
EMPIRICAL COMPARISONS OF X-BAR 
CHARTS WHEN CONTROL LIMITS ARE 

ESTIMATED 

Paper published in  

Quality and Reliability Engineering International 

Full citation to this publication: 

Muñoz-Rosas, J. F., Álvarez-Verdejo, E., Pérez-Aróstegui, M. N., & 

Gutiérrez-Gutiérrez, L. (2016): “Empirical Comparisons of X-bar Charts 

when Control Limits are Estimated”. Quality and Reliability Engineering 
International, Vol.32, n.2, pp.453-464. 

DOI: https://doi.org/10.1002/qre.1763

Thank you for your interest in this publication. 

https://doi.org/10.1002/qre.1763


EMPIRICAL COMPARISONS OF X-BAR CHARTS WHEN 

CONTROL LIMITS ARE ESTIMATED 

Muñoz-Rosas, J.F. Álvarez-Verdejo, E., Pérez-Aróstegi, M.N., Gutiérrez-Gutiérrez, L.  

University of Granada 

Emails: jfmunoz@ugr.es, encarniav@ugr.es , mnperez@ugr.es, leogg@ugr.es 

 

ABSTRACT  

A control chart is a very common tool used to monitor the quality of business processes. 

An estimator of the process variability is generally considered to obtain the control 

limits of a X  chart when parameters of the process are unknown. Assuming Monte 

Carlo simulations, this paper firstly compares the efficiency of the various estimators of 

the process variability. Two empirical measures used to analyze the performance of 

control charts are defined. Results derived from various empirical studies reveal the 

existence of a linear relationship between the performance of the various estimators of 

the process variability and the performance of X  charts. The various Monte Carlo 

simulations are conducted under the assumption that the process is in both situations of 

in-control and out-of-control. 

Key-words: Monte Carlo simulations; average run length; Type I error; mean square 

error 

 

1. INTRODUCTION 

Research on quality involves a range of concerns about definitions, practices and such 

specific mechanisms as statistical quality control (SQC). These techniques are used in 

many industries to control the quality of the product by analyzing one or more product 

characteristics. The most widely used tools in SQC are control charts. A control chart is 

a powerful tool used to determine if a business or manufacturing process is in a state of 

statistical control. Shewhart1 developed this technique and provided a framework for 

deciding whether the variation in the result is due to assignable causes.  



An indispensable assumption for the correct development of control charts is that the 

parameters related to the quality characteristic of the process are assumed known. 

However, such parameters are usually unknown in practice. In this situation, control 

charts are based upon a two-phase procedure. In phase I, m representative samples or 

subgroups, with size n, are used to estimate the parameters of the process. Control limits 

are also estimated in phase I and they are used in phase II, in which samples from the 

process and with size n are selected to study if the process is stable or in-control. It is 

customary to say that the process is out-of-control when a chart statistics related to a 

sample from phase II is plotted outside the control limits.  

Recent research indicates that the X  charts are very simple to understand, implement 

and design, and may be more suitable in many SQC applications (see Montgomery2, 

Yang et al.3). When the parameters of the process are unknown and they need to be 

estimated in phase I, the most common statistics used to estimate the variability of the 

process are based on the sample standard deviations, the sample ranges or the pooled 

sample standard deviation. As far as the estimation of the mean of the process is 

concerned, it is common to consider the grand average of the subgroup averages. 

Therefore, it is very common in practice to use X  charts based upon the grand average 

and some of the previously commented methods to estimate the process variability.  

The performance of a X  chart can depend on various aspects, such as the sample 

sizes or the number of samples used in phase I to obtain the control limits. The method 

used to estimate the process variability can have also an impact on the performance of 

the X  chart. In addition, it is a common practice to use the average run length (ARL) as 

a measure of the performance of control charts (see, for example, Chen4, Jones et al.5, 

Jensen et al.6, Chakraborti et al.7). The main aim of this paper is to analyze the 

performance of X  charts under different possible scenarios and assuming various 

empirical measures defined in this paper. In addition, we also analyze the relationship 

between the performance of X  charts and the corresponding estimator used for the 

process variability. Note that the performance of control charts can be measured by 

using techniques such as Monte Carlo simulations (see, for example, Li and Pu8, 

Mahmoud et al.9) and Factorial experiments (Ou et al.10). 

This paper is organized as follows. In Section 2 and assuming the theoretical 

definition of ARL, we define two empirical measures, which can be used to evaluate the 



performance of control charts. Assuming Monte Carlo simulations and different sample 

sizes, various empirical studies and analysis are carried out in this paper. First, we 

compare numerically, in Section 3, various common estimators of the process 

variability in terms of bias and mean square error. This is an important aspect to 

analyze, since it can be seen the empirical performance of the various methods under 

different situations. Second, we evaluate, in Section 4, the various X  charts in terms of 

the suggested empirical measures defined in Section 2, and they are compared to the 

theoretical value of ARL. Results derived from studies of Sections 3 and 4 reveal a 

possible linear relationship between the performance of the various estimators of the 

process variability and the performance of X  charts. Another contribution in this paper 

is to analyze, in Section 5, the linear relationship between the performance of estimators 

of the process variability to the performance of X  charts. Sections 4 and 5 assume that 

the process is in-control in phase II, whereas studies derived in Section 6 assume that 

the process is out-of-control in phase II. Conclusions are summarized in Section 7.      

 

2. TWO EMPIRICAL MEASURES TO EVALUATE X  CHARTS 

Let ),( σµNx →  be the variable of interest for a process variable, where µ  is the 

true process mean and σ  is the true process standard deviation. The process can be 

monitored by plotting on the X chart the sample means 

∑
=

=
n

j
iji x

n
x

1

1  

obtained from samples with size n and taken in sequence, and where ijx  denotes the 

value of quality characteristics for the jth product in the ith sample. When parameters µ  

and σ  are known, the X chart with σ3  control limits is given by 

                              
n

LCL σµ 3−=   ;  µ=CL   ;  
n

UCL σµ 3+=                              (1) 

We observe that previous control limits depend on the parameters µ  and σ , i.e., it is 

assumed that the standards µ  and σ  are known. However, the standards are generally 

unknown in practice, hence they need to be estimated in phase I by using the sample 



information. Assuming this scenario, control limits are estimated by using m previous 

samples with size n and taken when the process is believed to be in-control.  

Expressions for the estimated control limits are:  

                            
n

xLCL σ̂3ˆ −=   ;  xLC =ˆ   ;  
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xLCU σ̂3ˆ +=                                 (2) 
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m
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1  is the grand average of the m subgroup averages and σ̂  is an 

estimator of σ . The most used estimators of σ̂  are defined in Section 3.  

 We consider the most popular measure used to analyze the performance of 

control chart, and this measure is the average run length (ARL). The ARL indicates the 

average number of points that will be plotted on a control chart before the process is 

out-of-control. For example, we can consider that the process is out-of-control when a 

point falls outside the control limits. This measure is used, for example, by Chen4, Jones 

et al.5, Jensen et al.6, Abbas11. When the process is in-control, the ARL can be defined as  
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where  
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Assuming that the standards are given, control limits are based upon the σ3  criteria and 

the process is in-control, it is well known that 0027.0=α  and 4.370=ARL .  

It is said that the process is out-of-control when the process is shifted and/or 

changed to a status with mean 0µ  and standard deviation 0σ . In this situation, the ARL 

is defined as  

                                ( )00 , 1
1

1
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where  

              ( )0000 , )false is reject   tofail( σµβ UCLxLCLPHHP i <<==                      (5) 

is the probability of a Type II error.  

A simulation study based upon Monte Carlo simulations is a technique generally 

used to analyze empirically the performance of procedures such as estimators or 

confidence intervals. Some references that evaluate estimation procedures via Monte 

Carlo simulations are Li and Pu8, Mahmoud et al.9, Rao et al.12, Silva and Skinner13 and 

Muñoz and Rueda14.  

We now define two different empirical measures to analyze the performance of 

X  charts. Such measures are based upon a Monte Carlo simulation, which is also 

defined as follows. First, we assume that the process is in-control, i.e., it has normal 

distribution with parameters µ  and σ . At the first iteration run, control limits are 

estimated in phase I by selecting m samples with size n from a normal distribution with 

mean µ  and standard deviation σ . When control limits are estimated, IID  samples 

with size n are selected in phase II from the same normal distribution, i.e, it is also 

assumed that the process is in-control in phase II. Then, it is studied whether such 

samples fall outside the estimated control limits. At the second iteration run, m new 

samples with size n are obtained in order to calculate the new control limits and IID  

new samples are selected in phase II to analyze if they are out-of-control. This process 

is repeated ID  times.  

Let us assume that the parameters µ  and σ  of the process are unknown. The 

first empirical measure ( 1ARL ) is directly related to definition of ARL given by 

equations (3) and (4). Let ijB  be a variable denoting if the jth sample, with IIDj K,1= , 

in the ith iteration run, with IDi K,1= , falls inside the estimated control limits, i.e., 

1=ijB  if iji LCUxLCL ˆˆ <<  and 0=ijB  otherwise. Following the definition of ARL 

given by equations (3) and (4), we define the measure  
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where the empirical expectation of B is given by    
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The second measure is directly defined as the empirical average of the total 

number of run lengths in the Monte Carlo simulation, i.e:  
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where ir  is the number of runs at the ith iteration, and ijL  is the length for the jth run 

and the ith iteration. A run is defined as the number of points that will be plotted on the 

X  chart before a point falls outside the control limits. Assuming that the process is in-

control, the empirical measures 1ARL  and 2ARL  should be close to 370.4, which is the 

theoretical value of the measure ARL defined by equation (3).  

When assuming that the process is out-of-control, samples from phase II are 

generated from a normal distribution with mean 0µ  and standard deviation 0σ , and the 

previous measures 1ARL  and 2ARL  are similarly defined in this situation.  

 

3. MONTE CARLO SIMULATIONS TO COMPARE ESTIMATORS OF 

THE PROCESS VARIABILITY  

Assuming that parameters of the process ( µ  and σ ) are known, expressions of 

control limits of the corresponding X chart are given by equation (1). However, the 

standards are usually unknown, and the usual solution is to estimate the control limits, 

such as described by equation (2).  

In practice, the most known methods used to estimate σ  are based upon the sample 

standard deviations, the sample ranges and the pooled sample standard deviation, i.e, 

such estimators are, respectively, given by    
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is the pooled sample standard deviation. ][4 ⋅c  and ][2 ⋅d  are constants based on the 

sample sizes and which are defined, for example, by Chen4. In addition, Appendix VI 

from Montgomery2 contains tables for these constants and for various values of n. 

 Assuming different samples sizes, Monte Carlo simulations are now carried out 

to compare the performance of the various estimators of σ  described by (6). This 

simulation study consists on generating observations from a normal distribution with 

mean 10=µ  and standard deviation { }2 ,1 ,5.0=σ . Thus, we assume that the process 

has normal distribution with parameters µ  and σ . Then, the Monte Carlo simulation 

described in Section 2 is carried out.  We considered values of m from 10 to 1000 and 

values of n from 3 to 25. We also considered 1000=ID  iterations and 1000=IID  

samples (with size n) for each iteration.  

 The various estimators of σ  are compared in terms of relative bias (RB) and 

relative root mean square error (RRMSE), which are defined as  

σ
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where the empirical expectation  ][⋅E  and the empirical mean square error ][⋅MSE  are, 

respectively, defined as   
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Note that the RB and the RRMSE are common measures used to compare 

estimation methods. For example, the RB and the RRMSE have been used by Rao et 

al.12, Silva and Skinner13 and Muñoz and Rueda14.   

 

FIGURE 1 ABOUT HERE 

Figure 1. Values of RB and RRMSE of estimators (standard deviations: Sσ̂ ; ranges: 

Rσ̂ ; and pooled standard deviation: pσ̂ ) of the true process standard deviation 1=σ . 

Values of m between 10 and 50. 

 

 

FIGURE 2 ABOUT HERE 

Figure 2. Values of RB and RRMSE of estimators (standard deviations: Sσ̂ ; ranges: 

Rσ̂ ; and pooled standard deviation: pσ̂ ) of the true process standard deviation 1=σ . 

Values of m between 100 and 1000. 

 

 From Figures 1 and 2 we compare the various estimators ( Sσ̂ , Rσ̂  and pσ̂ ) of 

1=σ   in terms of RB and RRMSE. For the various values of n and m, we observe that 

the various estimators of σ  have a good performance in terms of bias, since the values 

of RB are all less than 0.5% in relative terms. As far as the efficiency in terms of 

RRMSE is concerned, we observe that the various estimators are more efficient as both 

values of n and m increase. Estimators Sσ̂  and pσ̂  perform similarly, and they are 

slightly more efficient than the estimator Rσ̂ , especially as the value of n increases. In 

practice, the estimator Rσ̂  is the most common estimator used to obtain the control 

limits. This is due to the fact that this estimator is the simplest estimator. However, it 

can be seen from this simulation study that the alternative estimators Sσ̂  and pσ̂  can be 

more efficient. Results derived when { }2 ,5.0=σ  are omitted in this paper, since similar 

conclusions were obtained.        



4. MONTE CARLO SIMULATIONS TO ANALYZE X  CHARTS WHEN 

THE PROCESS IS IN-CONTROL  

Assuming that the process is in-control and different samples sizes, Monte Carlo 

simulations are now carried out to compare the performance of the various X  charts in 

terms of the empirical measures 1ARL  and 2ARL  defined in Section 2. A linear 

relationship between results derived from Sections 3 and 4 can be observed, and for this 

reason, we evaluate numerically, in Section 5, such relationship via a linear correlation 

coefficient.     

The Monte Carlo simulation described in Sections 2 and 3 is carried out.  In 

Sections 4 and 5, we assume that the process is in-control in phase II. In Section 6, we 

assume that the process in out-of-control in phase II. 

 

FIGURE 3 ABOUT HERE 

Figure 3. Values of ARL1 and ARL2 of the various X charts (using the standard 

deviations: Sσ̂ ; using the ranges: Rσ̂ ; and using the pooled standard deviation: pσ̂ ). 

The true process standard deviation is 1=σ . Values of m between 10 and 50.  

 

 

FIGURE 4 ABOUT HERE 

Figure 4. Values of ARL1 and ARL2 of the various X charts (using the standard 

deviations: Sσ̂ ; using the ranges: Rσ̂ ; and using the pooled standard deviation: pσ̂ ). 

The true process standard deviation is 1=σ . Values of m between 100 and 1000. 

 

 Figures 3 and 4 analyze the performance of the various X charts in terms of the 

empirical measures ARL1 and ARL2 defined in Section 2. Note that the values of ARL1 

and ARL2 should be close to 370.4, which is the theoretical value of the measure ARL 

defined by (3). We observe that the measure ARL1 performs generally better than the 



measure ARL2. First, we observe that the values of ARL1 are closer to the required value 

370.4 as the values of m and n increase, which is a desirable property. However, this 

property is not satisfied by ARL2, which generally takes values between 300 and 350.  

The values of ARL1 are very close to 370.4 for large values of m. In terms of ARL1, we 

also observe that X  charts based on Sσ̂  and pσ̂  perform better than X  charts based on 

Rσ̂ , since values of ARL1 are closer to 370.4. These results are consistent with the study 

of the efficiency in the problem of estimating the parameter σ  (see Section 3). In other 

words, from results of Sections 3 and 4 we observe that the values of RRMSE (Figures 1 

and 2) and the values of ARL1 (Figures 3 and 4) can have a strong linear relationship. 

For this reason, we analyze, in Section 5, this relationship by using the linear correlation 

coefficient between the values of RRMSE and the corresponding values of ARL1.  

 

5. MONTE CARLO SIMULATIONS TO COMPARE VALUES OF RRMSE 

WITH VALUES OF ARL1. 

In this section, we compare numerically the values of RRMSE obtained in Section 3 

with the values of ARL1 obtained in Section 4. From Table 1 we observe a very strong 

linear relationship for values of m smaller than 50, which is the most common situation 

in practice (see, for example, Montgomery2, Chen4 and Quesenberry15). For larger 

values of m, }1000 ,500{=m , the relationship is smaller, although the performance of 

X  charts and estimators of σ  is very good in both cases. This smaller linear 

relationship can be due to the fact that the values of ARL1 are close to the required 370.4 

for the various values of n. However, the values of RRMSE are slightly decreasing 

according to n.     

TABLE 1 ABOUT HERE 

 

6. MONTE CARLO SIMULATIONS WHEN THE PROCESS IS OUT-OF-

CONTROL  

We now analyze the performance of X charts when the process is out-of-control, 

i.e., it is shifted and/or changed to a status with mean σµµ a+=0  and standard 



deviation σσ b=0 , where a and b are constants. Note that the process is in-control 

when 0=a  and 1=b , and this situation is analyzed in Sections 4 and 5. The process 

has a shift in the mean when 0≠a  and 1=b , it has a shift in the variance when 0=a  

and 1≠b , and it has a shift in both the mean and the variance otherwise. Table 2 

summarizes the various scenarios discussed in this paper.    

TABLE 2 ABOUT HERE 

  

 When the process is out-of-control, it can be easily seen that the value of β  

defined by (5) can be expressed as   
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−
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hence the theoretical value of ARL defined (4) can be easily obtained.  ( )⋅φ  denotes the 

distribution function of a )1 ,0(N  random variable.  

Figure 5 gives the values of ARL1 and ARL2 for various values of n, m, a and b. 

For reasons of clearness, Figure 5 only contains X charts based on the estimator Rσ̂ . 

Note that alternative estimators ( Sσ̂ and pσ̂ )  of σ  give X charts with similar results, 

and for this reason they are omitted. When the process has a shift in the mean ( 1=b ), 

we observe that the measures ARL1 and ARL2 are closer to the theoretical value of ARL 

as the value of n and m increase.  Similar conclusions can be derived when the process 

has a shift in both the mean and the variance ( 0≠a  and 1≠b ). Finally, when the 

process has a shift in the variance ( 0=a ), we observe a clear improvement in the 

performance of the X charts in terms of ARL1 for values of m larger than 10.      

 

FIGURE 5 ABOUT HERE 

Figure 5. Values of ARL1 (thicker lines) and ARL2 (thinner lines) of X charts based on 

Rσ̂ . The true process standard deviation is 1=σ . The solid line represents the 

theoretical value of ARL obtained by equation (5).   



7. CONCLUSIONS  

A X  chart is a very common tool used to monitor the quality of business processes. 

In practice, the true process mean (µ ) and the true process standard deviation (σ ) are 

unknown, and for his reason control limits of X  charts need to be estimated in this 

situation. The most known estimators ( Sσ̂ , Rσ̂  and pσ̂ ) of σ  used in practice are 

defined by (6). In this paper, we first compared numerically (in terms of RB and 

RRMSE) the performance of the various estimators of σ . Results derived from this 

simulation study indicate that the various estimators perform well in terms of relative 

bias. We also observed that estimators pσ̂  and  Sσ̂  are more efficient than the estimator 

Rσ̂ , especially for samples with larger sample sizes. Therefore, pσ̂  and  Sσ̂  are the 

recommended estimators when n is large.   

We also defined the empirical measures ARL1 and ARL2, which are based on the 

theoretical definition of ARL. Monte Carlo simulations indicate that the performance of 

X  charts, in terms of ARL1, is better as the values of n and m increase. In general, X  

charts based on pσ̂  and  Sσ̂  perform better than X  charts based on Rσ̂ , since values 

the corresponding values of ARL1 are closer to the theoretical value of ARL.   

The aforementioned studies reveal the existence of a possible linear relationship 

between the values of RRMSE and the values of ARL1. In other word, the performance 

of X  charts can have a strong relationship with the efficiency of estimators of σ . We 

also carried out Monte Carlo simulations to study this relationship, and results derived 

from this study reveal a very strong linear relationship for values of m smaller than 50, 

which is a very common situation in practice (see Montgomery2, Chen4 and 

Quesenberry15). Finally, recall that the various simulation studies in this paper have 

been conducted under the assumption that the process was in both situations of in-

control and out-of-control.  
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 5.0=σ   0.1=σ   0.2=σ  

m  Sσ̂  Rσ̂  pσ̂   Sσ̂  Rσ̂  pσ̂   Sσ̂  Rσ̂  pσ̂  

10 

20 

30 

50 

100 

200 

500 

1000 

0.99 

0.96 

0.96 

0.95 

0.65 

0.72 

0.53 

0.40 

0.98 

0.95 

0.98 

0.92 

0.46 

0.65 

0.54 

0.47 

0.99 

0.96 

0.96 

0.95 

0.58 

0.75 

0.47 

0.39 

 

0.97 

0.97 

0.96 

0.94 

0.79 

0.71 

0.45 

0.03 

0.99 

0.96 

0.95 

0.90 

0.72 

0.66 

0.41 

0.03 

0.97 

0.97 

0.96 

0.94 

0.75 

0.64 

0.47 

0.05 

 

0.97 

0.97 

0.96 

0.94 

0.79 

0.71 

0.45 

0.03 

0.99 

0.96 

0.95 

0.90 

0.72 

0.66 

0.41 

0.03 

0.97 

0.97 

0.96 

0.94 

0.75 

0.64 

0.47 

0.05 

Table 1. Linear correlation coefficients (in absolute terms) between the values of 

RRMSE of the various estimators ( Sσ̂ , Rσ̂  and pσ̂ )  of σ  and the values of ARL1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  b 

a 1.0 1.2 1.4 

0.0 In control Shift-variance Shift-variance 

0.3 Shift-mean Shift-both Shift-both 

0.6 Shift-mean Shift-both Shift-both 

Table 2. Different values of the constants a and b and situation of the process 

for each case.   

 




