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Abstract 

Progressive censoring technique is useful in lifetime data analysis. Simple approaches to 

progressive data analysis are crucial for its widespread adoption by reliability engineers. This 

study develops an efficient yet easy-to-implement framework for analyzing progressively 

censored data by making use of the stochastic EM algorithm. Based on this framework, we 

develop specific stochastic EM procedures for several popular lifetime models. These 

procedures are shown to be very simple. We then demonstrate the applicability and efficiency 

of the stochastic EM algorithm by a fatigue life dataset with proper modification and by a 

progressively censored dataset from a life test on hard disk drives. 
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1 Introduction 

Censoring is a common phenomenon in most life-testing experiments due to time constraints. 

Among the existing censoring schemes, the progressive censoring schemes have become very 

popular in the last few decades because of its flexibility in removing un-failed units from the 



tests. Generally speaking, a progressively censored sample of size 𝑛 consists of 𝑚 failures 

and 𝑛 − 𝑚 progressively censored observations. Censoring may happen right after a failure 

occurrence, i.e., remove 𝑅𝑖  functioning units upon the 𝑖 th failure, which is called 

progressive type II censoring. The progressive Type II censoring scheme has been applied to 

Burr-XII distributions (Wang and Cheng1), Weibull distributions (Pareek et al.2), Gaussian 

distributions (Balakrishnan et al.3), exponential distributions (Lee and Pan4) and log-logistic 

distributions (Balakrishnan and Saleh5), etc. Censoring can also happen in a random manner, 

which is common in medical studies, e.g., Davis and Feldstein6. Another example of random 

censoring is a life test conducted on a batch of raw hard disk drives (HDDs) in Seagate, a 

leading HDD company. Detailed description of the test will be introduced in Section 4. 

However, a problem faced by the HDD engineers is a lack of simple tools to analyze the data. 

As noted by Ng et al.7, the complicated calculation of the likelihood function of 

progressively censored data when deriving the maximum likelihood estimates (MLEs) has 

greatly restricted the wide adoption of this scheme by reliability engineers. What engineers 

need is an efficient yet simple tool to compute the MLE. Employment of the standard or 

modified Newton–Raphson algorithm requires the Hessian matrix of the likelihood function, 

which differs from distributions to distributions and whose expression is most often quite 

complicated. An intuitive yet brute-force approach to maximizing the likelihood function of 

the progressively censored data is to directly apply some derivative-free algorithms, e.g., the 

ones reviewed by Kolda et al.8. However, as is well-known in the optimization literature, an 

algorithm has to visit every point in the feasible region in order to guarantee the global 

optimality, which is almost impossible when the parameter space is continuous. Moreover, 

most of these derivative-free algorithms will eventually converge to some local optimal 

points far away from the global optimum, if an educated starting point is not available.  

Another popular means to handle the progressively censored data is to treat them as a 

missing data problem, and thus the EM algorithm can be invoked, e.g., see Ng et al.7 for the 

Weibull and log-normal distribution, Lin et al.9 for log-gamma distributions and Pradhan and 

Kundu10 for generalized exponential distribution, among others. Because the EM algorithm 

relies on complete-data computations, it is generally simple to implement. A typical EM 

algorithm iteratively applies two steps, i.e. the expectation step (E-Step) and the 

maximization step (M-Step). The E-step involves taking expectation over complete-data 

conditional distribution, while the M-Step only involves maximum likelihood estimation 



based on complete data, which often has a simple closed form. However, with the increasing 

complexity of the progressively censored data and lifetime model, one of the biggest 

shortcomings of EM is that it is only a local optimization procedure and can easily get stuck 

in a saddle point. Moreover, when the E-step involves intricate or even infeasible computation, 

the EM paradigm is no longer directly applicable. A possible solution to overcoming the 

computational inefficiencies, i.e., the intractable E-step and the saddle point problem, is to 

invoke stochastic EM implementations such as the Monte Carlo EM algorithm (Wei and 

Tanner11). The Monte Carlo EM algorithm approximates the expectation in the E-Step by the 

Monte Carlo average. Therefore, the maximization of the averaged log-likelihood may be 

very complicated and thus more time-consuming, e.g., see Wang and Cheng1 for an 

application of the Monte Carlo EM algorithm to the Burr-XII distribution.  

The stochastic EM (SEM) algorithm proposed by Celeux and Diebolt12 is also a stochastic 

version of the EM implementations as a way for executing the E-step by simulation. A very 

attractive merit of this algorithm is that it replaces the E-Step with an S-Step, which is very 

easy to implement whatever the underlying distribution and the missing data are. Compared 

with the Monte Carlo EM algorithm, the SEM algorithm completes the observed sample by 

replacing each missing datum by a value randomly drawn from the distribution conditional 

on results from the previous step. The M-step is thus a complete-data maximum likelihood 

estimation, which is often very easy to solve. The SEM algorithm has been shown to be 

computationally less burdensome and more appropriate than the EM algorithm in a lot of 

problems (Celeux and Diebolt12, Tregouet et al.13, Delignon et al.14, Cariou and Chehdi15). It 

is shown by Nielsen16 that the SEM algorithm always converges to some local optimum. 

Some applications of the SEM algorithm suggest that this algorithm tends to converge to the 

global optimum or a non-significant local optimum (Diebolt and Celeux17, Cariou and 

Chehdi15, Svensson and Sjöstedt-de Luna18).  

Motivated by the need of the HDD engineers and inspired by the numerous attractive 

properties of the SEM algorithm and the current computational challenges faced by the 

analysis of progressively censored data, the broad objective of this paper is to promote the 

SEM algorithm to the analysis of progressively censored data. More specifically, we develop 

a generic framework for the parametric maximum likelihood inference of progressively 

censored data. Under this framework, the S-Step imputes a single value for the censored data 

from the original distribution truncated at the left by making use of the parameters estimated 



from the previous SEM cycle, while the M-Step maximizes a complete sample likelihood 

function, which can be easily accomplished by most statistical software, e.g., Matlab, R, JMP, 

Minitab, SAS, SPSS, and S–PLUS. The procedure is thus very easy to implement yet 

efficient, which meets the needs of engineers. This framework is then applied to several 

common distributions, including the Weibull, lognormal, inverse Gaussian, and 

Birnbaum-Saunders distributions, etc. We only focus on point estimation. Confidence 

intervals for the parameters can be constructed based on the Hessian matrixes derived in the 

literature for each distribution, (Wang and Cheng1, Pareek et al.2, Balakrishnan et al.3, 

Balakrishnan and Saleh5). 

The remainder of this paper is organized as follows. Section 2 develops the framework of 

progressively censored data analysis using the SEM algorithm. Section 3 elaborates on how 

this framework can be applied to a number of common distributions. In Section 3.5, a dataset 

from Birnbaum and Saunders19 and Ng et al.20, after proper modification, is fitted by the 

Birnbaum-Saunders distribution to demonstrate the simplicity of our method. We also apply 

the methodology to analyze a real dataset from a HDD test. Section 5 concludes the paper 

and points out possible topics for future research. 

 

2 Analysis of Progressively Censored Data via SEM: A General 

Framework 

To simplify the notation, we consider data from a progressive type-II right censoring scheme, 

because of its popularity and its standards in notations. But we shall underscore that the 

framework applies to general progressively censored data, as will be demonstrated in Section 

4.2. Under this scheme, 𝑛 ∈ ℕ identical units are placed on a life-test. Their lifetimes are 

described by independent and identically distributed random variables 𝑇1, … , 𝑇𝑛, each with 

probability density function (PDF) 𝑓(𝑡;  Θ)  and cumulative distribution function (CDF) 

𝐹(𝑡;  Θ), where Θ denotes the vector of model parameters. At the time of the first failure 𝑡1, 

𝑅1 of the 𝑛 − 1 surviving units are randomly withdrawn from the experiment. 𝑅2  of the 

𝑛 − 2 − 𝑅1 surviving units are withdrawn at the time of the second failure 𝑡2 and so on. 

Finally, at the time of the 𝑚th failure 𝑡𝑚, all the remaining 𝑅𝑚 = 𝑛 − 𝑚 − 𝑅1 − ⋯ − 𝑅𝑚−1 

surviving units are withdrawn. The scheme (𝑅1, 𝑅2, … , 𝑅𝑚) is referred to as progressive 



Type-II right censoring scheme with 𝑅𝑗 > 0 and ∑ 𝑅𝑗
𝑚
𝑗=1 + 𝑚 = 𝑛. The likelihood function 

based on the progressively censored data is 

 𝐿(Θ) = 𝑐 ∏ 𝑓(𝑡𝑗;  Θ)[1 − 𝐹(𝑡𝑗;  Θ)]𝑅𝑗

𝑚

𝑗=1

 (1) 

where 𝑐 = 𝑛(𝑛 − 𝑅1 − 1) … (𝑛 − 𝑅1 − 𝑅2 − ⋯ − 𝑅𝑚−1 − 𝑚 + 1). Equation (1) is generally 

difficult to optimize directly. 

Denote the observed (ordered) failure data by 𝑻 = (𝑇1:𝑚:𝑛, 𝑇2:𝑚:𝑛, … , 𝑇𝑚:𝑚:𝑛) and the 

unobserved censored data by 𝒁 = (𝒁1, 𝒁2, … , 𝒁𝑚) . 𝒁𝑗  (𝑗 = 1, … , 𝑚)  is a 1 × 𝑅𝑗  random 

vector with 𝒁𝑗 = (𝑍𝑗1, 𝑍𝑗2, … , 𝑍𝑗𝑅𝑗
)  which represents the survival times of 𝑅𝑗  withdrawn 

units. The conditional distribution of the random variable 𝑍𝑗𝑙  (𝑙 = 1, … , 𝑅𝑗) given 𝑇𝑗:𝑚:𝑛 = 𝑡𝑗 

(𝑗 = 1, … , 𝑚) is given by (Ng et al.7) 

 𝐺𝑗(𝑧;  Θ|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) =
𝐹(𝑧; Θ)−𝐹(𝑡𝑗; Θ)

1−𝐹(𝑡𝑗; Θ)
         𝑧 > 𝑡𝑗 . (2) 

The unobserved 𝒁 can be regarded as missing data. Given the complete data 𝑻 and 𝒁, the 

log-likelihood function of the complete sample can be specified as 

 𝑄(Θ) = ∑ log 𝑓(𝑡𝑗;  Θ)𝑚
𝑗=1 + ∑ ∑ log 𝑓(𝑧𝑗𝑙;  Θ)

𝑅𝑗

𝑙=1
𝑚
𝑗=1 , (3) 

The EM algorithm is an iterative algorithm. The E-step of the regular EM algorithm obtains 

the Q-function by taking the expectation of (3) with respect to the 𝒁 conditional on observed 

data 𝒁 and Θ(𝑘), the current value of Θ after k cycles of the EM algorithm. In view of the 

difficulty that the expectation is often very difficult, or even intractable to compute, the main 

idea of the SEM algorithm is to replace the E-step by a stochastic step where the missing data 

𝒁 are imputed with a single draw from the distribution of the missing data conditional on the 

observed 𝑻. The imputed 𝒁 are then substituted to (3) to form the pseudo Q-function, which 

is then optimized in the M-step to obtain Θ(𝑘+1) for the next cycle. More formally, given the 

parameter estimate Θ(𝑘) at the 𝑘th SEM cycle, the (𝑘 + 1)st cycle of the SEM algorithm 

evolves as follows: 



S-Step. Given the current  k
 , simulate 𝑅𝑗  independent values from the conditional 

distribution 𝐺𝑗(𝑧; Θ(𝑘)|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) respectively for 𝑗 = 1, … , 𝑚 to form a realization of 𝒁. 

M-Step. Maximize the pseudo Q-function given (𝑻, 𝒁) to obtain Θ(𝑘+1). 

 

The S-Step completes the data set in a very simple way, while the maximization in the M-Step 

deals with a complete sample. Hence the M-Step is easy to solve either explicitly or iteratively 

for most commonly-used distributions. Under mild regularity conditions, the sequence of 

{Θ(𝑘)} starting from a specific Θ(0) converges to a stationary distribution whose mean is a 

consistent and asymptotically efficient estimator of parameters for the progressively censored 

data, i.e., the large sample variance-covariance matrix of the mean is exactly the Fisher 

information matrix (Diebolt and Celeux17, Diebolt and Ip21, Nielsen16, Svensson and 

Sjöstedt-de Luna18). It is easy to show that the regularity condition on smoothness of the 

underlying model is met for distributions discussed in Section 3. Therefore, we can run the 

SEM algorithm for a specific number of iterations, discard a few initial iterations for burn-in 

purpose, and average over Θ(𝑘) of the remaining iterations to obtain the MLEs. According to 

our experience, a burn-in period of 100 cycles is usually long enough under moderate 

censoring. A trace plot of the {Θ(𝑘)} sequence versus the cycles is also helpful for checking 

sufficiency of the burn-in period or for determining a more appropriate burn-in duration. 

 

3 SEM Algorithms for Some Commonly Used Lifetime Distributions 

To show the wide applicability of the framework developed in Section 2 and to elaborate on 

the flexibility of the SEM algorithm in handling progressively censored data, this section 

applied this framework to some common distributions used in lifetime data analysis in order. 

 

3.1 Birnbaum-Saunders Lifetime Data 

The Birnbaum-Saunders distribution proposed by Birnbaum and Saunders19 has been 

successfully applied to model failures due to crack. In addition, it is often used to 

approximate the distribution of failures caused by independent accumulation of damage. The 



respective CDF and PDF of a two-parameter Birnbaum-Saunders random variable with a 

shape parameter 𝜇 and a scale parameter 𝜆 can be written as 

 𝐹(𝑡;  𝜇, 𝜆) = Φ {
1

𝜇
[(

𝑡

𝜆
)

1

2
− (

𝜆

𝑡
)

1

2
]} ,      𝑡 > 0,  

 𝑓(𝑡;  𝜇, 𝜆) =
1

2√2𝜋𝜇𝜆
[(

𝜆

𝑡
)

1

2
+ (

𝜆

𝑡
)

3

2
] × exp [−

1

2𝜇2 (
𝑡

𝜆
+

𝜆

𝑡
− 2)] ,      𝑡 > 0.   

In the literature, Ng et al.20 have studied MLE of this distribution under type-II censoring by 

means of direct optimization of the likelihood function and the Monte Carlo EM algorithm. 

Their procedures tend to be very complicated due to the complex form of the likelihood 

function. On the contrary, the SEM algorithm is a handy gadget to handle this kind of 

censored data. Consider the progressively censored data (𝑻, 𝒁)  generated from this 

distribution. Denoting Θ(𝑘) = (𝜇(𝑘), 𝜆(𝑘))  the value of Θ  at the 𝑘 th SEM cycle, the 

(𝑘 + 1)st cycle proceeds as follows. 

The S-Step 

The conditional distribution function of the unobserved 𝑍𝑗𝑙  (𝑙 = 1, … , 𝑅𝑗) given 𝑇𝑗:𝑚:𝑛 = 𝑡𝑗 

(𝑗 = 1, … , 𝑚) is 

 𝐺𝑗(𝑧; 𝜇, 𝜆|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) =
𝐹(𝑧; 𝜇,𝜆)−𝐹(𝑡𝑗; 𝜇,𝜆)

1−𝐹(𝑡𝑗; 𝜇,𝜆)
         𝑡 > 𝑡𝑗. (4) 

In other words, given 𝑇𝑗:𝑚:𝑛 = 𝑡𝑗, 𝑍𝑗𝑙 is a Birnbaum-Saunders variable left-truncated at 𝑡𝑗. 

Given (4), a random realization of 𝒁 is readily generated from 𝐺𝑗(𝑧; 𝜇(𝑘), 𝜆(𝑘)|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗). 

The M-Step 

Given the observed data 𝑻 and the imputed 𝒁 from the S-Step, the pseudo Q-function can 

be expressed as 



𝑄(𝜇, 𝜆) = −n log 2√2𝜋 − n log 𝜇 − n log 𝜆 + ∑ log [(
𝜆

𝑡𝑖
)

1
2

+ (
𝜆

𝑡𝑖
)

3
2

]

𝑚

𝑖=1

− ∑
1

2𝜇2
(

𝑡𝑖

𝜆
+

𝜆

𝑡𝑖
− 2)

𝑚

𝑖=1

+ ∑ ∑ log [(
𝜆

𝑧𝑖𝑗
)

1
2

+ (
𝜆

𝑧𝑖𝑗
)

3
2

]

𝑅𝑗

𝑗=1

𝑚

𝑖=1

− ∑ ∑
1

2𝜇2
(

𝑧𝑖𝑗

𝜆
+

𝜆

𝑧𝑖𝑗
− 2)

𝑅𝑗

𝑗=1

𝑚

𝑖=1

. 

To maximize this Q-function, we define the following function 

 𝐾(𝑥) = [
1

𝑛
(∑ (𝑥 + 𝑡𝑖)−1𝑚

𝑖=1 + ∑ ∑ (𝑥 + 𝑧𝑖𝑗)−1𝑅𝑗

𝑗=1
𝑚
𝑖=1 )]

−1

          𝑥 ≥ 0,   

where  

 𝑠 =
1

𝑛
(∑ 𝑡𝑖

𝑚
𝑖=1 + ∑ ∑ 𝑧𝑖𝑗

𝑅𝑗

𝑗=1
𝑚
𝑖=1 ) ,               𝑟 = [

1

𝑛
(∑ 𝑡𝑖

−1𝑚
𝑖=1 + ∑ ∑ 𝑧𝑖𝑗

−1𝑅𝑗

𝑗=1
𝑚
𝑖=1 )]

−1

.  

are the sample arithmetic and the sample harmonic means, respectively. From the results of 

complete sample MLE discussed by Birnbaum and Saunders19, we can see that the value of 

𝜆(𝑘+1) is the unique positive root of the equation 

 𝜆2 − 𝜆[2𝑟 + 𝐾(𝜆)] + 𝑟[𝑠 + 𝐾(𝜆)] = 0.   

Once 𝜆(𝑘+1) is obtained, 𝜇(𝑘+1) can be derived explicitly as 

 𝜇(𝑘+1) = [
𝑠

𝜆(𝑘+1) +
𝜆(𝑘+1)

𝑟
− 2]

1

2
.   

Again, most statistical software provides packages that are able to do the complete 

sample estimation for the Birnbaum-Saunders distribution. Therefore, the M-step is indeed 

very easy to implement. 

 

3.2 Gamma Lifetime Data 

The PDF of the gamma distribution is expressed in terms of the gamma function 



𝑓(𝑡; 𝜇, 𝜆) =
1

Γ(𝜇)

𝑡𝜇−1

𝜆𝜇
exp {−

𝑡

𝜆
} ,          𝑡 > 0, 

where 𝜇 > 0 is a shape parameter and 𝜆 > 0 is a scale parameter. The CDF is 

𝐹(𝑡; 𝜇, 𝜆) =
1

Γ(𝜇)
∫ 𝑣𝜇−1𝑒−𝑣𝑑𝑣

𝑡/𝜆

0

=
𝛾(𝜇, 𝑡/𝜆)

Γ(𝜇)
,       𝑡 > 0, 

where 𝛾(𝑎, 𝑏) is the lower incomplete gamma function given by 

𝛾(𝑎, 𝑏) = ∫ 𝑣𝑎−1𝑒−𝑣𝑑𝑣
𝑏

0

. 

Consider the progressively censored data (𝑻, 𝒁)  generated from the above gamma 

distribution. Given the parameter values Θ(𝑘) = (𝜇(𝑘), 𝜆(𝑘)) obtained from the 𝑘th SEM 

cycle, The missing datum 𝑍𝑗𝑙  (𝑙 = 1, … , 𝑅𝑗) can be imputed from the following CDF 

𝐺𝑗(𝑧; 𝜇(𝑘), 𝜆(𝑘)|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) =
𝛾(𝜇(𝑘), 𝑧/𝜆(𝑘)) − 𝛾(𝜇(𝑘), 𝑡𝑗/𝜆(𝑘))

Γ(𝜇(𝑘)) − 𝛾(𝜇(𝑘), 𝑡𝑗/𝜆(𝑘))
,         𝑡 > 𝑡𝑗 . 

The pseudo Q-function based on data the imputed data is 

𝑄(𝜇, 𝜆) = −𝑛 ln Γ(𝜇) − 𝑛𝜇 ln 𝜆 + (𝜇 − 1) ∑ ln 𝑡𝑗

𝑚

𝑗=1

− ∑
𝑡𝑗

𝜆

𝑚

𝑗=1

+ (𝜇 − 1) ∑ ∑ ln 𝑧𝑗𝑙

𝑅𝑗

𝑙=1

𝑚

𝑗=1

− ∑ ∑
𝑧𝑗𝑙

𝜆

𝑅𝑗

𝑙=1

𝑚

𝑗=1

. 

The standard procedure to derive MLEs from this complete sample gamma Q-function is to 

first get 𝜇(𝑘+1) by solving 

∑ ln 𝑡𝑗

𝑚

𝑗=1

+ ∑ ∑ ln 𝑧𝑗𝑙

𝑅𝑗

𝑙=1

𝑚

𝑗=1

+ 𝑛 ln 𝑛 + 𝑛 ln 𝜇(𝑘+1) − 𝑛𝛹(𝜇(𝑘+1))

= 𝑛 ln (∑ 𝑡𝑗

𝑚

𝑗=1

+ ∑ ∑ 𝑧𝑗𝑙

𝑅𝑗

𝑙=1

𝑚

𝑗=1

) 

where 𝛹(𝜇) = 𝑑 ln Γ(𝜇) /𝑑𝜇  is the digamma function, after which 𝜆(𝑘+1)  can thus be 

obtained as 



 𝜆(𝑘+1) =
∑ 𝑡𝑗

𝑚
𝑗=1 +∑ ∑ 𝑧𝑗𝑙

𝑅𝑗
𝑙=1

𝑚
𝑗=1

𝑛𝜇(𝑘+1) .  

Remark: The above SEM procedure is also applicable to some variants of the gamma 

variable. For example, the inverse gamma distribution as a lifetime model has been suggested 

by Glen24. An inverse gamma random variable can be converted to a gamma variable by 

taking the reciprocal. Therefore, we can first take the reciprocal of the progressively censored 

data from an inverse gamma distribution, and then obtain MLEs of the parameters using the 

above procedure. Similarly, progressively censored data from the log-gamma distribution can 

be analyzed using the above procedure after an exponential transformation. 

 

3.3 Inverse-Gaussian Lifetime Data 

The inverse Gaussian distribution as a lifetime model has been promoted by many researchers 

(e.g., Chhikara and Folks23) due to its physical interpretation, i.e., the first passage time 

distribution of a Wiener process with a drift. This distribution has numerous good properties. 

Its PDF accommodates a variety of shapes, from highly skewed to almost normal; its failure 

rate function is unimodal with a limiting value greater than 0, providing a suitable choice for 

a lifetime model. See Chhikara and Folks23 for more details of this distribution. The respective 

PDF and CDF of an inverse Gaussian variable with the shape parameter 𝜇 and the mean 𝜆 

are 

 𝑓(𝑡;  𝜇, 𝜆) = √
𝜇

2𝜋𝑡3 exp {
−𝜇(𝑡−𝜆)2

2𝜆2𝑡
} ,          𝑡 > 0;.  

 𝐹(𝑡;  𝜇, 𝜆) = Φ [√
𝜇

𝑡
(

𝑡

𝜆
− 1)] + exp (

2𝜇

𝜆
) Φ [−√

𝜇

𝑡
(

𝑡

𝜆
+ 1)] ,          𝑡 > 0;   

where Φ(∙) is the CDF of the standard normal distribution. Consider the progressively 

censored data (𝑻, 𝒁) generated from this distribution. If the missing data 𝒁 were known, 

MLE of the parameters based on (𝑻, 𝒁) can be specified as 

 λ̂ =
∑ 𝑡𝑖

𝑚
𝑖=1 +∑ ∑ 𝑧𝑖𝑗

𝑅𝑗
𝑗=1

𝑚
𝑖=1

𝑛
,    𝜇̂−1 =

∑ (𝑡𝑖
−1−𝜆̂−1)𝑚

𝑖=1 +∑ ∑ (𝑧𝑖𝑗
−1−𝜆̂−1)

𝑅𝑗
𝑗=1

𝑚
𝑖=1

𝑛
. (5) 



However, 𝒁 are indeed unknown. Under the SEM paradigm, they have to be imputed from 

the conditional distribution  

𝐺𝑗(𝑧; 𝜇, 𝜆|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) =
𝐹(𝑧;  𝜇, 𝜆) − 𝐹(𝑡𝑗;  𝜇, 𝜆)

1 − 𝐹(𝑡𝑗;  𝜇, 𝜆)
         𝑡 > 𝑡𝑗 

in the S-Step, after which the M-Step can be readily updated in terms of (5). 

 

3.4 Lognormal Lifetime Data 

The lognormal distribution is another commonly used lifetime model. Its PDF is given by 

 𝑓(𝑡;  𝜇, 𝜆) =
1

𝑡√2𝜋𝜆2
exp {−

(𝑙𝑛 𝑡−𝜇)2

2𝜆2 } (6) 

In the presence of censoring data, the log-likelihood function does not have close form 

expression because of the survival function of the lognormal distribution involved (Bennett22). 

The EM algorithm for this distribution is thus preferable, and it has been developed by Ng et 

al.7. We will show that such data can also be easily handled by the SEM algorithm. Denoting 

Θ(𝑘) = (𝜇(𝑘), 𝜆(𝑘)) the value of Θ at the 𝑘th SEM cycle, the (𝑘 + 1)st step evolves as 

follows. 

S-Step 

To impute the missing data, we need the conditional distribution of 𝑍𝑗𝑙  (𝑙 = 1, … , 𝑅𝑗), which 

is given by 

𝐺𝑗(𝑧; 𝜇, 𝜆|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) =
Φ (

ln 𝑧 − 𝜇
𝜆

) − Φ (
𝑡𝑗 − 𝜇

𝜆
)

1 − Φ (
𝑡𝑗 − 𝜇

𝜆
)

         𝑧 > 𝑡𝑗 . 

A realization of the missing data 𝒁 can then be easily generated by imputing 𝑅𝑗  i.i.d. 

samples from 𝐺𝑗(𝑧; 𝜇(𝑘), 𝜆(𝑘)|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗  ), 𝑗 = 1, … , 𝑚.  

M-Step 

The realization of 𝒁 in conjunction with the observed data 𝑻 makes up a complete sample 

for the lognormal distribution, which has close-form expressions for the MLEs. Therefore, 

the value of Θ(𝑘+1) are given by 



 𝜇(𝑘+1) =
∑ ln 𝑡𝑖

𝑚
𝑖=1 +∑ ∑ ln 𝑧𝑖𝑗

𝑅𝑗
𝑗=1

𝑚
𝑖=1

𝑛
,   

 𝜆(𝑘+1) = √∑ [ln 𝑡𝑖−𝜇(𝑘+1)]
2𝑚

𝑖=1 +∑ ∑ [ln 𝑧𝑖𝑗−𝜇(𝑘+1)]
2𝑅𝑗

𝑗=1
𝑚
𝑖=1

𝑛

.  

 

3.5 Weibull Lifetime Data 

The Weibull distribution is one of the most widely used models in reliability and survival 

analysis. The respective PDF and CDF of this two-parameter model are  

 𝑓(𝑡;  𝜇, 𝜆) =
𝜇

𝜆
× (

𝑡

𝜆
)

𝜇−1

× exp {− (
𝑡

𝜆
)

𝜇

} ,          𝑡 > 0, (7) 

              𝐹(𝑡;  𝜇, 𝜆) = 1 − exp {− (
𝑡

𝜆
)

𝜇

} ,             𝑡 > 0,               

where 𝜇 > 0 is a shape parameter, and 𝜆 > 0 is a scale parameter. Ng et al.7 has shown how 

to estimate the model parameters via the EM algorithm. Their method has to work on the 

log-lifetime that follows an extreme value distribution, and then transform the MLEs of the 

parameters in the extreme value distribution to the MLEs of the Weibull parameters. On the 

contrary, the SEM algorithm is able to avoid such transformation and work directly on the 

Weibull distribution, making the estimation more straightforward and simpler. 

Consider the progressively censored data (𝑻, 𝒁) generated from the Weibull distribution 

(7). 𝑻 are the observed data while 𝒁 are considered as missing data. Given the complete 

data (𝑻, 𝒁), The log-likelihood function can be expressed as 

 𝑄(𝜇, 𝜆) = 𝑛(ln 𝜇 − ln 𝜆) + (𝜇 − 1) ∑ (ln 𝑡𝑗 − ln 𝜆)𝑚
𝑗=1 − ∑ (

𝑡𝑗

𝜆
)

𝜇
𝑚
𝑗=1  

                 +(𝜇 − 1) ∑ ∑ (ln 𝑧𝑗𝑙 − ln 𝜆)
𝑅𝑗

𝑙=1
𝑚
𝑗=1 − ∑ ∑ (

𝑧𝑗𝑙

𝜆
)

𝜇𝑅𝑗

𝑙=1
𝑚
𝑗=1 . (8) 

This complete sample likelihood function is easy to maximize. Therefore, the main idea of 

the SEM algorithm is to impute a realization of 𝒁 in the S-Step in order to facilitate the 

M-Step. Denoting Θ(𝑘) = (𝜇(𝑘), 𝜆(𝑘)) the value of Θ at the 𝑘th SEM cycle, the procedure 

of the (𝑘 + 1)st step is detailed as follows. 



The S-Step 

To implement the S-step, the conditional CDF of 𝑍𝑗𝑙  (𝑙 = 1, … , 𝑅𝑗)  given 𝑇𝑗:𝑚:𝑛 = 𝑡𝑗 

(𝑗 = 1, … , 𝑚) is needed, which is readily obtained as 

 𝐺𝑗(𝑧;  𝜇, 𝜆|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) = 1 − exp ((
𝑡𝑗

𝜆
)

 𝜇

− (
𝑧

𝜆
)

 𝜇

)        𝑧 > 𝑡𝑗.  

Based on this conditional CDF, we can readily impute 𝒁𝑗, 𝑗 = 1, … , 𝑚, by generating 𝑅𝑗 

i.i.d. samples from 𝐺𝑗(𝑧; 𝜇(𝑘), 𝜆(𝑘)|𝑇𝑗:𝑚:𝑛 = 𝑡𝑗) . The imputed 𝒁𝑗  makes up a random 

realization of 𝒁. This random realization of 𝒁 in conjunction with the observed data is 

substituted into (8) to get the pseudo Q-function for the M-Step. 

The M-Step 

After attaining the pseudo Q-function (8) by making use of the imputed 𝒁 from the S-Step, 

the M-Step aims to obtaining Θ(𝑘+1) by maximizing this Q-function. The standard procedure 

to maximize this complete sample Weibull likelihood function is to first derive 𝜇(𝑘+1) by 

solving 

 
∑ 𝑡𝑗

𝜇×ln 𝑡𝑗
𝑚
𝑗=1 +∑ ∑ 𝑧𝑗𝑙

𝜇×ln 𝑧𝑗𝑙

𝑅𝑗
𝑙=1

𝑚
𝑗=1

∑ 𝑡𝑗
𝜇𝑚

𝑗=1 +∑ ∑ 𝑧𝑗𝑙
𝜇

𝑅𝑗
𝑙=1

𝑚
𝑗=1

−
1

𝜇
−

1

𝑛
(∑ ln 𝑡𝑗

𝑚
𝑗=1 + ∑ ∑ ln 𝑧𝑗𝑙

𝑅𝑗

𝑙=1
𝑚
𝑗=1 ) = 0,  

and then obtain 𝜆(𝑘+1) by making use of 𝜇(𝑘+1) as  

 𝜆(𝑘+1) = [
∑ 𝑡𝑗

𝜇(𝑘+1)
𝑚
𝑗=1 +∑ ∑ 𝑧𝑗𝑙

𝜇(𝑘+1)𝑅𝑗
𝑙=1

𝑚
𝑗=1

𝑛
]

1/𝜇(𝑘+1)

.  

Most statistical software is able to do the complete sample estimation for the Weibull 

distribution. Uses made of these standard software packages further simplify the M-Step, and 

thus facilitating the application of the SEM algorithm. After an initial burn-in period, the 

sequence of {Θ(𝑘)} is averaged to get an approximation of the MLEs.  

 



4 Two Illustrative Examples 

4.1 The Birnbaum-Saunders Distribution for the Fatigue Life Data 

Consider a dataset from Birnbaum and Saunders19 on the fatigue life of 6061-T6 aluminum 

coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second, with a 

maximum stress per cycle at 31,000 psi. The original data were presented in Table 2 in 

Birnbaum and Saunders19. MLE of the Birnbaum-Saunders parameters based on this 

complete sample is  

 𝜇̂ = 0.170, 𝜆̂ = 131.8.  

Ng et al.20 have used this dataset to demonstrate their inference procedure under type-II 

censoring. In this study, we use this dataset to demonstrate the applicability of the SEM 

algorithm for progressively censored data from the Birnbaum-Saunders distribution. Based 

on the original data, we randomly generate a progressively censored dataset with 𝑚 = 50 

and a progressively censored scheme 𝑅𝑖 = 1 for 𝑖 < 50 and 𝑅50 = 2. The generated data 

are displayed in Table 1. 

We apply the SEM procedure developed in Section 3.1 to analyze this progressively censored 

dataset. The initial value of 𝜇 and 𝜆 for the algorithm are set as 𝜇(0) = 1 and 𝜆(0) = 100, 

which is far away from the MLE. The number SEM cycles is set as 1100. The first 100 cycles 

are used as burn-in period, while the additional 1000 cycles are averaged to estimate model 

parameters. 

Figure 1 shows the trace plots of these two parameters versus the SEM cycles. The values of 

the parameters oscillate with the SEM cycles around the bold horizontal lines in Figure 1, but 

do not show any uptrend or downtrend. This suggests that the Markov Chain {Θ(𝑘)} has 

converged to a stationary distribution. The average of the sequence {Θ(𝑘) } would be 

sufficient to approximate the MLE, which is 

 𝜇̂ = 0.1735, 𝜆̂ = 131.2.  

To demonstrate the validity of the SEM algorithm, we use these estimated values from the 

SEM algorithm as a starting point and directly maximize the likelihood function using some 



derivative-free algorithms reviewed in Kolda et al.8. The brute-force maximization yields an 

estimate of 

 𝜇̂ = 0.1739, 𝜆̂ = 131.2,  

which is very close to the results given by the SEM algorithm. The difference may be due to 

some simulation variations. This similarity implies the efficacy of the SEM algorithm in 

dealing with the censored data. 

Given the complete sample with sample size 𝑛 = 101, an extensive simulation study is 

conducted to investigate the impact of the sampling scheme, i.e. the failure number 𝑚 and 

the combination of withdrawn numbers {𝑅1, 𝑅2, … , 𝑅𝑚}, on the performance of the SEM 

algorithm. The progressively Type-II censored dataset is generated randomly, that is, the 

withdrawn number 𝑅𝑖 at the 𝑖th failure is randomly simulated under the constraint ∑ 𝑅𝑖
𝑚
𝑖=1 =

𝑛 − 𝑚.  For each value of 𝑚, we randomly generate a progressively Type-II censored 

dataset and, using the SEM algorithm, we obtain an estimate vector of (𝜇, 𝜆), denoted as (𝜇̂, 𝜆̂). 

The Kolmogorov-Smirnov test (K-S test) is served as a goodness-of-fit test (compare the fitted 

distribution to the original complete data). By ranging 𝑚 from 21 to 50, the results are given in 

Table 2. In Table 2, the notation 𝑝 represents the 𝑝-value of the Kolmogorov-Smirnov test. 

Form the 𝑝-value we can see that the increase of the failure number 𝑚 does not necessarily 

guarantee the improvement in the performance of the SEM algorithm. This result may seem 

counterintuitive in the sense that one would typically expect, with the failure number 

increasing, the 𝑝-value of the K-S test should increase. However, the fluctuating 𝑝-values can 

be explained as follows: for predetermined sample size 𝑛  and failure number 𝑚 , the 

combination {𝑅1, 𝑅2, … , 𝑅𝑚} has a considerable influence on the SEM algorithm. We repeat 

the preceding procedure for 20 times and plot the 𝑝 values in Figure 2. The increasing trend in 

Figure 2 indicates that, with the failure number increasing, the SEM algorithm will more fit the 

data. 

 

4.2 The Lognormal Distribution for the HDD Failure Data 

In this section we apply the SEM algorithm to a progressively Type-I censored dataset, i.e. 

the HDD failure data, to show the competence of the proposed technique. Analysis of HDD 



failures reveals that most failures attribute to particles accumulated in the disks. Therefore, 

the life test was conducted by injecting particles into 36 raw disks for a certain duration, 

during which the cumulative particle counts to failure for the failed disks were recorded. 

After the test, some units were still working, and their cumulative particle counts to failure 

data were censored. Due to the unstable injection rate for each unit, the censored cumulative 

particle counts for these units were different. Therefore, the data can be regarded as 

progressively censored. The data are shown in Table 3. 

HDD engineers demand a convenient method that can effectively analyze the data. The 

SEM algorithm is thus favorable. We try all the distributions presented in Section 3 on this 

data set, and the results are listed in Table 4. The MLEs, which are obtained based on the 

exactly observed failure data, are set as the initial values of 𝜇 and 𝜆 in the SEM algorithm.  

As with the previous example, the number of SEM cycles is set as 1100, while the first 100 

cycles are used for burn-in. Obviously, based on the value of the log-likelihood, the 

lognormal distribution is well-fit to the data. For each distribution, we also record the time 

the SEM algorithm consumes. All computations were coded in MATLAB (MathWorks, 

R2011b) on an Intel Core 2 6420 (Intel), 2.13 GHz PC with 2 GB RAM. As can be seen, the 

Birnbaum-Saunders distribution and the Inverse-Gaussion distribution take much more time 

than the other three distributions. This is rooted in the way we impute the missing data: To 

generate a sample from 𝐹𝑗(𝑍𝑗𝑙  ;  Θ) in (2), we generate samples from 𝐹(𝑡;  Θ) until we get 

the first one greater than 𝑡𝑗; see the appendix. If we use built-in random number generator, as 

in the other three cases, the algorithm is indeed very fast. 

Therefore, the Lognormal distribution can be served as the underlying distribution, and 

the estimates for 𝜇 and 𝜆 are, respectively 𝜇̂ = 12.9327 and 𝜆̂ = 1.1091. The evolution 

paths of the parameters in the algorithm are depicted in Figure 3. As can be seen from this 

figure, no obvious trend is detected for the {Θ(𝑘)} sequence. By using the estimates from the 

SEM algorithm as a starting point, we numerically maximize the likelihood function by some 

optimization algorithms. The MLEs are 

 𝜇̂ = 12.920, 𝜆̂ = 1.084,  

which are very close to the results from the SEM algorithm. This implies the effectiveness of 

the SEM algorithm. 



 

5 Conclusions 

This study has developed a generic framework for analyzing the progressively censored data 

by using the stochastic EM algorithm. The algorithm iteratively implements the S-Step by 

drawing a sample from the conditional distribution of the missing data based on the 

parameter values from the previous step, while the M-Step is a complete sample likelihood 

maximization. Both steps can be easily implemented by making use of distribution packages 

provided by most statistical software. In addition, the stochastic nature enables the SEM 

algorithm to avoid getting stuck at a saddle point of the likelihood function, which is a 

headache faced by the traditional EM algorithm, and the Newton–Raphson method. In view 

of the fact that progressively censored data are common in real applications and that 

engineers prefer handy tools for the analysis, our framework is potentially very useful. We 

then presented a real dataset from a life test on 36 HDDs. The data were progressively 

censored, and the SEM algorithm was shown to be capable to effectively estimate the 

parameters with a short runtime. 

In Section 4 we investigate the impact of the sampling scheme on the performance of the 

SEM algorithm. The results show that, with the failure number 𝑚 increasing, the 𝑝-value of 

the K-S test increases, i.e., the performance improves. However, for fixed sample size 𝑛 and 

failure number 𝑚 , the combination of withdrawn numbers {𝑅1, 𝑅2, … , 𝑅𝑚} is of great 

influence on the SEM algorithm. Future research can be done in determining the optimal 

sampling scheme. Also, future research can be done in studying whether the number of 

burn-in iterations depends on specific distributions and/or on initial parameter settings. This 

will help the practitioners to choose a favorable sampling scheme and appropriate number of 

cycles in their domain problems. 

 

Appendix 

This appendix shows how to draw a random sample from Equation (2).  



The standard method is to use the fact that 𝐹𝑗(𝑍𝑗𝑙  ;  Θ) follows a standard uniform 

distribution, i.e., 𝒰 = 𝐹𝑗(𝑍𝑗𝑙  ;  Θ)~𝑈(0, 1). By using (2), we can see that 

 𝒰[1 − 𝐹(𝑡𝑗;  Θ)] + 𝐹(𝑡𝑗;  Θ) = 𝐹(𝑍𝑗𝑙  ;  Θ)  

Therefore, we can first generate a random realization of 𝒰 , say, 𝑢 , and then obtain 

realization of 𝑍𝑗𝑙 as 

 𝑧𝑗𝑙 = 𝐹−1(𝑢 + (1 − 𝑢)𝐹(𝑡𝑗;  Θ) ;  Θ), (9) 

where 𝐹−1(∙) is the inverse function of 𝐹(∙). For example if 𝐹(∙) if the Weibull CDF, (9) 

can be explicitly written as 

 𝑧𝑗𝑙 = 𝜆[(𝑡𝑗/𝜆)𝜇 − ln(1 − 𝑢)]
1/𝜇

, 

However, close-form expressions of (9) for some distributions do not exist, e.g., the 

lognormal distribution and the gamma distribution. Luckily, most statistical software provides 

packages that can directly compute 𝐹−1(∙) for most distributions. This greatly simplifies the 

problem.  

 Another way to generate a sample from 𝐹𝑗(𝑍𝑗𝑙  ;  Θ) in (2) is to generate samples from 

𝐹(𝑡;  Θ) until we get the first one greater than 𝑡𝑗. This method is somewhat brute-force. 

However, it is much easier to implement. In addition, almost all statistical software has 

random number generators for most common distributions, e.g., the ones discussed in Section 

3. 
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Table 1. A progressively censored dataset generated from the original fatigue life data presented in 

Birnbaum and Saunders
19

 and Ng et al.
20

. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

ti:m:n 70 90 96 97 99 100 103 104 104 105 107 108 108 108 109 109 112 

Ri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

i 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

ti:m:n 112 113 114 114 116 119 120 120 121 124 124 124 128 128 129 139 130 

Ri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

i 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

 ti:m:n 130 131 131 132 132 132 134 134 136 136 138 141 142 144 146 148 

 Ri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Estimated parameter values and 𝑝-value with changing 𝑚. 

𝑚 21 22 23 24 25 26 27 28 29 30 

𝜇̂ 0.1936 0.1921 0.1911 0.1869 0.1918 0.1871 0.1873 0.1864 0.1882 0.1827 

𝜆̂ 133.98 133.52 134.48 133.52 133.25 133.57 132.21 133.05 131.99 132.68 

𝑝 0.3044 0.4027 0.2394 0.4537 0.4646 0.4389 0.4377 0.5726 0.3815 0.5835 

𝑚 31 32 33 34 35 36 37 38 39 40 

𝜇̂ 0.1973 0.1921 0.1861 0.1761 0.1931 0.1939 0.1794 0.1765 0.1824 0.1801 

𝜆̂ 134.61 133.85 134.57 132.01 134.41 134.23 132.04 131.75 132.31 131.30 

𝑝 0.1911 0.3392 0.2558 0.4496 0.2386 0.2612 0.4385 0.3850 0.4885 0.2763 

𝑚 41 42 43 44 45 46 47 48 49 50 

𝜇̂ 0.1747 0.1887 0.1873 0.1728 0.1816 0.1785 0.1856 0.1874 0.1785 0.1605 

𝜆̂ 131.61 134.45 133.15 132.12 132.81 131.83 133.46 134.66 132.21 130.66 

𝑝 0.3628 0.2583 0.5363 0.4994 0.6279 0.3946 0.4821 0.2334 0.4865 0.2241 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Progressively censored data of 36 HDDs based on cumulative particle counts: Censoring is 

indicated by +. 

38248 44592 63184 70888 168536 170408 186944 193084 217956 

217992 242064+ 242064+ 242064+ 253744 266240 272468 290220+ 290220+ 

292380 295780 299797+ 301564+ 301920+ 304563+ 307636+ 313936+ 316224 

345568 517636 797168+ 797196 812716+ 822136 905952 1341996 1345544+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Estimated parameter values and the likelihood result. 

 Birnbaum-Saunders Gamma Inverse-Gaussion Lognormal Weubull 

𝜇̂  1.2210 1.3716 3.2278e+5 12.9327 1.2051 

𝜆̂  3.9194e+5 4.3325e+5 8.6029e+5 1.1091 6.1591e+5 

log-likelihood -315.1581 -315.1807 -315.8342 -314.8521 -315.3574 

time elapsed 62.649984 1.838062 5.878271 0.885176 1.409312 

 

 

 

 

 

 

 

 


