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Abstract 

This paper explores connection between profile monitoring and functional performance of manufactured 

products. In particular, the empirical relationship between the vertical density profile of the particleboards and 

their functional performances (the internal bond and the surface soundness) is studied. Results based on a real 

case study showed that the profile shape clearly affects the final performance of the panel and thus profile 

monitoring is really worth to keep the final quality of the product at its target level.  

This result motivates the second objective of the paper, which consists of comparing performance of two 

(parametric and nonparametric) approaches for vertical density profile monitoring. 

1   Introduction 

 

Profile monitoring consists of monitoring the functional relationship between a response variable and 

one or more explanatory variables, with the idea of controlling the product or process quality. 

Applications of functional data include calibration studies, geometric specification monitoring and 

process signal control (see Woodall1 and the recent book by Noorossana et al.2 ).  

 

Despite of the large attention paid to profile monitoring in recent literature, most of the proposed 

approaches focused on presenting new methods and tools to perform statistical profile monitoring. 

Up to authors’ knowledge, not many studies focused on studying connection between the monitored 

profile and the final product quality. The first aim of the present paper is to investigate the relationship 

between the profile shape and the product performance, with respect to a typical test case in the 

literature on profile monitoring, namely the vertical density profiles (VDPs) of particleboards 

produced in the wood composites industry. To this aim, we will first model the VDP using a 

parametric model and then we will link the model coefficients to the functional performance of the 

produced product. Among models to represent VDP as functional data, Winistorfer et al.
 3
  considered 

spline regression, Xu and Winistorfer
 
4  presented a model based on Fourier basis while Walker and 

Wright5 used additive models. In our study, the VDP profile will be modeled by combining B-spline 

regression (to represent the large scale pattern) and autoregressive model (to represent the 

autocorrelated error terms) – B-spline+AR. As a matter of fact, after removing the main pattern 

modeled via B-spline, all the real data showed a remaining autocorrelation structure and this is why 

a model combining B-spline with autocorrelation was assumed. A similar need was observed in many 

different applications of profile monitoring 6
- 
9.  

 

In order to check whether profile changes affect the particleboard final quality, we will take as 

reference a real case study, where a set of particleboards are produced and their VDPs inspected while 

producing. Starting from the literature 
10

 
11

 on particleboards production, we will consider the internal 

bond and the surface soundness as quality characteristics of interest.  
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After exploring the strong connection between profile shape and product performance, we will then 

compare performance of two different methods for VDP monitoring. 

In the literature on VDP profile monitoring, different approaches have been proposed to develop a 

monitoring policy. In particular, Williams et al.
12 

considered profile monitoring via nonlinear 

regression, Chang and Yadama 13 used splines, supported by wavelets filtering, in order to develop a 

profile monitoring method. Fan et al. 14 proposed breaking the complete profile into several segments 

in order to monitoring them separately. Wei et al. 15 proposed a nonparametric model to detect local 

shifts, local shape distortion and overall shape deviation of the VDP pattern. Horng et al. 
16

 provided 

a monitoring schemes based on nonparametric regression. 

 

In our paper, two different monitoring approaches will be considered and compared. The first 

approach will take advantage of the B-spline+AR model developed to represent the profile pattern 

and combine it with a multivariate control chart for monitoring the model coefficients and a univariate 

control chart to monitor the residual variance. A second nonparametric approach proposed by Qiu et 

al. 
17

 will be used as competitor method. Performances of the different methods will be evaluated in 

terms of Average Run Lenghts (ARLs) observed on different realistic out-of-control states. Final 

remarks will be drawn. 

 

The remainder of the paper is organized as follows. In Section 2 we will present the real case study. 

Section 3 will explore relationship between the VDP shape and the final performance of the 

particleboard. Section 4 and 5 will describe the competitive approaches for profile monitoring while 

Section 6 will present the performance comparison. Section 7 will eventually present the conclusions. 

 

2   The Real Case Study: particleboards  

 

Wood composites is a general term for a variety of different board products, which have an impressive 

range of engineering properties. The term particleboard is used to define any panel product that is 

made with wood particles 
10

. In order to achieve the desired properties of the final product, the 

manufacturing process can be adjusted accordingly. Requirements such as density, strength and 

durability are defined in the international standards 
18-22

 together with the related measuring methods. 

Particleboard manufacturing is a complex process which consists of bonding together the wood 

particles by adding synthetic adhesives and then pressing them at high pressures and temperatures 
23, 

24
. This literature points out that the critical operation in the particleboard manufacture are the mattress 

formation and the hot pressing. The amount and state of material in the mattress formation determine 

the average board density, whereas the pressing technique is the main element defining the functional 

behavior of the density along the thickness. During hot-pressing process, the interaction among heat, 

moisture and pressure gives rise to non-uniform deformation of the elements, which results in an 

uneven density distribution along the thickness 
25

.  Figure 1 plots the VDP, with the density being 

considered as a response variable and the correspondent measured location acting as explanatory 

variable. 

 

 

[Insert Figure 1 about here]. 

 

The VDP curve is influenced by the process conditions and changes of its shape could affect the 

mechanical characteristics of the final product. The international standards define some specific 
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mechanical requirements, namely the internal bond (IB), the surface soundness (SS) and the bending 

strength (BS), together with the way in which measurements should be performed. IB is the resistance 

to a stress acting perpendicularly to the panel plane and it is determined by the maximum load related 

to the surface area of the specimen 
20

. SS is the bonding strength between the particles at the panel 

surface and the material below. For its measurement, a shallow circular groove is cut on the specimen 

surface and a steel pad is bonded to the area within the groove. The tensile load required to pull this 

pad from the surface is measured 
21

. The bending strength is computed as the ratio of the bending 

moment at the maximum load 
27

  
  

Different authors have focused their attention on the relationship between the process and the 

mechanical properties of the final product 
23, 24, 28

. We want to consider this relationship from a 

different viewpoint, linking the panel properties to the VDP shape instead that connecting them to the 

process parameters. 

 

 

2.1  Data set description 

The 𝑗"# VDP is summarized in a vector 𝒚% = 𝑦(% , … 𝑦"% …𝑦+%
,
 of densities (𝑗 = 1,2, … , 𝐽), 

measured at a set of 𝑛 equally spaced locations 𝒙 = 𝑥(, … 𝑥" …𝑥+
,. Figure 1 represents a generic 

VDP, where 𝑦"% is the density (𝑘𝑔/𝑚8) measured at thickness (𝑚𝑚) 𝑡 on the 𝑗"# panel profile. In 

our real case study, the VDP sample was measured by using a profilometer that takes measurements 

at fixed depths across the thickness of the board. The reference sample is a set of 𝐽 = 263 profiles 

made of 𝑛 = 189 observations, where each measurement is taken at a fixed distance of 0.09	  𝑚𝑚.  

 

 

 

3   Relationship between VDP shape and particleboard mechanical properties 

  

In order to explore the relationship between the mechanical properties of the panel and the VDP, we 

will start focusing on a parametric model for the VDP. Then we will explore possible connection 

between the model coefficients and the mechanical properties, namely the IB and the SS. This 

relationship will be estimated via regression analysis. 

. 

 

3.1  Modeling VDP  

 

We will assume that the 𝑗"# VDP can be represented as:  

 

𝒚% = 𝒔% 𝒙 + 𝒗%      (1) 

 

where 𝑠% 𝒙  is a large-scale model based on cubic B-spline regression while  𝒗% = 𝑣(% , … 𝑣"% , … 𝑣+%
G
 

represents the small-scale component, modeled as autocorrelated errors. We will assume a 

𝐴𝑅𝑀𝐴	  (𝑝, 𝑞), autoregressive moving average model for residuals observed at location 𝑡 on the 𝑗"# 

profile: 
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𝑣"% = 𝑎(%𝑣"N(,% +⋯+ 𝑎P%𝑣"NP,% + 𝜀"% −𝑚𝜀"N(,% −⋯−𝑚S%𝜀"NS,% =
𝑀S% 𝐵

𝐴P% 𝐵
𝜀"% 

 

where 𝑀S% 𝐵 = 1 −𝑚(%𝐵 −⋯−𝑚S%𝐵
S , 	  𝐴P% 𝐵 = 1 − 𝑎(%𝐵 −⋯−𝑎P%𝐵

P and 𝐵U𝑥" = 𝑥"NU.
29, 30

  

is the backshift operator. Final residual errors 𝜀"%′𝑠 are assumed to be independent, with zero mean 

and constant variance,  𝜺%~ 𝟎, 𝜎[ 𝑰 .  

In order to define the large-scale model, the interval [𝑋_`+, 𝑋_ab] is partitioned in 𝐿 subintervals, 

separated by 𝐿 − 1 internal knots 𝑋_`+ = 𝜏f < 𝜏(% ≤ 𝜏[% ≤ ⋯ ≤ 𝜏iN(	  	  % < 𝜏i	  % = 𝑋_ab. The knot 

vector 𝝉% uses the subindex 𝑗 because at least in principle, different knot locations can be identified 

for each profile. The function 𝒔% 𝒙  is a linear combination of cubic B-spline basis functions  

 

𝒔% 𝒙 = 𝑩U 𝝉%; 𝒙
m
Un( 𝒄%. 

 

where 𝑩U(𝝉%; 𝒙) is the 𝑛×𝑟  B-spline matrix with internal knot vector 𝝉% = 𝜏(% , 𝜏[%,… , 𝜏iN(	  %  

which depends on the profile index 𝑗 and	  	  𝒄% = (𝑐(% , 𝑐[% , … , 𝑐m%)
G	   are the 𝑟 = 4 + 𝐿 − 1  coefficients 

to be estimated.  

 

In order to select the number and the position of the knots together with the autocorrelation structure 

of the noise terms, a set of competitor models was identified and ranked according to the Akaike's 

Information Criterion (AIC) 
29

. 

In particular, two solutions were considered for knots placing.  The first one assumes a uniform knot 

placement (i.e., the subinterval between knots is fixed and constant for all the profiles). A set of 20 

internal knots were considered for all the profiles. The second strategy consists of optimizing the 

knots position for the mean profile., using the curfit.free.knots procedures of the DierckxSpline 

library implemented in the R software 
31, 32

. In this case, the maximum number of internal knots to be 

placed was fixed to 11, provided that any increase of the knot number did not seem to improve the 

model AIC. Eventually, AR(p) models with 𝑝 ranging from 2 to 4 were considered as possible 

solutions. The System identification toolbox in Matlab 
30

 was used to estimate all the large- and small-

scale coefficients at the same time and to compute the AIC indicator for all the competitive models 

(considering both the uniform and the optimized knot placing strategies and the different orders of 

the 𝐴𝑅(𝑝) model). Clearly, only models corresponding to uncorrelated final noise terms were 

considered as viable solutions. Eventually, the final model corresponds to the combination (𝑟	   = 	  8,
𝑝	   = 	  4) with uniform knot placement (i.e., the subinterval between knots (𝝉) is fixed and constant 

for all the profiles) and an AR(4) for the small-scale component 

 

𝒚% = 𝑩U 𝝉; 𝒙 𝒄%

t

Un(

+ 𝒗% 	  	  	  	   

 

𝑣"% =
(

(NauvwNaxvw
xNayvw

yNazvw
{
𝜀"% 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑗 = 1,… , 𝐽; 	  𝑡 = 1,… , 𝑛   (2) 

 

characterized by a set of 𝑑 = 	  𝑟 + 𝑝 = 8 + 4 = 12 parameters to be estimated. 
 

3.2  Effect of the VDP shape on the panel properties 
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In order to understand the relationship between the VDP shape and the panel properties, we linked 

the panel properties to the VDP model coefficients shown in Eq. 2, (namely 𝑐(% , … , 𝑐t% , 𝑎(% , … , 𝑎}% , 𝜎%
[ 

for the j-th profile), acting as regressors. Results of this analysis are shown and discussed in the 

following. 

 

3.2.1   Internal Bond analysis 

 

For each of the 100 panels, we measured the density along the thickness and used the model in Eq.2 

to estimate the unknown coefficients. The Internal Bond (IB) was then measured on the same panel, 

using existing standards 
20, 21

. 

Results of the regression analysis are shown in Table 1, where the variance inflation factors (VIF) is 

shown together with the ANalysis Of the Variance (ANOVA) table, which shows that some of the 

VDP coefficients affects the IB property. As clear from Table 1, the IB is significantly affected by 

the large-scale VDP pattern via coefficients 𝑐}% , 𝑐~% and 𝑐�%. Also the small-scale model of the VDP 

affects the IB property, considering the first autoregressive term 	  𝑎(% is significant. The VIFs show 

that there is no multicollinearity among the regressors. Assumptions on residual errors (normality and 

lack of autocorrelation) are also verified. 

Figure 2 shows the in-control pattern together with a second profile, where parameters 𝑐}% , 𝑐~%, 𝑐�% 

are perturbed (considering a shift size of 1.5, -1 and -1 standard deviation unit, respectively). The 

parameter 	  𝑎(% is reduced at 0.8 but this coefficient does not influence the profile shape. As a matter 

of fact, Figure 2 shows how the central part of the profile is mainly responsible of the IB property.  

[insert Table 1 about here] 

[insert Figure 2 about here] 

The significance of the autoregressive term suggests the influence of the particle size on the tensile 

strength, which probably increases as the homogeneity of the wood particles increases 
28

.
 
 

 

3.2.2   Surface soundness analysis. 

 

Similarly to the IB analysis, surface soundness (SS) was linked to the VDP constructing an empirical 

model built on the sample of 100 profiles. Results are shown in Table 2. In this case, significant 

parameters are 𝑐}% , 𝑐~% , 𝑐�% and 𝑐�%. Also in this case, assumptions on residuals were verified. Figure 

3 represents the results of this analysis, showing the effect of changes of significant coefficients 

(considering a shift of 1.5, -1, -1 and -1 standard deviation for 𝑐}% , 𝑐~% , 𝑐�% and 𝑐�% , respectively). 

 

[insert Table 2 about here] 

 

 

 

[insert Figure 3 about here] 
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Also in this case, the central part of the profile affects the SS property. However, an addition effect 

is visible, connecting the SS to the border area between the surface layer and the inner layer. This 

result is consistent with results presented in the literature 
24

, where it is shown that a larger density in 

the zone subject to the higher stress can result in improved mechanical properties of the panel. 

 

As a concluding remark, the performed analysis showed that the VDP pattern affects the functional 

properties of the panel. This results is particularly important, since it gives relevance to profile 

monitoring. In order to avoid deteriorated product performance, the shape of the density profile 

should be monitored with time.  

 

 

4   Monitoring scheme 

 

For monitoring purpose, the coefficients 𝒁% = 𝑧(% , … 𝑧�%
,
 = 𝑐(% , … 𝑐t% , 𝑎(% …𝑎}%

G
of the profile 

model in Eq.2, can be monitored via a Hotelling 𝑇[ control chart:  

 

𝑇%
[ = 𝒁% − 𝝁�

G
𝜮�
N( 𝒁% − 𝝁� 	   	   	    (3) 

 

where  𝝁� = 𝑧(, … , 𝑧�
, is the vector of sample means, whilst 𝜮�

N( is the inverse of the (short-run) 

estimate of the covariance matrix, given by 

 

𝜮� =
(

[

𝑽�𝑽

�N(
      (4) 

were 𝑽 is the	  (𝐽 − 1)	  	  𝑥	  𝑑 matrix consists of row vectors of the differences 𝑣% =	  𝑧%�( − 𝑧%   with  

𝑗 = 1,2, … , 𝐽 − 1. 

A second control chart is designed to monitor the variance 𝜎%
[ of the residual terms 𝜺%’s.  

In order to design the two control charts (the 𝑇[  + Shewhart control charts for the residual variance), 

a first type error of (1 − 1 − 𝛼G) was set for each of the two charts. This was made in order to 

achieve an overall nominal false alarm rate equal to αG = 0.05. 

To design the control limits, a bootstrapping procedure was used considering that the non-normal 

distribution of residual terms does not allow one to use the analytical results of the 𝑇[ and Shewhart 

control charts for the error variance. Starting from the first set of 𝐽 = 263 real profiles, we assumed 

the average VDP computed on 7 profiles as the reference VDP to be monitored and we performed 

bootstrapping to generate 20000 replications of VDPs. Then, we compute the empirical distribution 

of the monitored statistics and the related control limits for the procedure. 

 

4.1  Performance Evaluation 

 

Performance of the monitoring procedure was computed considering the average number of samples 

to detect out-of-control states of the VDP production process (i.e., the Average Run Length  - ARL). 

In order to define possible out-of-control conditions, we linked the profile changes to one or more 

special causes, which can cause these conditions to happen, according to literature on VDP 

production. We will consider five out-of-control scenarios described in Table 3. These cases were 

generated by opportunely perturbing the parameters of Eq.2, in order to introduce changes in the 
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general pattern (scenario A, B and C of Table 3) or in the autocorrelation structure of the profiles 

(scenarios D and E of Table 3). Figure 4 presents the first three scenarios. 

[insert Table 3 about here] 

 

[insert Figure 4 about here] 

 

4.1.1   Results 

 

For each scenario listed in Table 3, performance of the monitoring procedure was computed using as 

indicator the average run length (𝐴𝑅𝐿 ) required to detect the specific out-of-control condition 

assumed in that scenario. A set of 10000 run lengths were collected for each scenario before 

computing the average, shown in Table 4. 

 

[insert Table 4 about here] 

 

 

The results of Table 4 denote that the approach is effective in detecting out-of-control states. For all 

the scenarios, the monitoring procedure detects the out-of-control condition at the first sample on 

average, except for scenario B, where almost two samples are required instead. 

 

 

5   Alternative monitoring procedure 

5.1  The nonparametric mixed effect model (NPME) for profile monitoring. 

 

Following Qiu et al. 
17

 we assumed the following nonparametric mixed-effects model for the VDP 

 

𝑦"% = 𝑔 𝑥" + 𝑓% 𝑥" + 𝜀"%,   𝑗 = 1,… 𝐽,	  	  	  𝑡 = 1,…𝑛  (5) 

 

where 𝑦"% is the observed response (density) of profile 𝑗 at the location point 𝑥" along the thickness;  

𝑔 𝑥"  models the population mean function (the fixed effect) and 𝑓% 𝑥"  represents the individual 

curve deviation from 𝑔 𝑥"  (the random-effects) curve. 𝜀"%’s are measurement errors with zero mean 

variance 𝜎%
[.  

Following the approach by Qiu et al. 
17

, Fan and Gijbels
33

 and Wu and Zhang
34

, 𝑔() and 𝑓%() can be 

estimated by combining linear mixed effects models and local polynomial techniques, considering an 

iterative procedure. Let 𝒇%(𝒙) = 𝑓%(𝑥(), … , 𝑓%(𝑥+)
,
 represent the random effects predicted for 

profile 𝑗 at a set of locations 𝒙 = (𝑥(, … , 𝑥+)
,, which are assumed to be constant for all the profiles. 

A multivariate Hotelling’s 𝑇[ 	  control chart can be eventually built on these predicted values of the 

random effect : 

 

𝑇%
[ = 𝒇%

, 𝒙 𝜮�
N(
𝒇%(𝒙)     (6) 
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where 𝜮�
N(

 is the inverse of the variance-covariance matrix computed as 𝜮� =

1 2 𝐽 − 1 	   𝑓%�( − 𝑓%
�N(
%n( 𝑓%�( − 𝑓%

,
 . 

Residuals computed as  

𝜀"% = 𝑦"% − 𝑔 𝑥" − 𝑓% 𝑥"  

 

Are used to estimate the residual variance 𝜎%
[, which is monitored using a traditional Shewhart’s 

control chart. In order to design the two control charts, a first type error of 𝛼 = (1 − 1 − 𝛼G) is set 

for each chart (𝛼 ′ = 0.05). Eventually, the empirical distributions of the monitored statistics, 𝑇%
[ and 

𝜎%
[ were computed to define the control limits.  

 

5.2  Results 

 

Starting from the real case study, control limits of both the parametric and nonparametric approaches 

were computed starting from the empirical distributions of the statistics to be monitored. In particular, 

the average of 7 real profiles was used as reference VDP to be monitored. Bootstrapping was used to 

generate 20000 replications of the reference profiles and the empirical distributions of the statistics 

of interest were computed to design the control limits.  

The performance of the competing procedures were then computed using the average run length 

(ARL() as indicator. Table 5 shows the average and the standard deviation (in parenthesis) of 10000 

run lengths collected for each scenario. 

 

[insert Table 5 about here] 

The results of Table 5 denote that the nonparametric approach is effective in detecting out-of-control 

states. Performances are similar to the ones obtained by the B-spline+AR parametric approach and 

this is why a further comparison between the two methods was eventually carried out. 

 

6   Simulation and comparative studies 

 

In order to compare the performance of both the VDP monitoring procedures, we simulated different 

sizes for all the shifts in order to compute the operating characteristic (OC) curve, i.e., a plot of  the 

probability 𝛽 of not detecting the change as a function of the change size. Recall that 𝛽 is related to 

𝐴𝑅𝐿(, as 	  𝐴𝑅𝐿( =
(

(N	  �
.  

For all the out-of-control scenarios of Table 3, the whole shift shown in Table 3 was divided in 7 or 

8 or 7 equally sized step changes. For example, in scenario A, where the whole shift is given by 

increasing coefficients 𝑐[, 𝑐8, 𝑐t, 𝑐�  by	   −1, −2,−2,−1 , the first step change consists of adding to 

the in-control coefficients 1 8	   of the whole shift size, i.e., −0.125,−0.250,−0.250,−0.125 . In 

the following, 𝑙 will be used as indicator of the shift size, ranging from 𝑙 = 0 (meaning no changes) 

to 𝑙 = 1 (meaning the whole change shown in Table 3). Figures 5 to 9 show the OC curves computed 

using the parametric or the nonparametric approach in all the out-of-control scenarios. 

 [insert Figure 5 about here]  

[insert Figure 6 about here 
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[insert Figure 7 about here] 

[insert Figure 8 about here] 

[insert Figure 9 about here] 

 

Figures 5-9 show that both the monitoring approaches are effective in detecting out-of-control states. 

The nonparametric approach seems to perform better or equally better than the parametric method in 

most of the cases. The only exception is scenario B and A when for small shifts the parametric method 

outperforms the nonparametric one. 

 
  

7   Conclusions 

 

We investigated the relationship between the VDP shape and the strength properties (IB and SS) of 

the particleboard panel. Our study showed that these relationships exist. In particular, the IB depends 

significantly on the density of the central zone or core density of the panel. Also for the SS, the central 

part of the profile is critical, but an addition effect of the borders is visible. 

 

With respect to a real case study, we further explored performances of two promising approaches for 

complex profile monitoring with autocorrelated errors. We concluded that the type of profile shape 

does not seem to influence the performance of the monitoring procedure in use. Analyzing the results 

obtained from the comparison, we resolve that it is difficult to choose a particular method for 

monitoring VDP because both the parametric and the nonparametric approaches present several 

advantages. They detect out-of-control states and have a satisfactory performance. They perform well 

for changes in both the mean and the correlation structure of VDP. The preference for one approach 

or the other depends on the type of shift (shift in the curve or shift in correlation structure) or the shift 

size. 
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Tables 

 

Table 1.  Regression analysis linking the Internal Bond property to 

VDP model coefficients (100 profiles). 

Predictor     Coef  SE Coef      T      P    VIF 

Constant   -6,0039   0,6201  -9,68  0,000 

c4         0,32861  0,05664   5,80  0,000  1,120 

c5         0,58403  0,06785   8,61  0,000  1,274 

c6         0,11084  0,04586   2,42  0,017  1,353 

𝑎1         0,07747  0,02878   2,69  0,008  1,007 
 

S = 0,0292186   R-Sq = 59,1%   R-Sq(adj) = 57,4% 

 
Analysis of Variance 

 

Source           DF        SS        MS      F      P 

Regression        4  0,124434  0,031108  36,44  0,000 

Residual Error  101  0,086226  0,000854 

Total           105  0,210660 

 

 

Table 2.  Regression analysis: SS as a function of the VDp 

coefficients. 

Predictor     Coef  SE Coef       T      P    VIF 

Constant   -9,3972   0,8184  -11,48  0,000 

c4         0,28101  0,07718    3,64  0,000  1,110 

c5         0,66413  0,08775    7,57  0,000  1,391 

c6         0,29297  0,06128    4,78  0,000  1,286 

c7         0,40681  0,05541    7,34  0,000  1,409 

 

 

S = 0,0349567   R-Sq = 70,7%   R-Sq(adj) = 69,5% 

Analysis of Variance 

 

Source          DF        SS        MS      F      P 

Regression       4  0,280764  0,070191  57,44  0,000 

Residual Error  95  0,116087  0,001222 

Total           99  0,396851 
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Table 3:  Five out-of-control scenarios (BS: bending strength, IB: internal bond, SS: 

surface soundness ). 

 Coeff. 
Values of the 

changes 

Process change description, cause (C) and consequence (Cs) 

A 
𝑐[, 𝑐8	  
𝑐t, 𝑐� 

-1, -2 

-2, -1 

Increased drop in the density between the surface layers and 

the middle layer. 

C: high temperature in the central area of the press or low 

speed pressing. 

Cs: reduce the value of SS. 

B 

𝑐}, 	  𝑐~	  
𝑐�, 	  𝑐�	  
𝑐t 

1.5, -1 

-1, -1 

1.5 

Increase of the density change between the surface layers and 

the middle layer. 

C: excessive moisture on the superficial layer, low press 

residence time or high speed pressure on entrance press. 

Cs: lack of cohesion of the middle layer of the particles (poor 

IB). 

C 

𝑐(, 𝑐[,	  
𝑐8, 𝑐}	  
𝑐~, 𝑐�	  
𝑐�, 	  𝑐t	  
𝑐�, 𝑐(f 

-1.5,-1, 

-1, 1, 

1.4,1.4, 

1,-1, 

-1,-1.5 

Density gradient reduced (reduction of outer layers density 

and increase in inner layer density). 

C: excessive time spent in the press or poor surface moisture 

of the faces. 

Cs: facilitate the improvement of the IB but causes a 

deterioration in BS. 

D 𝜎[  x 1.25
2
 

Increasing variance of the noise term. 

C: change in particle wood size. 

Cs: higher 'roughness' of the profile that can affect the board 

strength. 

E 
𝑎(% , 𝑎[% 	  

𝑎8% , 𝑎}% 
x 0.8 

Reduced intensity of the autocorrelation coefficients 

(alteration of particles wood size). 

Apply the remarks made in D. 

 

 

Table 4  ARL results in all the simulated scenarios listed in Table. 3. 

 𝐴𝑅𝐿( in all the simulated scenarios  

Monitoring procedure A B C D E 

S+ARMA with fixed knot profile monitoring 
1.1634 

(0.0044) 

2.0192 

(0.0141) 

1.0837 

(0.0030) 

1.0098 

(0.0010) 

1.1715 

(0.0041) 

 

 

 

Table 5:  ARL( results in all the simulated scenarios 

listed in Table 3. 

scenario A B C D E 

𝐴𝑅𝐿( 

(standard 

errors) 

1.0118 

(0.0011) 

3.2244 

(0.0265) 

1.0000 

(0.0000) 

1.0140 

(0.0012) 

1.0021 

(0.0005) 
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Figures 

 
 

Figure 10:  VDP (central, right and left zones). 

 

 

Figure 11: Effect of coefficients 𝑐}% , 𝑐~% , 𝑐�% and 𝑎(%  on 

the VDP pattern. 
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Figure 12: Effect of changes of coefficients 𝑐}% , 𝑐~% , 𝑐�% 

and 𝑐�% on the VDP pattern. 
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(c) 

 

Figure 13. (a) out-of-control profile in accordance with scenario A, (b) out-of-control profile in accordance 

with scenario B, (c) out-of-control profile in accordance with scenario C. 
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Figure 14:  OC curve for the parametric (S+ARMA) and nonparametric 

(NPME) profile monitoring approaches for scenario A. 
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Figure 15:  OC curve for the parametric (S+ARMA) and nonparametric 

(NPME) profile monitoring approaches for scenario B. 
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Figure 16:  OC curve for the parametric (S+ARMA) and nonparametric 

(NPME) profile monitoring approaches for scenario C. 
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Figure 17: OC curve for the parametric (S+ARMA) and nonparametric 

(NPME) profile monitoring approaches for scenario D. 
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Figure 18: OC curve for the parametric (S+ARMA) and nonparametric 

(NPME) profile monitoring approaches  for scenario E. 

 

 


