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Abstract

Some draining or coating fluid-flow problems and problems concerning the flow of thin
films of viscous fluid with a free surface can be described by third-order ordinary differential
equations. In this paper, we solve the boundary value problems of such equations by sinc
discretization and prove that the discrete solutions converge to the true solutions of the or-
dinary differential equations exponentially. The discrete solution is determined by a linear
system with the coefficient matrix being a combination of Toeplitz and diagonal matrices.
The system can be effectively solved by Krylov subspace iteration methods such as GMRES
preconditioned by banded matrices. We demonstrate that the eigenvalues of the precondi-
tioned matrix are uniformly bounded within a rectangle on the complex plane independent
of the size of the linear system. Numerical examples are given to illustrate the effective
performance of our method.
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1 Introduction

We consider the numerical solution for the two-point boundary value problem of linear third-
order ordinary differential equation (ODE):

{
Ly(x) := y

′′′

(x) + µ2(x)y
′′

(x) + µ1(x)y
′

(x) + µ0(x)y(x) = σ(x),

y(a) = 0, y(b) = 0, y
′

(a) = 0, a < x < b,
(1.1)

where µj(x) (j = 0, 1, 2) and σ(x) are known bounded functions, and a and b are given real
numbers. This class of problems arises from many practical applications such as draining or
coating fluid-flow problems [26, 29, 31, 32] and problems concerning the flow of thin films of
viscous fluid with a free surface [10, 11, 12, 14]. A remarkable feature of this class of ODEs is that
its highest term is of order three, which makes the coefficient matrices of the correspondingly
resulted linear system be strongly nonsymmetric and highly ill-conditioned and, hence, causes
much difficulty in solving it numerically.

We first use the sinc-collocation and the sinc-Galerkin methods to discrete the ODE (1.1).
The sinc function used is

sinc(t) =
sin(πt)

πt
, −∞ < t <∞,

and the set of basis functions adopted are

S(j, h)(t) :=
sin[π(t− jh)/h]

π(t− jh)/h
, −∞ < t <∞, j ∈ Z, (1.2)

where h is the step-size and Z denotes the set of all integers [27]. The points tj = jh, j ∈ Z, are
called the sinc grid-points.

Using the sinc discretizations on (1.1), we can obtain an n-by-n system of linear equations of
the form Aw = p. Theoretically, we demonstrate that the discrete solution determined by the
linear system converges exponentially to the true solution of the continuous problem when the
step-size h tends to zero. We will see that the coefficient matrix A is a combination of Toeplitz
and diagonal matrices. Hence, a straightforward application of the Gaussian elimination will
result in an algorithm of O(n3) complexity. In fact, for n-by-n Toeplitz linear systems, fast
direct solvers of complexity O(n log2 n) have been developed; see, for instance [1]. However,
there does not exist fast direct solver for Toeplitz-plus-diagonal linear systems yet, since the
displacement rank of a Toeplitz-plus-diagonal matrix can take any value between 0 and n; see
[18]. Therefore, fast direct Toeplitz solvers that are based on small displacement-rank are not
applicable to the Toeplitz-plus-diagonal linear systems.

However, it is known [9, 24] that for any n-dimensional vector q, the matrix-vector product
Aq can be computed in O(n log n) operations. Thus Krylov subspace iteration methods can be
employed to solve the linear system Aw = p economically; see, e.g., [15, 16, 17]. In order to
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accelerate the convergence speeds of Krylov subspace methods, we need to construct an efficient
and effective preconditioner for the matrix A. In this paper, we use a banded matrix with a
fixed bandwidth as a preconditioning matrix for the matrix A; see [6, 5, 7, 23, 24]. We show
that the eigenvalues of the preconditioned matrix are tightly bounded within a rectangle on the
complex plane. Numerical results show that the new discretization scheme is accurate and the
banded preconditioner is effective in accelerating the convergence property of GMRES.

The remainder of the paper is outlined as follows. In Section 2, we discretize the ODE
(1.1) by both sinc-collocation and sinc-Galerkin methods. A combination of these two methods
leads to the linear system Aw = p. In Section 3, we estimate the error between the discrete
and the continuous solutions of (1.1). A banded preconditioning matrix for the coefficient
matrix A is constructed and the spectral distribution about the corresponding preconditioned
matrix is estimated in Section 4. Several numerical examples are given in Section 5 to show the
effectiveness of our new approach. Finally, in Section 6, we end this paper with a few concluding
remarks.

2 Sinc Discretization Methods

Let D be a simply-connected domain having boundary ∂D. Let a and b denote two distinct
points of ∂D, and t = φ(z) denote a conformal mapping of D onto a strip region Dd such that
φ(a) = −∞ and φ(b) = ∞, where Dd := {t ∈ C : |Im(t)| < d}. Conversely, z = ψ(t) := φ−1(t)
maps Dd onto D with a boundary ∂D on which the points a and b lie. Here and in the sequel,
we use Re(·) and Im(·) to denote the real and the imaginary parts of a complex number, and
we will write a function f(x) simply as f if no confusion arises.

In this section, we discretize the ODE (1.1) by both sinc-collocation and sinc-Galerkin meth-
ods. To this end, we approximate the exact solution y(x) of (1.1) by the function

yN (x) =
1

φ
′

(x)

N∑

j=−N

wjS(j, h) ◦ φ(x), (2.1)

where φ(x) is a conformal mapping from D to Dd, {S(j, h)}j∈ZN
are the sinc-basis functions in

(1.2), and {wj}j∈ZN
are the unknown coefficients to be found. Here, we have used the notation

ZN = {−N,−N + 1, . . . , N}.

2.1 Sinc-Collocation Method

For the sinc-collocation method, the unknown coefficients {wj}N
j=−N in (2.1) are determined

by the collocation technique, which uses the sinc grid-points as the collocation points. More
precisely, we impose the conditions

LyN (xk) = σ(xk), k ∈ ZN , (2.2)

with xk = ψ(kh) = φ−1(kh) and L being the operator in (1.1). After substituting yN (x) in (2.1)
into (2.2) and multiplying h3/(φ

′

)2 to both sides, we obtain a system of linear equations with
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respect to {wj}N
j=−N as follows:

N∑

j=−N

{
δ
(3)
jk + h

µ2

φ′
δ
(2)
jk + h2

[
2

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

+
µ2

φ′

(
1

φ′

)′

+
µ1

(φ′)2

]
δ
(1)
jk

+ h3 1

(φ′)2

[(
1

φ′

)′′′

+ µ2

(
1

φ′

)′′

+ µ1

(
1

φ′

)′

+
µ0

φ′

]
δ
(0)
jk

}
(xk) · wj

= h3 σ

(φ′)2
(xk), k ∈ ZN , (2.3)

where

δ
(m)
jk := hm dm

dφm
[S(j, h) ◦ φ(x)]

∣∣
x=xk

, m = 0, 1, 2, 3. (2.4)

More concretely, it holds that

δ
(0)
jk =

{
1, j = k,
0, j 6= k,

δ
(1)
jk =

{
0, j = k,
(−1)k−j

k−j , j 6= k,

δ
(2)
jk =

{
−π2

3 , j = k,
(−1)k−j (−2)

(k−j)2
, j 6= k,

δ
(3)
jk =

{
0, j = k,
(−1)k−j [6−(k−j)2π2]

(k−j)3
, j 6= k.

Noting that

δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)kj , δ

(2)
jk = δ

(2)
kj , δ

(3)
jk = −δ(3)kj , j, k ∈ ZN ,

we may rewrite the system of linear equations (2.3) in the form

N∑

j=−N

{
− δ

(3)
kj + h

µ2

φ
′
δ
(2)
kj − h2

[
2

φ′

(
1

φ′

)′′

−
((

1

φ
′

)′
)2

+
µ2

φ
′

(
1

φ
′

)′

+
µ1

(φ
′

)2

]
δ
(1)
kj

+ h3 1

(φ
′

)2

[(
1

φ
′

)′′′

+ µ2

(
1

φ
′

)′′

+ µ1

(
1

φ
′

)′

+
µ0

φ
′

]
δ
(0)
kj

}
(xk) · wj

= h3 σ

(φ′)2
(xk), k ∈ ZN . (2.5)

In order to rewrite the system of linear equations (2.5) into a matrix-vector form, we let T(m)

(m = 0, 1) be the matrices whose (j, k)th element is δ
(m)
jk , and T(m) (m = 2, 3) be the matrices

whose (j, k)th element is −δ(m)
jk . Denote by n = 2N + 1. Then T(0) is the identity matrix and
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T(m) (m = 1, 2, 3) are n× n Toeplitz matrices given by

T(1) =




0 −1 1
2 . . . (−1)n−1

n−1

1 0
. . .

. . .
...

−1
2 1

. . . −1 1
2

...
. . .

. . . 0 −1

− (−1)n−1

n−1 . . . −1
2 1 0




, (2.6)

T(2) =




π2

3 −2 2
22 . . . (−1)n−12

(n−1)2

−2 π2

3

. . .
. . .

...

2
22 −2

. . . −2 2
22

...
. . .

. . . π2

3 −2
(−1)n−12
(n−1)2

. . . 2
22 −2 π2

3




(2.7)

and

T(3) =




0 6 − π2 −(6−22π2)
23 . . . −(−1)n−1[6−(n−1)2π2]

(n−1)3

−(6 − π2) 0
. . .

. . .
...

6−22π2

23 −(6 − π2)
. . . 6 − π2 −(6−22π2)

23

...
. . .

. . . 0 6 − π2

(−1)n−1[6−(n−1)2π2]
(n−1)3

. . . 6−22π2

23 −(6 − π2) 0




. (2.8)

We remark that the generating functions of T(1), T(2) and T(3) are ıθ, θ2 and ıθ3, respectively;
see [27]. It follows that the system of linear equations (2.5) can be written as

ACw = p,

where

AC = T(3) + D
(2)
C T(2) + D

(1)
C T(1) + D

(0)
C ∈ R

n×n, (2.9)

w = (w−N , w−N+1, . . . , wN )T ∈ R
n (2.10)

and

p = h3

(
σ

(φ′)2
(x−N ),

σ

(φ′)2
(x−N+1), . . . ,

σ

(φ′)2
(xN )

)T

∈ R
n. (2.11)

In addition,

D
(i)
C := diag(g

(i)
C (x−N ), g

(i)
C (x−N+1), . . . , g

(i)
C (xN )), i = 0, 1, 2,

are diagonal matrices, with

g
(2)
C = −hµ2

φ′
,

g
(1)
C = −h2


 2

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

+
µ2

φ′

(
1

φ′

)′

+
µ1

(φ′)2
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and

g
(0)
C = h3 1

(φ′)2

[(
1

φ′

)′′′

+ µ2

(
1

φ′

)′′

+ µ1

(
1

φ′

)′

+
µ0

φ′

]
.

2.2 Sinc-Galerkin Method

For the sinc-Galerkin method, the unknown coefficients {wj}N
j=−N in (2.1) are determined by

orthogonalizing the residual LyN (x)−σ(x) with the functions {S(k, h) ◦φ(x)}N
k=−N , where L is

the operator in (1.1). This yields the discretized system

〈LyN − σ, S(k, h) ◦ φ〉 = 0, k ∈ ZN , (2.12)

where 〈·, ·〉 represents the inner product defined by

〈f, g〉 =

∫ b

a

f(x)g(x)

φ′(x)
dx,

with φ(x) being a conformal mapping from D to Dd (see Section 2). By integrating (2.12) by
part, and using Corollary 4.2.15 in [27], we obtain a system of linear equations with respect to
{wj}N

j=−N as follows:

N∑

j=−N

{
− δ

(3)
kj + hδ

(2)
kj

µ2

φ′
− h2δ

(1)
kj

[
2

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

− 2µ
′

2

(φ′)2
− µ2

φ′

(
1

φ′

)′

+
µ1

(φ′)2

]

− h3δ
(0)
kj

1

(φ′)2

[(
1

φ′

)′′′

−
(
µ2

φ′

)′′

+

(
µ1

φ′

)′

− µ0

φ′

]}
(xj) · wj

= h3 σ

(φ′)2
(xk), k ∈ ZN , (2.13)

where δ
(m)
jk (j, k ∈ ZN ; m = 0, 1, 2, 3) are the same as in (2.4).

The system of linear equations (2.13) can be rewritten in the matrix-vector form

AGw = p,

where

AG = T(3) + T(2)D
(2)
G + T(1)D

(1)
G + D

(0)
G ∈ R

n×n, (2.14)

T(m) (m = 1, 2, 3) are the Toeplitz matrices defined in (2.6)–(2.8), and w and p are the unknown
and the right-hand side vectors defined in (2.10) and (2.11), respectively. In addition,

D
(i)
G := diag(g

(i)
G (x−N ), g

(i)
G (x−N+1), . . . , g

(i)
G (xN )), i = 0, 1, 2,

are diagonal matrices, with

g
(2)
G = −hµ2

φ′
,

g
(1)
G = −h2


 2

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

− 2µ
′

2

(φ′)2
− µ2

φ′

(
1

φ′

)′

+
µ1

(φ′)2
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and

g
(0)
G = −h3 1

(φ′)2

[(
1

φ′

)′′′

−
(
µ2

φ′

)′′

+

(
µ1

φ′

)′

− µ0

φ′

]
.

2.3 A Combination of Sinc-Collocation and Sinc-Galerkin Methods

A symmetric or positive definite system of linear equations1 often possesses preferable algebraic
and numerical properties. Moreover, there are many economical and fast direct and iterative
methods, with plenty of error analysis and convergence theory, for solving symmetric or positive
definite systems of linear equations; see [2, 3, 4, 13]. Therefore, one should try to construct a
discretized linear system for (1.1) such that its coefficient matrix is as symmetrical or positive
definite as possible, if it itself is not so. To this end, we average the sinc-collocation matrix AC

in (2.9) and the sinc-Galerkin matrix AG in (2.14) to obtain the system of linear equations

Aw = p, (2.15)

where

A =
1

2
(AC + AG)

= T(3) +
1

2
(D(2)T(2) + T(2)D(2)) +

1

2
(D(1)T(1) + T(1)D(1))

+
1

2
(D(1)

s T(1) − T(1)D(1)
s ) + D(0), (2.16)

with

D(i) =
1

2
(D

(i)
C + D

(i)
G ) := diag(g(i)(x−N ), g(i)(x−N+1), . . . , g

(i)(xN )), i = 0, 1, 2,

D(1)
s =

1

2
(D

(1)
C − D

(1)
G ) := diag(g(1)

s (x−N ), g(1)
s (x−N+1), . . . , g

(1)
s (xN )), (2.17)

and w and p are defined as in (2.10). In addition,

g(2) = −hµ2

φ′
,

g(1) = −h2


 2

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

− µ
′

2

(φ′)2
+

µ1

(φ′)2


 ,

g(0) =
h3

2

1

(φ
′

)2

[
µ2

(
1

φ
′

)′′

+

(
µ2

φ
′

)′′

+ µ1

(
1

φ
′

)′

−
(
µ1

φ
′

)′

+
2µ0

φ
′

]

and

g(1)
s = −h2 1

φ
′

(
µ2

φ
′

)′

.

1A complex system of linear equations is called positive definite if the Hermitian part of its coefficient matrix
is positive definite; see, e.g., [3].
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Evidently, the matrix A in (2.16) is more symmetrically structured than either of the matrices

AC and AG in (2.9) and (2.14), respectively. For example, instead of having D
(2)
C T(2) in (2.9) or

T(2)D
(2)
G in (2.14), we now have 1

2(D(2)T(2) +T(2)D(2)) in (2.16) which is symmetric. Moreover,

when the matrix 1
2(D(2)T(2) + T(2)D(2)) + D(0) is symmetric positive definite, the matrix A is

almost positive definite provided that D
(1)
s T(1) −T(1)D

(1)
s is small, or D

(1)
s and T(1) are nearly

commutative. In particular, if D
(1)
s and T(1) commute exactly, then the matrix A is positive

definite.

The following lemma, originally proved in [20, 28] and recently re-stated in [6], describes the
eigenvalue distributions of the Toeplitz matrices T(i) (i = 1, 2, 3); see also [27]. The results
follow directly from the fact that the generating functions of T(1), T(2) and T(3) are ıθ, θ2 and
ıθ3, respectively.

Lemma 2.1 [20, 28] Let T(i) (i = 1, 2, 3) be the Toeplitz matrices defined in (2.6)–(2.8). Then

(i) T(1) is a skew-symmetric matrix and its eigenvalues {ıλ(1)
j }N

j=−N satisfy λ
(1)
j ∈ [−π, π];

(ii) T(2) is a symmetric positive-definite matrix and its eigenvalues {λ(2)
j }N

j=−N satisfy λ
(2)
j ∈

[4 sin2( π
4(N+1) ), π

2];

(iii) T(3) is a skew-symmetric matrix and its eigenvalues {ıλ(3)
j }N

j=−N satisfy λ
(3)
j ∈ [−π3, π3].

Hereafter, we use (·)∗ to denote the conjugate transpose of either a vector or a matrix.
For a square matrix X, we represent by H(X) and S(X), respectively, its Hermitian and skew-
Hermitian parts, and λ(X) its spectral set. In particular, when X is Hermitian or real symmetric,
we use λmax(X) and λmin(X) to represent its largest and smallest eigenvalues. In addition, I is
used to denote the identity matrix of suitable dimension.

3 Convergence Analysis

In this section, we show that the approximate solution yN (x) given in (2.1) converges exponen-
tially to the true solution y(x) of the ODE (1.1) as N tends to infinity. Similar to the treatments
of the second-order and the fourth-order ODEs [27, 22, 25], the arguments here also proceed in
the following three steps:

(i) estimate the Euclidean norm of Aỹ − p, where ỹ is an n-dimensional real vector defined
by

ỹ = (ỹ(x−N ), ỹ(x−N+1), . . . , ỹ(xN ))T , (3.1)

with ỹ(x) := y(x)φ
′

(x);

(ii) derive an upper bound for the Euclidean norm of the matrix A−1; and

(iii) demonstrate the boundedness of the error |y(x) − yN(x)|.
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In order to precisely describe the convergence, we introduce two necessary functional spaces
Lα(D) and H

∞(D): the space Lα(D) is the set of all analytic functions F in D such that

|F (z)| ≤ c|eφ(z)|α
(1 + |eφ(z)|)2α

for all z ∈ D, where c and α are positive constants, and φ : D → Dd is a conformal mapping;
while the space H

∞(D) is the space of analytic functions in D equipped with the maximum
norm.

We first estimate an upper bound for ‖Aỹ − p‖2.

Lemma 3.1 Assume that the ODE (1.1) has a unique solution y := y(x) ∈ Lα(D). Let AC ,
AG, A, ỹ and p be defined as in (2.9), (2.14), (2.16), (3.1) and (2.11), respectively.

(i) If µ2/φ
′

, µ1/(φ
′

)2, (1/φ
′

)
′

and (1/φ
′

)
′′

/φ
′

belong to H
∞(D), σ/(φ

′

)2 is in Lα(D), and
ỹ(x) := y(x)φ

′

(x) belongs to Lα(D), then there exists a constant c1, independent of N ,
such that

‖AC ỹ − p‖2 ≤ c1N
1/2e−(πdαN)1/2

.

(ii) If the conditions in (i) are satisfied, and µ
′

2/(φ
′

)2, (µ2/φ
′

)
′′

/(φ
′

)2, (µ1/φ
′

)
′

/(φ
′

)2, µ0/(φ
′

)3

and (1/φ
′

)
′′′

/(φ
′

)2 belong to H
∞(D), then there exists a constant c

′

1, independent of N ,
such that

‖AGỹ − p‖2 ≤ c
′

1N
1/2e−(πdαN)1/2

.

It then follows immediately from (i) and (ii) that

‖Aỹ − p‖2 ≤ 1

2
(c1 + c

′

1)N
1/2e−(πdαN)1/2

. (3.2)

Proof. See Appendix for the proof of (i) and (ii). 2

We now derive an upper bound for the Euclidean norm of A−1, say, ‖A−1‖2, where the matrix
A is defined by (2.16).

Lemma 3.2 Let A be defined as in (2.16) and D(0) be defined as in (2.17). Assume that D(0)

is a positive-definite diagonal matrix, and µ2(x) = ξφ
′

(x) with ξ being a negative constant. Then
there exists a constant c2, independent of N , such that

‖A−1‖2 ≤ 4N2

d(2)π2
(1 + c2N

−1) (3.3)

holds for a sufficiently large N , with d(2) := −hξ > 0.

Proof. Let δi (i = 1, 2, . . . , n) be the singular values of the matrix A satisfying δi ≤ δi+1,
and λi(·) (i = 1, 2, . . . , n) be the eigenvalues of the corresponding Hermitian matrix ordered as
λi(·) ≤ λi+1(·). By making use of Lemma 2.1, in accordance with the assumptions and [21] we
have

δ1 ≥ min
1≤i≤n

∣∣∣∣λi

(
A + A∗

2

)∣∣∣∣ = min
1≤i≤n

∣∣∣λi(d
(2)T(2) + D(0))

∣∣∣

≥ d(2) min
1≤i≤n

∣∣∣λi(T
(2))
∣∣∣ = 4d(2) sin2

(
π

4(N + 1)

)
.
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This readily leads to the estimate in (3.3). 2

A bound for the maximum norm of the function y(x) − yN (x) is described in the following
theorem.

Theorem 3.1 Let y be the exact solution of the ODE (1.1) and yN be its sinc approximation
of the form (2.1). Then, under the assumptions of Lemmas 3.1 and 3.2, there exists a constant
c, independent of N , such that

sup
x∈φ−1((−∞,∞))

|y(x) − yN (x)| ≤ cN5/2e−(πdαN)1/2

, (3.4)

holds for a sufficiently large N .

Proof. Define the function

ζN (x) =
1

φ′(x)

N∑

j=−N

y(xj)φ
′

(xj)S(j, h) ◦ φ(x).

Then by making use of the triangular inequality we have

|y(x) − yN (x)| ≤ |y(x) − ζN (x)| + |ζN (x) − yN(x)|. (3.5)

Since ỹ ∈ Lα(D), from [27] we know that there exists a constant c3, independent of N , such that

sup
x∈φ−1((−∞,∞))

|y(x) − ζN (x)| ≤ c3N
1/2e−(πdαN)1/2

. (3.6)

The second term in the right-hand side of (3.5) satisfies

|ζN (x) − yN (x)| =

∣∣∣∣∣∣
1

φ
′

(x)

N∑

j=−N

[ỹ(xj) − wj ]S(j, h) ◦ φ(x)

∣∣∣∣∣∣

≤
N∑

j=−N

|ỹ(xj) − wj|
∣∣∣∣
S(j, h) ◦ φ(x)

φ′(x)

∣∣∣∣

≤




N∑

j=−N

|ỹ(xj) − wj |2



1/2


N∑

j=−N

∣∣∣∣
S(j, h) ◦ φ(x)

φ′(x)

∣∣∣∣
2



1/2

.

Because x ∈ φ−1((−∞,∞)), the summation
∑∞

j=−∞

∣∣∣S(j,h)◦φ(x)

φ′ (x)

∣∣∣
2

is bounded by a constant.

Hence, we further get

|ζN (x) − yN(x)| ≤ c
′

3




N∑

j=−N

|ỹ(xj) − wj|2



1/2

= c
′

3‖ỹ − w‖2,

where w defined in (2.10) is the exact solution of the linear system (2.15). By (3.2) and (3.3),
we can obtain

‖ỹ − w‖2 = ‖A−1(Aỹ − p)‖2 ≤ ‖A−1‖2‖Aỹ − p‖2 ≤ c
′′

3N
5/2e−(πdαN)1/2

, (3.7)

where c
′′

3 is a constant independent of N . Now the estimate (3.4) follows immediately by sub-
stituting (3.6) and (3.7) into (3.5). 2
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Remark 3.1 The assumptions imposed on the matrix D(0) and the coefficient µ2(x) of the ODE
(1.1) in Lemma 3.2 are stronger than necessary for guaranteeing the validity of the conclusion in
Theorem 3.1, as there exist examples that the assumptions in Lemma 3.2 is violated, but yN (x)
still converges to y(x); see Example 5.2.

4 Banded Preconditioning

In this section, we discuss how to solve the system of linear equations (2.15) efficiently by Krylov
subspace iteration methods such as GMRES. The crucial point here is to construct an efficient
and effective preconditioner P for the coefficient matrix A defined in (2.16). We propose to
use a banded preconditioner P and we prove that the eigenvalues of the preconditioned matrix
P−1A are uniformly bounded within a rectangle on the complex plane, which is independent of
the size of the linear system.

4.1 Construction of the Banded Preconditioners

The banded preconditioning matrix P is constructed by considering the special structure of the
matrix A. In [23] and [24], the authors proposed to use banded matrices as preconditioners
for Toeplitz matrices T(1) and T(2), which possess satisfactory theoretical properties and are
computational efficient. Following the approach, we construct and study the following banded
preconditioner for the matrix A defined in (2.16):

P = B(3) +
1

2
(D(2)B(2) + B(2)D(2)) +

1

2
(D(1)B(1) + B(1)D(1))

+
1

2
(D(1)

s B(1) − B(1)D(1)
s ) + D(0), (4.1)

where

B(1) = tridiag

[
1

2
, 0,−1

2

]
and B(2) = tridiag[−1, 2,−1] (4.2)

are tridiagonal matrices approximating the Toeplitz matrices T(1) and T(2), respectively, and

B(3) = pentadiag

[
−1

2
, 1, 0,−1,

1

2

]
(4.3)

is a penta-diagonal matrix approximating the Toeplitz matrix T(3). We remark that the gener-
ating functions of B(1), B(2) and B(3) are ı sin θ, 2 − 2 cos θ and ı sin θ(2− 2 cos θ), respectively;
see [6, 5, 7]. We also remark that the preconditioner P is, in whole, a penta-diagonal matrix,
and hence can be inverted fast.

First of all, we estimate bounds for the eigenvalues of the banded matrices B(i) (i = 1, 2, 3).

Lemma 4.1 Let the banded matrices B(i) (i = 1, 2, 3) be defined as in (4.2)–(4.3). Then

(i) B(1) is a skew-symmetric matrix and its eigenvalues {ıλ(1)
j }N

j=−N satisfy

λ
(1)
j ∈

[
− cos

(
π

2(N + 1)

)
, cos

(
π

2(N + 1)

)]
;
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(ii) B(2) is a symmetric positive-definite matrix and its eigenvalues {λ(2)
j }N

j=−N satisfy

λ
(2)
j ∈

[
4 sin2

(
π

4(N + 1)

)
, 4 cos2

(
π

4(N + 1)

)]
;

(iii) B(3) is a skew-symmetric matrix and its eigenvalues {ıλ(3)
j }N

j=−N satisfy

λ
(3)
j ∈

(
−3

√
3

2
,
3
√

3

2

)
.

Proof. The results of (i) and (ii) can be found in [3]; see also [6, 5, 7]. Hence, we only need
to demonstrate the validity of (iii).

Because the generating function of B(3) is

f(θ) = ı(2 − 2 cos θ) sin θ ≡ ıf̃(θ), θ ∈ [−π, π],

with f̃(θ) = (2 − 2 cos θ) sin θ, from [17, Theorem 1.10] we have

min
−π≤θ≤π

f̃(θ) ≤ min Im(λ(B(3))) ≤ max Im(λ(B(3))) ≤ max
−π≤θ≤π

f̃(θ).

By directly calculating the minimum and the maximum values of f̃(θ) and from [17, Theorem
1.11], we can obtain (iii). 2

Hereafter in this section, we consider the coefficient matrix A when µ2(x) = ξφ
′

(x), with ξ a

negative constant. It turns out that D
(1)
s is a zero matrix and D(2) = d(2)I, with d(2) := −hξ > 0.

Thus, the coefficient matrix A defined in (2.16) is reduced to

A = T(3) + d(2)T(2) +
1

2
(D(1)T(1) + T(1)D(1)) + D(0) (4.4)

and the banded preconditioner P defined in (4.1) is then given by

P = B(3) + d(2)B(2) +
1

2
(D(1)B(1) + B(1)D(1)) + D(0). (4.5)

The following theorem shows that both matrices A and P are positive definite.

Theorem 4.1 Assume that D(0) defined in (2.17) is a positive-definite diagonal matrix. Then
both H(A) and H(P) are symmetric positive-definite matrices. Hence, A and P are positive
definite and, thus, nonsingular.

Proof. Evidently, the Hermitian and the skew-Hermitian parts of A and P are given as
follows:

H(A) =
1

2
(A + A∗) = d(2)T(2) + D(0),

S(A) =
1

2
(A− A∗) = T(3) +

1

2

(
D(1)T(1) + T(1)D(1)

)
,

H(P) =
1

2
(P + P∗) = d(2)B(2) + D(0),

S(P) =
1

2
(P −P∗) = B(3) +

1

2

(
D(1)B(1) + B(1)D(1)

)
.
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Because d(2) > 0, the diagonal matrix D(0) is positive definite and the Toeplitz matrix T(2) is
symmetric positive definite (see Lemma 2.1), we know that H(A) is symmetric positive definite.
Therefore, A is a positive definite matrix and is, thus, nonsingular.

By applying the same arguments to the preconditioning matrix P, with Lemma 4.1 we can
immediately show that P is positive definite and nonsingular, too. 2

4.2 Several Preliminary Lemmas

In this section, we establish several lemmas that are indispensable for estimating eigenvalue
bounds for the preconditioned matrix P−1A. The generalized Bendixson theorem, established
in [7], is an essential tool for deriving a rectangular domain that bounds the eigenvalues of the
preconditioned matrix P−1A.

Theorem 4.2 [7, Theorem 2.4] Let A,P ∈ C
n×n be complex matrices such that, for all x ∈

C
n\{0}, x∗H(A)x 6= 0 and x∗H(P)x 6= 0. Let the functions h(x), fA(x) and fP (x) be defined

as

h(x) =
x∗H(A)x

x∗H(P)x
, fA(x) =

1

ı

x∗S(A)x

x∗H(A)x
and fP (x) =

1

ı

x∗S(P)x

x∗H(P)x
.

Assume that there exist positive constants τ1 and τ2 such that

τ1 ≤ h(x) ≤ τ2, ∀x ∈ C
n\{0},

and nonnegative constants η and µ such that

−η ≤ fA(x) ≤ η and − µ ≤ fP (x) ≤ µ, ∀x ∈ C
n\{0}.

Then, when ηµ < 1, we have





(1 − ηµ)τ1
1 + µ2

≤ Re(λ(P−1A)) ≤ (1 + ηµ)τ2,

−(η + µ)τ2 ≤ Im(λ(P−1A)) ≤ (η + µ)τ2.

In order to use Theorem 4.2 to bound the eigenvalues of P−1A, we need bounds for the
generalized Rayleigh quotients with respect to the Hermitian and the skew-Hermitian parts of
A and P. To this end, we need to review and establish the following lemmas.

Lemma 4.2 [7] Let T(2) and B(2) be the matrices defined in (2.7) and (4.2), respectively. Then
it holds that

1 <
x∗T(2)x

x∗B(2)x
<
π2

4
, ∀x ∈ C

n\{0}.

Lemma 4.3 Let T(i) (i = 1, 3) be the Toeplitz matrices defined in (2.6) and (2.8). Denote by
fi(θ) the generating function of T(i) and define

d(0) = min
1≤ℓ≤n

{|[D(0)]ℓℓ|}. (4.6)
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Then, for all x ∈ C
n\{0}, it holds that

max
x 6=0

{
x∗T(i)(T(i))∗x

x∗(d(2)T(2) + d(0)I)x

}
< max

−π≤θ≤π

{ |fi(θ)|2
d(2)θ2 + d(0)

}
, i = 1, 3.

Proof. From Lemma 2.1 we know that T(i) (i = 1, 3) are skew-symmetric Toeplitz matrices
and their generating functions are in the Wiener class. By making use of Theorems 3.1 and 3.3
in [8], we know that for any ǫ > 0 there exist positive semidefinite matrices Ri of fixed ranks
and matrices Ei of small norms such that ‖Ei‖2 < d(0)ǫ and

T(i)(T(i))∗ + Ri + Ei = T̂(i),

where T̂(i) are the Toeplitz matrices generated by the positive functions |fi(θ)|2. Because T(2)

is positive definite, we have

x∗Rix

x∗(d(2)T(2) + d(0)I)x
≥ 0 and

∣∣∣∣
x∗Eix

x∗(d(2)T(2) + d(0)I)x

∣∣∣∣ ≤ ǫ, ∀x 6= 0.

It then follows from the above matrix decompositions that

max
x 6=0

{
x∗T(i)(T(i))∗x

x∗(d(2)T(2) + d(0)I)x

}
< max

x 6=0

{
x∗T̂(i)x

x∗(d(2)T(2) + d(0)I)x

}
+ ǫ.

Since ǫ is arbitrary, this inequality readily implies

max
x 6=0

{
x∗T(i)(T(i))∗x

x∗(d(2)T(2) + d(0)I)x

}
≤ max

x 6=0

{
x∗T̂(i)x

x∗(d(2)T(2) + d(0)I)x

}
< max

−π≤θ≤π

{ |fi(θ)|2
d(2)θ2 + d(0)

}
.

2

Lemma 4.4 Let B(i) (i = 1, 3) be the matrices defined in (4.2)–(4.3) and denote by gi(θ) the
generating function of B(i). Then, for all x ∈ C

n\{0}, it holds that

max
x 6=0

{
x∗B(i)(B(i))∗x

x∗(d(2)B(2) + d(0)I)x

}
< max

−π≤θ≤π

{ |gi(θ)|2
d(2)(2 − 2 cos θ) + d(0)

}
, i = 1, 3,

where d(0) is defined as in (4.6).

Proof. From Lemma 4.1 we know that B(i) (i = 1, 3) are skew-symmetric banded Toeplitz
matrices. By making use of [8, Theorem 3.1] again we know that there exist positive semidefinite
matrices Fi of fixed ranks such that B(i)(B(i))∗+Fi = B̂(i), where B̂(i) are the Toeplitz matrices
generated by the positive functions |gi(θ)|2. Because B(2) is positive definite, we have

x∗Fix

x∗(d(2)B(2) + d(0)I)x
≥ 0, ∀x 6= 0.

It then follows from the above matrix decompositions that

max
x 6=0

{
x∗B(i)(B(i))∗x

x∗(d(2)B(2) + d(0)I)x

}
≤ max

x 6=0

{
x∗B̂(i)x

x∗(d(2)B(2) + d(0)I)x

}

< max
−π≤θ≤π

{ |gi(θ)|2
d(2)(2 − 2 cos θ) + d(0)

}
.

2
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Lemma 4.5 Assume that D(0) defined in (2.17) is a positive-definite diagonal matrix. Define

d(1) = max
1≤ℓ≤n

{|[D(1)]ℓℓ|}. (4.7)

Then, for all x ∈ C
n\{0}, it holds that

1 <

∣∣∣∣∣
x∗(d(2)T(2) + D(0))x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣ <
π2

4
, (4.8)

∣∣∣∣∣
x∗T(3)x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣ <
π3

√
d(0)(d(2)π2 + d(0))

, (4.9)

∣∣∣∣∣
x∗B(3)x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣ <
2(
√

4d(2) + d(0) −
√
d(0))

d(2)
√
d(0)

, (4.10)

∣∣∣∣∣
x∗(D(1)T(1) + T(1)D(1))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣ <
2d(1)π√

d(0)(d(2)π2 + d(0))
, (4.11)

∣∣∣∣∣
x∗(D(1)B(1) + B(1)D(1))x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣ <
d(1)(

√
4d(2) + d(0) −

√
d(0))

d(2)
√
d(0)

. (4.12)

Proof. We first demonstrate the estimate (4.8). Because the diagonal matrix D(0) is positive
definite, from Lemma 4.2 we know that

x∗(d(2)T(2) + D(0))x

x∗(d(2)B(2) + D(0))x
≤ max

x 6=0

{
x∗T(2)x

x∗B(2)x
, 1

}
<
π2

4

holds for any x ∈ C
n\{0}. By similar argument we can get the lower bound in (4.8).

Now, we are going to verify the validity of (4.9) and (4.10). Because T(3) is a skew-symmetric
matrix and T(2) is a symmetric positive definite matrix, for any x ∈ C

n\{0}, by direct compu-
tations we can obtain the following estimates:

∣∣∣∣∣
x∗T(3)x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣

≤ max
x 6=0

{∣∣∣∣∣
x∗(ıT(3))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣

}

= max
{∣∣∣λ

(
(d(2)T(2) + D(0))−1/2(ıT(3))(d(2)T(2) + D(0))−1/2

)∣∣∣
}

=
∥∥∥(d(2)T(2) + D(0))−1/2T(3)(d(2)T(2) + D(0))−1/2

∥∥∥
2

≤
∥∥∥(d(2)T(2) + D(0))−1/2(d(2)T(2) + d(0)I)1/2

∥∥∥
2

·
∥∥∥(d(2)T(2) + d(0)I)−1/2

∥∥∥
2
·
∥∥∥T(3)(d(2)T(2) + d(0)I)−1/2

∥∥∥
2

·
∥∥∥(d(2)T(2) + d(0)I)1/2(d(2)T(2) + D(0))−1/2

∥∥∥
2

≤
∥∥∥(d(2)T(2) + d(0)I)−1/2

∥∥∥
2
·
∥∥∥T(3)(d(2)T(2) + d(0)I)−1/2

∥∥∥
2
. (4.13)
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Here, we have applied the facts
∥∥∥(d(2)T(2) + D(0))−1/2(d(2)T(2) + d(0)I)1/2

∥∥∥
2

=
∥∥∥(d(2)T(2) + d(0)I)1/2(d(2)T(2) + D(0))−1/2

∥∥∥
2

and
∥∥∥(d(2)T(2) + D(0))−1/2(d(2)T(2) + d(0)I)1/2

∥∥∥
2

2

= λmax

(
(d(2)T(2) + D(0))−1/2(d(2)T(2) + d(0)I)(d(2)T(2) + D(0))−1/2

)

= max
x 6=0

{
x∗(d(2)T(2) + d(0)I)x

x∗(d(2)T(2) + D(0))x

}
≤ max

{
1, max

x 6=0

d(0)x∗x

x∗D(0)x

}
≤ 1.

We further estimate the two terms on the right-hand side of the inequality (4.13). As the
generating function of the Toeplitz matrix T(2) is θ2, we have

∥∥∥(d(2)T(2) + d(0)I)−1/2
∥∥∥

2

2

= λmax

(
(d(2)T(2) + d(0)I)−1

)

= max
x 6=0

{
x∗x

x∗(d(2)T(2) + d(0)I)x

}
< max

−π≤θ≤π

{
1

d(2)θ2 + d(0)

}
=

1

d(0)
.

Therefore, it holds that ∥∥∥(d(2)T(2) + d(0)I)−1/2
∥∥∥

2
<

1√
d(0)

. (4.14)

In addition, recalling that

∥∥∥T(3)(d(2)T(2) + d(0)I)−1/2
∥∥∥

2

2
= λmax

(
(d(2)T(2) + d(0)I)−1/2T(3)(T(3))∗(d(2)T(2) + d(0)I)−1/2

)

= max
x 6=0

{
x∗T(3)(T(3))∗x

x∗(d(2)T(2) + d(0)I)x

}
,

since the generating function of T(3) is ıθ3, from Lemma 4.3 we have

max
x 6=0

{
x∗T(3)(T(3))∗x

x∗(d(2)T(2) + d(0)I)x

}
< max

−π≤θ≤π

{
θ6

d(2)θ2 + d(0)

}
=

π6

d(2)π2 + d(0)
.

Therefore, it holds that

∥∥∥T(3)(d(2)T(2) + d(0)I)−1/2
∥∥∥

2
<

π3

√
d(2)π2 + d(0)

. (4.15)

By substituting (4.14) and (4.15) into (4.13), we immediately obtain

∣∣∣∣∣
x∗T(3)x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣ <
π3

√
d(0)(d(2)π2 + d(0))

,

which is exactly the estimate in (4.9).
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Analogous to the derivation of (4.13), for any x 6= 0 we can obtain

∣∣∣∣∣
x∗B(3)x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣ ≤
∥∥∥(d(2)B(2) + d(0)I)−1/2

∥∥∥
2
·
∥∥∥B(3)(d(2)B(2) + d(0)I)−1/2

∥∥∥
2
. (4.16)

Here we have applied the fact

∥∥∥(d(2)B(2) + D(0))−1/2(d(2)B(2) + d(0)I)1/2
∥∥∥

2
=
∥∥∥(d(2)B(2) + d(0)I)1/2(d(2)B(2) + D(0))−1/2

∥∥∥
2
≤ 1.

We further estimate the two terms on the right-hand side of the inequality (4.16). As the
generating function of the Toeplitz matrix B(2) is (2 − 2 cos θ), we have

∥∥∥(d(2)B(2) + d(0)I)−1/2
∥∥∥

2

2

= λmax

(
(d(2)B(2) + d(0)I)−1

)

= max
x 6=0

{
x∗x

x∗(d(2)B(2) + d(0)I)x

}
< max

−π≤θ≤π

{
1

d(2)(2 − 2 cos θ) + d(0)

}
=

1

d(0)
.

Therefore, it holds that
∥∥∥(d(2)B(2) + d(0)I)−1/2

∥∥∥
2
<

1√
d(0)

. (4.17)

In addition, by recalling that the generating function of the Toeplitz matrix B(3) is ı(2 −
2 cos θ) sin θ, we can obtain from Lemma 4.4 that

∥∥∥B(3)(d(2)B(2) + d(0)I)−1/2
∥∥∥

2

2
= λmax

(
(d(2)B(2) + d(0)I)−1/2B(3)(B(3))∗(d(2)B(2) + d(0)I)−1/2

)

= max
x 6=0

{
x∗B(3)(B(3))∗x

x∗(d(2)B(2) + d(0)I)x

}

< max
−π≤θ≤π

{
(2 − 2 cos θ)2 sin2 θ

d(2)(2 − 2 cos θ) + d(0)

}

≤
4
(√

4d(2) + d(0) −
√
d(0)
)2

(d(2))2
.

Therefore, it holds that

∥∥∥B(3)(d(2)B(2) + d(0)I)−1/2
∥∥∥

2
<

2(
√

4d(2) + d(0) −
√
d(0))

d(2)
. (4.18)

By substituting (4.17) and (4.18) into (4.16), we immediately obtain the estimate in (4.10).
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Finally, we demonstrate the estimates (4.11) and (4.12). Because D(1)T(1) + T(1)D(1) is a
skew-symmetric matrix, for all x 6= 0 we have

∣∣∣∣∣
x∗(D(1)T(1) + T(1)D(1))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣

≤ max
x 6=0

{∣∣∣∣∣
x∗ı(D(1)T(1) + T(1)D(1))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣

}

=
∥∥∥(d(2)T(2) + D(0))−1/2ı(D(1)T(1) + T(1)D(1))(d(2)T(2) + D(0))−1/2

∥∥∥
2

≤
∥∥∥(d(2)T(2) + d(0)I)−1/2

∥∥∥
2
·
∥∥∥D(1)

∥∥∥
2

·
{∥∥∥T(1)(d(2)T(2) + d(0)I)−1/2

∥∥∥
2
+
∥∥∥(d(2)T(2) + d(0)I)−1/2T(1)

∥∥∥
2

}
. (4.19)

Noticing that the generating function of the Toeplitz matrix T(1) is ıθ, from Lemma 4.3 we can
obtain ∥∥∥T(1)(d(2)T(2) + d(0)I)−1/2

∥∥∥
2

=
∥∥∥(d(2)T(2) + d(0)I)−1/2T(1)

∥∥∥
2

and

∥∥∥T(1)(d(2)T(2) + d(0)I)−1/2
∥∥∥

2

2
= λmax

(
(d(2)T(2) + d(0)I)−1/2T(1)(T(1))∗(d(2)T(2) + d(0)I)−1/2

)

= max
x 6=0

{
x∗T(1)(T(1))∗x

x∗(d(2)T(2) + d(0)I)x

}

< max
−π≤θ≤π

{
θ2

d(2)θ2 + d(0)

}
=

π2

d(2)π2 + d(0)
.

Therefore, it holds that

∥∥∥T(1)(d(2)T(2) + d(0)I)−1/2
∥∥∥

2
=
∥∥∥(d(2)T(2) + d(0)I)−1/2T(1)

∥∥∥
2
<

π√
d(2)π2 + d(0)

. (4.20)

By substituting (4.14) and (4.20) into (4.19), we immediately obtain the inequality in (4.11).

Analogous to the derivation of (4.19), by noticing that D(1)B(1)+B(1)D(1) is a skew-symmetric
matrix, we have for all x 6= 0 that

∣∣∣∣∣
x∗(D(1)B(1) + B(1)D(1))x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣

≤ max
x 6=0

{∣∣∣∣∣
x∗ı(D(1)B(1) + B(1)D(1))x

x∗(d(2)B(2) + D(0))x

∣∣∣∣∣

}

=
∥∥∥(d(2)B(2) + D(0))−1/2(D(1)B(1) + B(1)D(1))(d(2)B(2) + D(0))−1/2

∥∥∥
2

≤
∥∥∥(d(2)B(2) + d(0)I)−1/2

∥∥∥
2
·
∥∥∥D(1)

∥∥∥
2

·
{∥∥∥B(1)(d(2)B(2) + d(0)I)−1/2

∥∥∥
2
+
∥∥∥(d(2)B(2) + d(0)I)−1/2B(1)

∥∥∥
2

}
. (4.21)
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Because the generating function of B(1) is ı sin θ, from Lemma 4.4 we know
∥∥∥B(1)(d(2)B(2) + d(0)I)−1/2

∥∥∥
2

=
∥∥∥(d(2)B(2) + d(0)I)−1/2B(1)

∥∥∥
2

and
∥∥∥B(1)(d(2)B(2) + d(0)I)−1/2

∥∥∥
2

2
= λmax

(
(d(2)B(2) + d(0)I)−1/2B(1)(B(1))∗(d(2)B(2) + d(0)I)−1/2

)

= max
x 6=0

{
x∗B(1)(B(1))∗x

x∗(d(2)B(2) + d(0)I)x

}

< max
−π≤θ≤π

{
sin2 θ

d(2)(2 − 2 cos θ) + d(0)

}

=

(√
4d(2) + d(0) −

√
d(0)
)2

4(d(2))2
.

Therefore, it holds that

∥∥∥B(1)(d(2)B(2) + d(0)I)−1/2
∥∥∥

2
=
∥∥∥(d(2)B(2) + d(0)I)−1/2B(1)

∥∥∥
2
<

√
4d(2) + d(0) −

√
d(0)

2d(2)
. (4.22)

By substituting (4.17) and (4.22) into (4.21), we immediately obtain the estimate in (4.12). 2

4.3 Analysis of the Preconditioned Matrix

In this section, we derive eigenvalue bounds for the preconditioned matrix P−1A. To this end,
we first estimate bounds for the function h(x) defined in Theorem 4.2.

Lemma 4.6 Assume that D(0) defined in (2.17) is a positive-definite diagonal matrix. Let A
and P be defined in (4.4) and (4.5), respectively. Then it holds that

1 <
x∗H(A)x

x∗H(P)x
<
π2

4
, ∀x ∈ C

n\{0}.

Proof. From Lemma 4.5, for all x 6= 0 we have

x∗H(A)x

x∗H(P)x
=

x∗(d(2)T(2) + D(0))x

x∗(d(2)B(2) + D(0))x
<
π2

4
.

Similarly, we can obtain the lower bound in Lemma 4.6. 2

For bounds about the functions fA(x) and fP (x) defined in Theorem 4.2, we have the estimates
described in the following lemma.

Lemma 4.7 Assume that D(0) defined in (2.17) is a positive-definite diagonal matrix. Let A
and P be defined in (4.4) and (4.5), respectively. Denote by

η =
π(π2 + d(1))√

d(0)(d(2)π2 + d(0))
, µ =

(4 + d(1))(
√

4d(2) + d(0) −
√
d(0))

2d(2)
√
d(0)

, (4.23)
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where d(0) and d(1) are defined in (4.6) and (4.7), respectively . Then, for all x ∈ C
n\{0}, it

holds that ∣∣∣∣
x∗S(A)x

x∗H(A)x

∣∣∣∣ ≤ η and

∣∣∣∣
x∗S(P)x

x∗H(P)x

∣∣∣∣ ≤ µ.

Proof. By making use of Lemma 4.5, with straightforward computations we have

∣∣∣∣
x∗S(A)x

x∗H(A)x

∣∣∣∣ =
1

2

∣∣∣∣∣
x∗(2T(3) + D(1)T(1) + T(1)D(1))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣

≤
∣∣∣∣∣

x∗T(3)x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣+
1

2

∣∣∣∣∣
x∗(D(1)T(1) + T(1)D(1))x

x∗(d(2)T(2) + D(0))x

∣∣∣∣∣ ≤ η.

Similarly, we can get ∣∣∣∣
x∗S(P)x

x∗H(P)x

∣∣∣∣ ≤ µ.

2

Based on Theorem 4.2 and Lemmas 4.6 and 4.7, we can readily obtain a domain that bounds
the eigenvalues of the preconditioned matrix P−1A.

Theorem 4.3 Assume that D(0) defined in (2.17) is a positive-definite diagonal matrix. Let A
and P be defined in (4.4) and (4.5), respectively. Then it holds that

1 − ηµ

1 + µ2
≤ Re(λ(P−1A)) ≤ π2(1 + ηµ)

4
, for µη < 1,

and

−π
2(η + µ)

4
≤ Im(λ(P−1A)) ≤ π2(η + µ)

4
,

where η and µ are defined in (4.23).

By employing Theorem 4.3 we can immediately obtain a theoretical estimate about the asymp-
totic convergence rate of the preconditioned GMRES method, with the preconditioner P being
defined in (4.5), for solving the system of linear equations (2.15). For details, we refer to [6, 7, 30].

When using Theorem 4.3, we should suitably scale the ODE (1.1) and appropriately choose
the conformal mapping φ(x) such that µη < 1, so that correct and accurate estimates about
the eigenvalue bounds may be obtained. For example, if we take φ(x) = ν ln(x/(1 − x)) in
Example 5.1, with ν > 0 a scaling factor, then corresponding to different mesh sizes h =
π/

√
2N we can obtain the following computed and estimated eigenvalue bounds about the the

preconditioned matrix P−1A:

(i) N = 8 and ν = 104, the computed eigenvalues are bounded in the rectangle [1.0000, 1.0057]×
[−0.0975, 0.0975], while the estimated eigenvalues are bounded in the rectangle [0.8332, 2.7925]×
[−2.0928, 2.0928];

(ii) N = 16 and ν = 105, the computed eigenvalues are bounded in the rectangle [1.0000, 1.0283]×
[−0.2323, 0.2323], while the estimated eigenvalues are bounded in the rectangle [0.4520, 3.6495]×
[−3.9906, 3.9906];
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(iii) N = 32 and ν = 107, the computed eigenvalues are bounded in the rectangle [1.0000, 1.0118]×
[−0.1643, 0.1643], while the estimated eigenvalues are bounded in the rectangle [0.8105, 2.8391]×
[−2.2383, 2.2383].

Clearly, these estimated rectangles contain sharply the computed eigenvalues of the precondi-
tioned matrices.

5 Numerical Examples

In this section, we examine the accuracy of the sinc discretization and test the effectiveness of the
proposed banded preconditioner. To this end, we apply GMRES and BiCGSTAB, incorporated
with the banded preconditioner P defined in (4.1), to the system of linear equations (2.15)
obtained from the sinc discretization of the ODE (1.1).

The two examples of the ODEs used in our numerical performance are given below.

Example 5.1 The third-order ODE





y
′′′

(x) − 1

x(1 − x)
y
′′

(x) − 1

x2
y
′

(x) +
1

x3
y(x) = 21x+ 4 − 3

x
− 2

1 − x
,

y(0) = 0, y(1) = 0, y
′

(0) = 0,

with the exact solution being y(x) = x2(1 − x)2.

In Example 5.1, the conformal mapping φ(x) is chosen as φ(x) = ln(x/(1 − x)) and the mesh
size is set to be the optimal one h = π/

√
2N since ỹ = yφ

′ ∈ Lα(D). With calculations we can
verify that this problem satisfies all assumptions in Theorems 3.1 and 4.3.

Example 5.2 The third-order ODE




y
′′′

(x) − y
′′

(x) − y
′

(x) + y(x) = σ(x),

y(0) = 0, y(1) = 0, y
′

(0) = 0,

σ(x) = (π2 + 1) sin(πx) − (π3 + π) cos(πx) + π(x2 − 3x− 1),

with the exact solution being y(x) = sin(πx) + π(x2 − x).

In Example 5.2, the conformal mapping φ(x) is chosen as φ(x) = ln(x/(1 − x)) and the mesh
size is set to be the optimal one h = π/

√
2N . Note that this problem does not satisfy some of

the assumptions, e.g., µ2(x) = ξφ
′

(x), in Theorem 3.1.

Both test examples are ODEs of homogeneous boundary values and with known solutions,
which make it easy to verify the accuracy of both discrete and computed solutions.

In our performance, both GMRES and BiCGSTAB are applied to the preconditioned linear
system

P−1Aw = P−1p,

where P represents the banded preconditioner given in (4.1) and p stands for the vector given
in (2.11). We remark that at each step GMRES uses only one matrix-vector product, whereas
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Table 5.1: Numerical Results for Example 5.1

GMRES BiCGSTAB
N Es(h) Iiter Piter Iiter Piter

8 3.26e-05 17 14 32 10
16 2.16e-06 33 19 156 15
32 3.66e-08 65 26 ∗∗ 24
64 1.20e-10 129 35 ∗∗ 38
128 3.91e-14 257 46 ∗∗ 64
256 1.41e-14 513 60 ∗∗ 106

Table 5.2: Numerical Results for Example 5.2

GMRES BiCGSTAB
N Es(h) Iiter Piter Iiter Piter

8 2.06e-04 17 14 174 13
16 7.42e-06 33 19 ∗∗ 18
32 9.57e-08 65 27 ∗∗ 27
64 2.93e-10 129 35 ∗∗ 43
128 1.95e-13 257 45 ∗∗ 86
256 2.11e-13 513 58 ∗∗ 100

BiCGSTAB uses two matrix-vector products. All codes are written in MATLAB 7.04 and all
experiments are done on a personal computer with 0.98G memory. In addition, the initial guess
is taken to be zero and the iteration process is terminated once the current residual r(j) satisfies

‖r(j)‖2

‖r(0)‖2
≤ 10−6.

Tables 5.1 and 5.2 list the numbers of iteration steps and the errors Es(h) between the
numerical approximate solution yN (x) and the true solution y(x) at the sinc points. More
precisely, the error Es(h) is defined as

Es(h) = max
−N≤j≤N

|y(xj) − yN (xj)|,

where the coefficients {wj}N
j=−N in yN (xj) are solved by the direct method w = A \ p with

MATLAB. In these two tables, we use “ ∗ ∗” to indicate that the iteration method does not
converge within 1000 iterations, “I ” to represent the iteration method with no preconditioner,
and “P ” to denote the iteration method with the banded preconditioner P. In addition, “Piter”
and “Iiter” denote their numbers of iterations required for convergence.

From Tables 5.1 and 5.2, we see that if no preconditioner is used, GMRES converges very
slowly and the number of iteration steps increase approximately like 2N . BiCGSTAB converges
more slowly than GMRES for Examples 5.1 and 5.2, and it even fails to solve the ODEs when
N > 16. However, when the banded preconditioner P is used, the preconditioned GMRES
and the preconditioned BiCGSTAB can successfully compute satisfactory approximations to
the exact solutions of Examples 5.1 and 5.2, and both methods converge in less iteration steps.
Hence, for these two examples the banded preconditioner P is very effective in accelerating
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the convergence rates of GMRES and BiCGSTAB. Moreover, for both examples we observe
that the error function Es(h) reduces exponentially when N is growing. We note also from
Table 5.2 that the discrete accuracy of the sinc method is high and the convergence speeds of
the preconditioned GMRES and BiCGSTAB methods are fast even though the assumptions in
Theorem 3.1 are violated by Example 5.2.
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Figure 5.1: Spectra of A (left) and P−1A (right) for Example 5.1 with N=32.

Figures 5.1-5.4 depict the distributions of the eigenvalues of the original matrix A and the
preconditioned matrix P−1A for Examples 5.1 and 5.2. These figures clearly show that the orig-
inal matrices are very ill conditioned and, therefore, the corresponding GMRES and BiCGSTAB
methods may converge very slowly or even diverge. However, the preconditioned matrices have
tightly clustered eigenvalues and, thus, are well conditioned. As a result, the corresponding pre-
conditioned GMRES and BiCGSTAB methods converge considerably fast to the exact solutions
of the linear systems.

6 Concluding Remarks

By discretizing a class of third-order ODEs with the sinc-collocation and the sinc-Galerkin
methods, we have obtained the systems of linear equations with the coefficient matrices being
combinations of Toeplitz and diagonal matrices. By making use of the special structures of the
coefficient matrices, we have constructed and analyzed a class of banded preconditioners, which
can considerably improve the numerical properties of the Krylov subspace iteration methods
such as GMRES and BiCGSTAB. Both theoretical analyses and numerical implementations
have shown that the sinc discretization scheme is accurate, the discrete solution is exponentially
convergent, and the banded preconditioner is effective.



24 Z.-Z. Bai, R.H. Chan and Z.-R. Ren

10
−2

10
0

10
2

−40

−30

−20

−10

0

10

20

30

40

real

im
ag

in
ar

y

10
−2

10
0

10
2

−40

−30

−20

−10

0

10

20

30

40

real

im
ag

in
ar

y

Figure 5.2: Spectra of A (left) and P−1A (right) for Example 5.2 with N=32.
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Figure 5.3: Spectra of A (left) and P−1A (right) for Example 5.1 with N=64.
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Figure 5.4: Spectra of A (left) and P−1A (right) for Example 5.2 with N=64.

A remarkable feature of this class of ODEs is that its highest order term is of order three,
which makes the coefficient matrices of the resulting linear system strongly nonsymmetric and
highly ill-conditioned. Hence, solving this class of linear systems should be a challengeable work.
The Krylov subspace iteration methods, incorporated with the banded preconditioning matrices,
provide a feasible approach for effectively tackling this class of linear systems.

The assumptions on the coefficients of the ODEs may limit the application scopes of our
theories. They are, however, mainly due to algebraic difficulty in eigenvalue estimates, and may
be removed by variable replacements in the ODEs. This will be a future research topic of both
theoretical importance and practical value.

Appendix: Proof of Lemma 3.1

Part (i): To prove Lemma 3.1 (i), we need an error expression of the cardinal expansion of
ỹ(x). For m = 0, 1, 2, 3 and j ∈ ZN , define Km(x, z) and ωm,j(x) as

Km(x, z) =
1

2πı[φ′(x)]m−1

∂m

∂xm

(
sin[πφ(x)/h]

φ′(x)[φ(z) − φ(x)]

)
,

ωm,j(x) =
1

[φ
′

(x)]m−1

dm

dxm

(
S(j, h) ◦ φ(x)

φ
′

(x)

)
.

Since ỹ(x) ∈ Lα(D), it follows that ỹ(x)φ
′

(x) ∈ H
1(D). Hence, by making use of [20, Theorem

3.2], we know that the cardinal series expansion ỹ(x) has an error term

ỹ(x) −
∞∑

j=−∞

ỹ(xj)ω0,j(x) =

∫

∂D

K0(x, z)ỹ(z)φ
′

(z)

sin[πφ(z)/h]
dz.
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It then follows that,

dmy(x)

dxm
−

∞∑

j=−∞

[φ
′

(x)]m−1ωm,j(x)ỹ(xj) =

∫

∂D

[φ
′

(x)]m−1Km(x, z)

φ′(x) sin[πφ(z)/h]
ỹ(z)φ

′

(z) dz.

We now estimate each component vk of the vector AC ỹ − p. By replacing wj with ỹ(xj) in
(2.5) we obtain

vk : = [AC ỹ − p]k

= h3
N∑

j=−N

{
ω3,j(xk) +

µ2

φ′
ω2,j(xk) +

µ1

(φ′)2
ω1,j(xk) +

µ0

(φ′)3
ω0,j(xk)

}
ỹ(xj)

− h3 σ

(φ′)2
(xk). (6.1)

Since Ly(x) − σ(x) = 0, from (6.1) we have

vk = [AC ỹ − p]k − h3

(
Ly − σ

(φ
′

)2

)

k

= h3
N∑

j=−N

{
ω3,j(xk) +

µ2

φ′
ω2,j(xk) +

µ1

(φ′)2
ω1,j(xk)

}
ỹ(xj)

− h3

[φ′(xk)]2
[y

′′′

(xk) + µ2(xk)y
′′

(xk) + µ1(xk)y
′

(xk)] := v
(1)
k + v

(2)
k .

Here we have split the summation into
∑N

j=−N =
∑∞

j=−∞−∑|j|>N , i.e.,

v
(1)
k = h3

∞∑

j=−∞

{
ω3,j(xk) +

µ2(xk)

[φ′(xk)]
ω2,j(xk) +

µ1(xk)

[φ′(xk)]2
ω1,j(xk)

}
ỹ(xj)

− h3

[φ
′

(xk)]2
[y

′′′

(xk) + µ2(xk)y
′′

(xk) + µ1(xk)y
′

(xk)]

= −h3

∫

∂D

[
K3(xk, z) +

µ2(xk)

φ′(xk)
K2(xk, z) +

µ1(xk)

[φ′(xk)]2
K1(xk, z)

]
φ

′

(z)ỹ(z)

sin[πφ(z)/h]
dz

and

v
(2)
k = −h3

∑

|j|>N

{
ω3,j(xk) +

µ2(xk)

φ′(xk)
ω2,j(xk) +

µ1(xk)

[φ′(xk)]2
ω1,j(xk)

}
ỹ(xj).

In the expressions above, the explicit forms of Km(x, z), m = 0, 1, 2, 3, are as follows:

K0(xk, z) = 0,

K1(xk, z) =
(−1)k

2ıh[φ(z) − kh]
,

K2(xk, z) =
(−1)k

2ıh[φ(z) − kh]2

[
2 + (φ(z) − kh)

(
1

φ′

)′

(xk)

]
,

K3(xk, z) =
(−1)k

2ıh[φ(z) − kh]3


6 + (φ(z) − kh)2


−

(π
h

)2
+ 2

1

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

 (xk)


 .
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Since |Im(t)| = d and |t− kh| ≥ d hold on ∂Dd, we have |Im(φ(z))| = d and |φ(z) − kh| ≥ d
on ∂D. Using these facts, as well as the assumptions on the coefficients of the ODE (1.1) and
on the mapping φ, we obtain

h3

∣∣∣∣K3(xk, z) +
µ2(xk)

[φ′(xk)]
K2(xk, z) +

µ1(xk)

[φ′(xk)]2
K1(xk, z)

∣∣∣∣

≤ h3

{
|K3(xk, z)| +

∣∣∣∣
µ2(xk)

[φ′(xk)]

∣∣∣∣ |K2(xk, z)| +
∣∣∣∣
µ1(xk)

[φ′(xk)]2

∣∣∣∣ |K1(xk, z)|
}

≤ c4

[(Re(φ(z)) − kh)2 + d2]1/2
,

with c4 a constant depending on the bounds for the coefficients of the ODE (1.1), on the bounds
for derivatives of the inverse of the mapping φ, and on d. Therefore, it holds that

‖AC ỹ − p‖2 =

(
N∑

k=−N

|vk|2
)1/2

≤
(

N∑

k=−N

|v(1)
k |2

)1/2

+

(
N∑

k=−N

|v(2)
k |2

)1/2

. (6.2)

The first term in the right-hand side of (6.2) satisfies

N∑

k=−N

|v(1)
k |2 ≤

∞∑

k=−∞

∣∣∣∣∣

∫

∂D

c4
[(Re(φ(z)) − kh)2 + d2]1/2

|φ′

(z)ỹ(z)|
| sin[πφ(z)/h]| |dz|

∣∣∣∣∣

2

≤
∞∑

k=−∞

c
′

4

k2h2 + d2

(∫

∂D

|φ′

(z)ỹ(z) dz|
| sin[πφ(z)/h]|

)2

≤ c
′′

4h
−2

[sinh(πd/h)]2
. (6.3)

We remark that the first inequality in (6.3) comes from the fact that there exists a k0 ∈ Z such
that k0h ≤ Re(φ(z)) − kh ≤ (k0 + 1)h, and the last inequality in (6.3) comes from the bound
sinh[πd/h] ≤ sin[πφ(z)/h] on ∂D and from the existence of the integral of ỹφ

′

.

For the second term in the right-hand side in (6.2), by making use of the assumptions on

the mapping φ, on the coefficients of the ODE (1.1), and the expression for {δ(m)
j,k }N

j,k=−N (m =
1, 2, 3), we have

N∑

k=−N

|v(2)
k |2 =

N∑

k=−N

∣∣∣∣∣∣
h3
∑

|j|>N

{
ω3,j(xk) +

µ2(xk)

φ′(xk)
ω2,j(xk) +

µ1(xk)

[φ′(xk)]2
ω1,j(xk)

}
ỹ(xj)

∣∣∣∣∣∣

2

=

N∑

k=−N

∣∣∣∣∣∣

∑

|j|>N

{
δ
(3)
jk + h

µ2(xk)

φ′(xk)
δ
(2)
jk + h2φ̃(xk) δ

(1)
jk

}
ỹ(xj)

∣∣∣∣∣∣

2

≤ c
′

5

N∑

k=−N

∣∣∣∣∣∣

∑

|j|>N

γj,ke
−α|j|h

∣∣∣∣∣∣

2

≤ c
′

5

∑

|j|>N

∑

|ℓ|>N

∞∑

k=−∞

γj,kγℓ,ke
−α|j|he−α|ℓ|h ≤ c

′′

5

h2
e−2αNh, (6.4)
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where

φ̃ =
2

φ′

(
1

φ′

)′′

−
((

1

φ
′

)′
)2

+
µ2

φ
′

(
1

φ
′

)′

+
µ1

(φ
′

)2

and γj,k is the maximum of {|δ(m)
j,k |} (m = 1, 2, 3). We remark that the first inequality in (6.4)

is derived by considering the fact that |ỹ(xj)| is bounded by an exponentially decaying factor.

By combining the bounds for v
(1)
k and v

(2)
k in (6.3) and (6.4), and replacing h by its optimal

choice [ πd
αN ]1/2, we finally obtain

‖AC ỹ − p‖2 =

(
N∑

k=−N

|vk|2
)1/2

≤ c1N
1/2e−(πdαN)1/2

. (6.5)

Part (ii): We select an arbitrary integer in the range [−N,N ] and simply write S for S(k, h)◦φ.
Then it holds that

0 = h2

∫ b

a

(Ly − σ)(x)S(x)

φ′(x)
dx

= h2

∫ b

a

{[
−
(
S

φ
′

)′′′

(x) +

(
µ2S

φ
′

)′′

(x) −
(
µ1S

φ
′

)′

(x) +

(
µ0S

φ
′

)
(x)

]
y(x) − σS

φ
′
(x)

}
dx

= v
(1)
k + v

(2)
k + v

(3)
k ,

where v
(1)
k denotes the kth component of the vector AGỹ − p,

v
(2)
k =

∑

|j|>N

{
− δ

(3)
kj + hδ

(2)
kj

µ2

φ′

− h2δ
(1)
kj


2

1

φ′

(
1

φ′

)′′

−
((

1

φ′

)′
)2

− 2
µ

′

2

(φ′)2
− µ2

φ′

(
1

φ′

)′

+
µ1

(φ′)2



}
ỹ(xj)

and v
(3)
k represents the error of infinite-point quadrature. The quadrature may be explicitly

expressed by means of Theorem 4.2.1 in [27] as follows:

v
(3)
k =

ı

2

∫

∂D

κ(z, h)

{[
−
(

S
φ′

)′′′

(x) +
(

µ2S

φ′

)′′

(x) −
(

µ1S

φ′

)′

(x) +
(

µ0S

φ′

)
(x)

]
y(x) − σS

φ′ (x)

}

sin[πφ(z)/h]
dz,

(6.6)

with
κ(z, h) = exp{(ıπφ(z)/h) · sgn(Im(φ(z)))}

such that |κ(z, h)| = e−πd/h holds for z ∈ ∂D, where sgn(x) is a sign function defined as

sgn(x) =





1, x > 0,

0, x = 0,

−1, x < 0.
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Again, we set u(z) = Re(φ(z)). Recall that if z ∈ ∂D, then |φ(z) − kh| ≥ d. Under the
assumptions in (ii), with the explicit expression of the numerator in (6.6), we see that there
exists a constant c6, independent of h, such that

∣∣∣v(3)
k

∣∣∣ ≤ c6e
−πd/h

∫

∂D

|dz|
[(u(z) − kh)2 + d2]1/2

.

Analogous to the derivation of (6.3), we obtain

(
N∑

k=−N

|v(3)
k |2

)1/2

≤



∑

k∈Z

|v(3)
k |2




1/2

≤ c6h
−1/2e−πd/h.

Also, similar to the derivation of (6.4), we obtain

(
N∑

k=−N

|v(2)
k |2

)1/2

≤ c7h
−1e−αNh.

It then follows that

‖AGỹ − p‖2 ≤ c
′

1N
1/2e−(πdαN)1/2

. (6.7)
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