applicable here.

Consider C~1d, where d is a column vector. When C' is nonsingular, it is
natural to choose y as any minimizer of ||C'y—d||2 to replace C~1d. The smallest
2-norm minimizer is § = CTd, where C* is the Moore-Penrose pseudo-inverse
of C'. This method is stable but somewhat expensive since the computation
involves the SVD of C into C = ULV The resulting formula is) = VE+tUTd,
in the same form of (46).

Alternatively, we may use the Householder QR decomposition of C with
column pivoting, denoted by CP = QR, where @ is orthogonal, R is upper
triangular, and P is a permutation matrix for pivoting. The minimizer of ||Cy —
d||o from this decomposition is § = PR*Q”d, in the same form of (45). The
computation is less expensive than SVD.

In summary, the Type-I update formula involves a factor as the inverse of
a matrix, denoted by C~!, which in practice is replaced by VX+U” using the
SVD of C = UXVT, or by PRTQT using the rank-revealing QR decomposition

17

of C, CP = QR. For both numerical implementations, the decomposition is
‘regularized” when C' is ill-conditioned. This is as discussed in the case of Type-
II update.

4.3 Restarting

Let foiq and frew be two consecutive function values evaluated in sequence. If
| frewl| is too large relative to || foiall, then the linear model or its approximation
is not reliable, so the iteration should be restarted.

A restart simply consists of ignoring the previous directions and taking
and f; to be the latest approximation and residual x4 and f,4 obtained.
Our codes perform a restart when || fod|| < 7||frewll, where r is a restarting
parameter. Keeping r small prevents too many restarts and results in using
more secant equations and speeding-up convergence. However, for challenging
problems it may be necessary to increase the value of r to improve reliability.
Our experiments seem to indicate that a good choice of the restarting factor is
usually between 0.1 and 0.3.

One may ask why standard “global convergence strategies” such as damp-
ing, or trust-region techniques (see, e.g., [10, 24]), are not attempted here. The
primary reason is that these methods tend to be expensive in the context of ac-
celeration. For example, a linesearch back-tracking technique will often require
several attempts before settling with a point that is very close to the previ-
ous one. The end result is that the convergence will be slow and the number
of function evaluations is high. Recall that a function evaluation in electronic
structures consists of one very expensive SCF iteration. Similar considerations
apply for trust region techniques. In essence, the idea of restarting is another
mechanism which decides on a course of action depending on whether or not
the local linear model, upon which many of the global convergence strategies
are built, is trusted. If it is not, then fewer (or no) previous directions are kept.

5 Experiments

We have tested the multisecant algorithms described in this article on a variety of
problems. Here we report the results of the experiments on a variant of Bratu’s
problem (see Section 5.1), two problems using RSDFT which is a MATLAB
implementation of a real-space density function theory method in electronic
structure (see Section 5.2), and two problems using PARSEC, the Pseudopo-
tential Algorithm for Real-Space Electronic Calculations which is Fortran-90
code for electronic structure (see Section 5.3).

5.1 A variant of Bratu’s problem

Consider the partial differential equation

Ugg + Uyy + Uy + Ae” =0, (47)

18

where u is a function of (z,y) € [0,1]%, and «, A are two scalars. This equation
differs from the standard Bratu problem by the addition of the convection term
au, which destroys symmetry. Dirichlet boundary conditions are imposed such
that u(x,y) = 0 for (x,y) on the boundary of the unit square domain.

We solved this problem by a finite difference method. More precisely, we used
a matrix U = [u;;] € R™*™ to present the approximate solution, where u;; ~
u(ih, jh), h = m}H. Then the finite difference approximations of ugs, Uyy, Us
are well-defined for (x,y) = (ih, jh), i, = 1,...,m. Substituting these approx-
imations into (47), we obtain a system of nonlinear equations of U involving
m x m variables, denoted by F(U) = 0.

Table 3: Number of function evaluations to achieve ||[F||s < 1078, n = 400.

Class Type s =1 | Best Performance s =00
1 91 65 (s =21:26,28,30:55) 79
Broyden Hybrid-I 71 65 (s =16:18,21:29,32:55)
II 71 65 (s = 16:18,s > 21) 65
Hybrid-II 71 65 (s =16:18,21:29, s > 32)
1 115 | 69 (s = 17,20) 79
EN Hybrid-I 7 69 (s = 16,17,19,22,23,25,27,28)
1II 78 69 (s = 17,20,21,27,32,s > 34) 69
Hybrid-II 78 69 (s = 17,20,21,27,32,s > 34)

Figure 1: Computed solution of a variant of Bratu’s problem (47).

19

Table 3 lists the numbers of function evaluations to achieve ||F|l2 < 1078
for the test with a = 1, A = 1, and m = 20, resulting in a problem of size
n = 20 x 20 = 400. The restarting factor used was r = 0.1. This problem
is not well-scaled; a good choice for the mixing parameter was § = 5 x 1074
for both classes of methods. As discussed in Section 3.5, the hybrid type of
update chooses Type-I or Type-II update at each iteration depending on which
update results in a smaller secant error, which is defined only when the number
of iterations is larger than the group size of secant equations s. We use Hybrid-
I/II to indicate that Type-I/II update is employed whenever the secant error
is undefined, respectively. The 3D-plot of the computed solution is given in
Figure 1.

We further investigated the case of ‘finer’ grids n = 100 x 100 = 10, 000,
where 3 = 2 x 10~ was a good choice of the mixing parameter. The restarting
factor used was r = 0.3. For each type of update we tried the group sizes s =
1,2,5,10, 20, 50, 100, 200, co. The numbers of function evaluations to achieve
|F|l2 < 1076 were displayed in Table 4. Both Broyden’s first method and the
Type-I nonlinear EN-like method did not converge within 500 iterations and are
marked as ‘N/A’.

Table 4: Number of function evaluations to achieve ||F||s < 1075, n = 10,000.

Class Type s =1 | Best Performance 5§ =00
I N/A | 277 (s = 200) 408
Broyden Hybrid-I | 306 | 273 (s = 100, 200)
II 300 | 273 (s = 50,100,200,) 973
Hybrid-IT | 307 | 273 (s = 50,100,200, c0)
I N/A | 290 (s = 100) 396
EN Hybrid-I | 332 | 286 (s = 100)
I 325 | 285 (s = 50,200, 0) 985
Hybrid-IT | 332 | 285 (s = 50,200, 00)

In both tests shown in Tables 3 and 4, a Type-II method outperformed
its corresponding Type-I method, and the hybrid scheme improved the Type-I
methods. For the Type-I methods a suitable group size s may outperform both
end methods (i.e., s = 1,00).

5.2 RSDFT

Here we present experimental results on two problems using RSDFT, a MAT-
LAB implementation of a real-space density functional theory approach to elec-
tronic structure. The first problem involves n = 157,464 variables (Na atom),
whereas the second has n = 79,507 variables (Si atom). How close the cur-

rent estimate is to the solution is measured by the relative residual 2-norm, i.e.,
£ (@i)ll2

[EAIP

20

10 T T T T T 1 . T T
Simple mixing, p=0.5 —+—
Broyden-| ---x---
1F . 5 Broyden-Il - 7
" Anderson-| —-8
01k - Anderson-|l —-m--
E o0l
o
=
g
3 0.001 |
[
1)
] le-04
=
g
& 1le-05 |
1e-06 |
1e-07
1e-08 1 1 1 1 1 AN By 1
0 5 10 15 20 25 30 35 40
of function evaluations
Figure 2: Result of methods in Broyden-like class, RSDFT, Na atom, § = 1.0.
10 T T T T 1 . T T
Simple mixing, f=0.5 —+—
EN-| ---x---
1y EN-Il - 7
EN-Anderson-| &
EN-Anderson-Il ---m--
01F
E oo01f g
o
=
g
3 0.001 E
7]
1
[le-04 E
=
g
& 1e05f E
1e-06 F E
1e-07 E
1e-08 L
0 5 40

Figure 3: Results of methods

Iteration #

in EN-like class, RSDFT, Na atom, 3 = 1.0.

21

In all plots we use Broyden-I and Broyden-II to denote Broyden’s first and
second methods, respectively. As discussed in Section 3.2, Anderson mixing is a
Type-II method, which has a Type-I variant. They are denoted by Anderson-I1
and Anderson-I, respectively. As discussed in Section 2.4, the nonlinear EN-
like method proposed by Yang [29, chapter 7] is a Type-I method, which has
a Type-II variant. We denote them by EN-I and EN-II, respectively. The
methods corresponding to the Anderson-I/II in the EN-like class (i.e., s = 00)
are denoted by EN-Anderson-I/II, respectively. For these two problems the
performance of the intermediate methods in both classes was comparable and
therefore is not reported. Results of simple mixing, defined in (25), are also
included for comparison.

For the first problem (Na atom), the mixing parameter 5 = 1.0 was a good
choice for both classes of multisecant methods, while simple mixing worked well
with 8 = 0.5. We used the restarting factor r = 0.3. Figures 2 and 3 show the
result of tests with the methods in Broyden-like and EN-like class, respectively.
In this experiment both Broyden’s first and second methods exhibited good
performance, whereas Anderson mixing is less efficient and it is outperformed
by simple mixing.

The Type-I variant of Anderson mixing, Anderson-I, performed significantly
better. Compared with Broyden’s methods, the nonlinear EN-like algorithms
(EN-I/II) saved 50% of memory without slowing down the convergence. The
EN-Anderson algorithms also improved the convergence compared with the An-
derson algorithms, in addition to saving 50% memory in the mixing.

For the second problem (Si atom), the mixing parameter 5 = 0.5 was a good
choice for both classes of multisecant methods, while simple mixing worked well
with 8 = 0.3. Figures 4 and 5 show the result of tests with the methods in
Broyden-like and EN-like class, respectively. In this experiment both Broyden’s
first and second methods performed well, whereas Anderson algorithms were less
efficient but still better than simple mixing. Compared with Broyden’s methods,
nonlinear EN-like algorithms (EN-I/II) saved 50% memory in mixing without
slowing down the convergence. EN-Anderson algorithms not only outperformed
Anderson mixing but also saved 50% memory in mixing.

5.3 PARSEC

PARSEC [8, 18, 25] is a comprehensive electronic structure calculation code
written in FORTRAN-90 which was developed over a period of more than a
decade. It uses a real-space finite difference approach and employs pseudopo-
tentials. The simulation in PARSEC employs Density Functional Theory and
as such the calculation consists of a self-consistent (SCF) iteration with the po-
tential. In many cases, self-consistency is not too difficult to achieve, requiring
10 to 20 iterations to converge. Metallic systems, such as iron clusters, lead to
much more difficult convergence, requiring on occasion a few hundred iterations.
Iron clusters have been the subject of an extensive recent study in [27].

In the following we report on a few experiments with two such problems: Fel
and Fed3, which involve n = 118,238 and n = 220,490 variables, respectively.

22

1
' ' ' Simple rT'1ixing, =0.3 —
Broyden-| ---x---
0.1 Broyden-Il ------ 4
Anderson-I 8
Anderson-|l —-m--
0.01 4
£
2 0.001F i
[}
>
S
g le-04 E
[
=
& 1e-05 | E
[9)
14
1e-06 | E
1e-07 | % E
*
1e-08 1 Il ! IR s !
0 5 10 15 20 25

of function evaluations

Figure 4: Result of methods in Broyden-like class, RSDFT, Si atom, 8 = 0.5.

1
I I I Simple n'llixing, $=0.3 —
EN-| ---x---
01 EN-Il -
EN-Anderson-I —&
EN-Anderson-Il —--=--
0.01 F E
£
2 0,001 F]
[}
>
=]
g le-04f E
[}
=
8 1e-05 | E
[}
14
1e-06 F E
1le-07 E
1e-08
0 25

Iteration #

Figure 5: Result of methods in EN-like class, RSDFT, Si atom, 8 = 0.5.

23

' ' ' éroyden—l —x—
ilr Broyden-Il —---- 7]
Anderson-| ---3---
Anderson-ll ——=
£ 01} b
o
=
[}
>
S
3
= 0.01 B
[
= \
[} \
14 .
o
0.001 | 4
5}
"
)
le-04
0 10 20 30 40 50

of Function Evaluations

Figure 6: Result of methods in Broyden-like class, PARSEC, Fel, g8 = 0.1.

' ' ' EN-l —x—
ir EN-Il -]
o EN-Anderson-| ---3---
EN-Anderson-Il =
£ 0.1 1
o
=
[}
>
S
3
= 0.01 |]
[}
=
®
©
@
0.001 | —
le-04

50

of Function Evaluations

Figure 7: Result of methods in EN-like class, PARSEC, Fel, g = 0.1.

24

10 T T T T T T T
Broyden-l —x—
Broyden-Il ------
i Anderson-| ---&---
Anderson-ll ——=
l -
£
2
° 0.1 |
>
h=]
[
<
¢
£ 0.01 |
[9)
14
0.001 |
le-04
0 20 40 60 80

of Function Evaluations

Figure 8: Result of methods in Broyden-like class, PARSEC, Fe43, 3 = 0.1.

10 T T T T T T
EN-l —x—
EN-Il —----
EN-Anderson-| ---3---
EN-Anderson-Il =
1r .
£
2
° 0.1 —
>
=]
7]
<
() 1 R
£ 001 v ’zé‘*;é r
z et
& !
Ko
0.001 | Wieren
le'04 1 1 I’ :'I 1 1 1
0 20 40 60 80 100 120 140

of Function Evaluations

Figure 9: Result of methods in EN-like class, PARSEC, Fe43, g = 0.1.

25

Note that metallic systems include spin as a variable (unlike non-magnetic ma-
terials). This means that each problem consists of two coupled sub-problems of
size n/2 each (one for spin-up and the other for spin down).

Figures 6 and 7 show the results of the Fel problem, whereas Figures 8 and
9 show the results of the Fe43 problem, by the methods in Broyden-like and EN-
like classes, respectively. In both tests simple mixing, defined in (25), was not
useful. We follow the notation used in Figures 2-5 in Section 5.2. The mixing
parameter used was 0 = 0.1, and the restarting factor was set as r = 0.3, except
that in the case EN-I applied to the Fel problem, we used r = 0.4 to improve
convergence.

For both Fel and Fe43, Anderson mixing (a Type-II method) achieved the
best performance. On average, the EN-like methods, performed as well as the
Broyden-like methods. Restarting sometimes played an important role to ensure
convergence. The performances of the intermediate methods and the hybrid
methods were generally in a comparable range, so details are omitted.

6 Concluding remarks

We presented two classes of multisecant methods, from observing the math-
ematical difference between Broyden’s methods [7] and Anderson mixing [1]:
Broyden’s methods updates its approximate Jacobian or inverse Jacobian from
the previous iterate subject to the latest ‘one’ secant equation, whereas Ander-
son mixing implicitly forms an approximate inverse Jacobian from ‘all’ available
secant equations [12]. By allowing a flexible number of secant equations (de-
noted by s), we obtain a Broyden-like class of multisecant methods. Likewise,
we generalized the nonlinear EN-like method by Yang [29, chapter 7] to the
EN-like class of multisecant methods.

In the Broyden-like class of multisecant methods, Broyden’s family is a sub-
class and Anderson mixing is a particular member. Each method in the EN-like
class, has a corresponding method in the Broyden-like class, and vice versa.
In particular, the nonlinear EN-like method by Yang corresponds to Broyden’s
first method.

We call the update formulas to minimize the change of the approximate
Jacobian (and inverse Jacobian) the Type-I (and Type-IT) methods, respectively.
This feature inspired some methods from existing ones. For example, Anderson
mixing is a Type-II method, and we gave its Type-I variant. The nonlinear
EN-like method by Yang is a Type-I method, and we presented its Type-II
variant.

Broyden’s methods and Anderson mixing are at two extreme ends (s = 1
and s = oo, respectively) in the Broyden-like class. Experiments showed that
sometimes the intermediate methods can outperform the two end methods (e.g.,
Tables 3 and 4 for the variant of Bratu’s problem).

We also generalized Martinez’ scheme [23], to choose the Type-I or Type-11
update depending on the secant errors at each iteration, resulting in the hybrid
methods presented in Section 3.5. In practice, hybrid methods may improve

26

on the worse of the Type-I and Type-II methods (e.g., Tables 3 and 4 for the
variant of Bratu’s problem).

No method can outperform the others in all cases:

e Sometimes Broyden’s methods work better (e.g., Figure 2 for Na problem);
sometimes Anderson mixing works better (e.g., Tables 3 and 4 for the
variant of Bratu’s problem).

e While methods in the EN-like class showed better stability for the Na
problem (see Figures 2 and 3), methods in the Broyden-like class per-
formed better for the variant of Bratu’s problem (see Tables 3 and 4).
The two classes of methods showed comparable performances for the Fel
and Fe43 problems (see Figures 6-9).

e Anderson mixing worked best for both Fel and Fe43 problems (see Fig-
ures 6-9). It was also the worst multisecant method for both Na and Si
problems (see Figures 2-5).

Experience with specific applications, and knowledge of the problems may help
decide which method and which parameters (e.g., mixing parameters and restart-

ing

factor) to use.

References

[1] D. G. Anderson. Iterative procedures for non-linear integral equations.
Assoc. Comput. Mach., 12(547):547-560, 1965.

[2] J. G. P. Barnes. An algorithm for solving nonlinear equations based on the
secant method. Computer Journal, 8:66-72, 1965.

[3] M. Bierlaire and F. Crittin. Solving noisy, large-scale fixed point prob-
lems and systems of nonlinear equations. Transportation Sci., 40(1):44-63,
February 2006.

[4] A. Bjork. Numerical Methods for Least-Squares Problems. SIAM publica-
tions, Philadelphia, PA, 1996.

[5] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems
of equations. SIAM J. Sci. Stat. Comput., 11(3):450-481, 1990.

[6] P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-Krylov
algorithms. SIAM J. Optim., 4(2):297-330, 1994.

[7] C. G. Broyden. A class of methods for solving nonlinear simultaneous
equations. Math. Comp., 19:577-593, 1965.

[8] J. R. Chelikowsky, L. Kronik, I. Vasiliev, M. Jain, and Y. Saad. Using

real space pseudopotentials for the electronic structure problem. In C. Le
Bris and P. G. Ciarlet, editors, Handbook for numerical analysis, volume
X, pages 613-635. Elsevier Science, 2003.

27

[9]

[10]

[11]

[12]

[13]

[19]

[20]

J.R. Chelikowsky and S.G. Louie. Quantum Theory of Real Materials.
Kluwer Press, Amsterdam, 1996.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs,
NJ, 1983.

T. Eirola and O. Nevanlinna. Accelerating with rank-one updates. J. of
Linear Algebra with Applications, 121:511-520, 1989. Linear algebra and
applications (Valencia, 1987).

V. Eyert. A comparative study on methods for convergence acceleration of
iterative vector sequences. J. Computational Phys., 124:271-285, 1996.

D. M. Gay and R. B. Schnabel. Solving systems of nonlinear equations by
Broyden’s method with projected updates. In O. Mangasarian, R. Meyer,
and S. Robinson, editors, Nonlinear Programming 3, pages 245-281. Aca-
demic Press, New York, 1978.

W. B. Gragg and G. W. Stewart. A stable variant of the secant method for
solving nonlinear equations. SIAM J. Numer. Anal., 13(6):889-903, 1976.

Jr. J. E. Dennis and J. J. Moré. Quasi-Newton methods: Motivation and
theory. SIAM Rewv., 19(1):46-89, 1977.

D. D. Johnson. Modified Broyden’s method for accelerating convergence in
self-consistent calculations. Phys. Rev. B, 38(18):12807-12813, December
1988.

J. E. Dennis Jr. and E. S. Marwil. Direct secant updates of matrix factor-
izations. Math. Comp., 38(158):459-476, 1982.

L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang,
Y. Saad, and J. R. Chelikowsky. PARSEC the pseudopotential algorithm
for real-space electronic structure calculations: recent advances and novel
applications to nano-structure. Phys. Stat. Sol. (B), 243(5):1063 1079,
2006.

J. M. Martinez. A quasi-Newton method with modification of one column
per iteration. Computing, 33(3-4):353-362, 1984.

J. M. Martinez. A family of quasi-Newton methods for nonlinear equations
with direct secant updates of matrix factorizations. SIAM J. Numer. Anal.,
27:1034-1049, 1990.

J. M. Martinez. An inverse column-updating method for solving large-scale
nonlinear systems of equations. Optim. Methods Software, 1:129-140, 1992.

J. M. Martinez. Practical quasi-Newton methods for solving nonlinear
systems. J. Comput. Appl. Math., 124:98-121, 2000.

28

[23]

[24]

[25]

[28]

[29]

J. M. Martinez and L. S. Ochi. Sobre dois métodos de Broyden. Nat. Apl.
Comput., 1:135-141, 1982.

W. Murray P. E. Gill and M. Wright. Practical Optimization. Academic
Press, New York, 1981.

Y. Saad, Y. Zhou, C. Bekas, M. L. Tiago, and J. R. Chelikowsky. Diagonal-
ization methods in PARSEC. Physica Status Solidi (b), 243(9):2188-2197,
2006.

G. P. Srivastava. Broyden’s method for self-consistent field convergence
acceleration. Phys. Rev. A, 17:L317-1321, 1984.

M. L. Tiago, Y. Zhou, M. M. G. Alemany, Y. Saad, and J. R. Chelikowsky.
The evolution of magnetism in iron from the atom to the bulk. Physical
Review Letters, 97:147201-4, 2006.

D. Vanderbilt and S. G. Louie. Total energies of diamond (111) surface
reconstructions by a linear combination of atomic orbitals method. Phys.
Rev. B, 30(10):6118-6130, 1984.

U. M. Yang. A family of preconditioned iterative solvers for sparse linear
systems. PhD thesis, University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science, 1995.

29

