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Abstract

Engineers often cope with the problem of assessing the lifetime of industrial compo-
nents, under the basis of observed industrial feedback data. Usually, lifetime is modelled as
a continuous random variable, for instance exponentially or Weibull distributed. However,
in some cases, the features of the piece of equipment under investigation rather suggest
the use of discrete probabilistic models. This happens for an equipment which only op-
erates on cycles or on demand. In these cases, the lifetime is rather measured in number
of cycles or number of demands before failure, therefore, in theory, discrete models should
be more appropriate. This article aims at bringing some light to the practical interest for
the reliability engineer in using two discrete models among the most popular: the Inverse
Pólya distribution (IPD), based on a Pólya urn scheme, and the so-called Weibull-1 (W1)
model. It is showed that, for different reasons, the practical use of both models should be
restricted to specific industrial situations. In particular, when nothing is a priori known
over the nature of ageing and/or data are heavily right-censored, they can remain of limited
interest with respect to more flexible continuous lifetime models such as the usual Weibull
distribution. Nonetheless, the intuitive meaning given to the IPD distribution favors its
use by engineers in low (decelerated) ageing situations.

Keywords: Discrete survival data, Inverse Pólya model, Discrete Weibull model, Age-
ing.

1 Introduction

The use of discrete survival models is naturally considered when the lifetime of the piece of
equipment under investigation cannot be properly expressed as a calendar time. It is the case
of components which do not operate continuously and are only occasionally solicited. On-off
switch or auxiliary power devices are typical examples: the activations of the switch or the starts
of the engine can be considered as ”occasional stresses” or solicitations for the equipment. In
these cases, for reliability assessment purposes, the variable characterizing the lifetime of the
component is not the operating time (e.g. measured in hours), but rather the number N of
solicitations that the component can bear before failure. Another case of discrete lifetime data
concerns pieces of equipment which only operate on cycles and the collected information is
just the correct (or incorrect) behaviour at a given cycle. In both cases, the problem can be
formalized by stating that the variable ”lifetime N”, considered as random, is discrete.

In spite of the potential amount of case-studies in which discrete lifetime models could be
considered as appealing tools for the engineers, they have been relatively not much investigated
(theoretically and/or practically) in comparison with continuous models, which are nowadays
largely used in industrial practice. The first scientific article proposing a discrete lifetime
model (derived from the continuous Weibull distribution) dates from the mid of the 70’s [23].
Bracquemond and Gaudoin, in their seminal work, [6], provide a quite exhaustive review of
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discrete distributions for lifetime data, including numerous references. Roughly speaking, they
can be grouped into two categories: the ones derived from continuous models and those derived
from urn schemes. After a concise statistical study, for various practical reasons and because
of their convenient properties, the authors recommend in most situations the use of the Type
I discrete Weibull family, also called Weibull-1 (W1), first defined by Nakagawa and Osaki
[23], or the Eggenberger-Pólya distribution [9]. In a more engineering framework, Clarotti et
al. [8] stressed the importance to dispose of intuitive models, in the sense that their features
have appealing meanings for the (often non-statistician) practitioner and can be intuitively
interpreted by experts. Consequently, they considered that the Inverse Pólya distribution (IPD)
can be especially valuable in ageing problems. This offers an alternative solution to the difficulty
of deriving discrete distributions from continuous ones, highlighted, for instance, by Lai [17].

When conducting risk and reliability analyses and eliciting one or several lifetime models,
engineers ordinarily try to reach a trade-off between intuition (or practical interpretation), ver-
satility and flexibility in use. Especially in situations where such analyses must be submitted to
control authorities, e.g. when they are conducted by polluting industries about their production
components, the relevance of these models must be demonstrated. To avoid possible cumber-
some consequences in terms of safety and availability, several features are to be checked, that
connect qualitative and quantitative aspects of the behavior of the component. The versatility
of the model can indeed be interpreted as its ability to represent several possible states of a life
cycle in running conditions, as rejuvenation (due to preventive maintenance) or degradation
due to ageing (which, as a function of time, can be accelerated, stable, or decelerated). Such
properties are intrinsically connected to the shape of the hazard rate function. For discrete
models, the hazard rate, denoted λ(n) in the remainder of this article, is classically defined as
the conditional probability of failure after a given number n of solicitations, given that the com-
ponent has already beared n−1 solicitations. Derived from the definition of the hazard function
in the continuous case (where λ can be interpreted as a ”conditional density function” [17]),
it is actually the most popular one in the reliability community (e.g. [29, 30, 18, 27, 2]). For
instance, a concave hazard rate, characterized by a negative second-order derivative of λ(n),
describe situations of decelerated ageing. Such situations can be reflected in the failure data
collection since good maintenance strategies can limit the effect of ageing. However, one could
choose to take into account the possibility of a rapid degradation of the component in given
running conditions, and therefore select a class of more flexible models. Note that an alterna-
tive definition of the hazard rate, defended in [28] and discussed by [39, 17], is based on the
logarithm of the ratio of the survival function in n − 1 and n, but it will be not used in this
article.

Furthermore, the selected models must be accompanied with some clear and practical rule of
inference from feedback experience data (FED), obtained from tests or in situ measurements.
Such data can rarely be considered as identically and independently distributed because of
the experimental limitations. These observed limitations are often traduced statistically as
censoring experiments, which constitute sometimes the major part of the datasets. A huge rate
of right-censoring typically affects the FED related to highly reliable components (ie., that fail
after a relatively high number of solicitations) of power producers and suppliers.

Among them, Électricité de France (EDF) is obviously concerned with the lifetime assess-
ment of the components of its power plants as well as its transmission and distribution facilities,
and encounters frequently the problem of selecting and assessing relevant models for equipments
that can fail on demand. Testing the relevance of the IPD and W1 models to such contexts,
reflected by censored FED samples, is of practical interest for many other industries (e.g, in
fields concerned with important safety constraints) and motivates the present work. This ar-
ticle therefore aims at providing guidelines and advices for the use of both models in concrete
situations, at the light of several experiments conducted on simulated and real datasets.

The remainder of this article is organized as follows. The origin, definition and properties
of examined models are presented in Sections 2 and 3. It is worth noting that in Appendix
details are given on a maximum likelihood estimation method for the IPD model, which was
lacking in the reliability community to popularize the use of this model (while the estimation
of the W1 model is well known, cf. [6]). Each section incorporates a discussion of the own
merits and limitations of the considered model. Especially, in spite of its appealing simplicity
and clarity of interpretation by the engineers’ viewpoint, it is pointed out that the IPD model
is only adapted to situations where ageing is low and decelerated. On the other hand, the
properties of the W1 model may sound odd for the practitioners and make the interpretation of
its main features quite complicated. In Section 4 the closeness between the W1 and the usual
(continuous) Weibull distributions is formally proven, which pleads for using the latter as a
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robust and convenient approximation of the discrete model in the engineering practice. A part
of this section is dedicated to the numerical investigation of the properties and limitations of
each considered model, using simulated and real datasets. Its results support the choice of the
continuous Weibull distribution as a practical proxy of the W1 distribution. Finally, in Section
5 the selected models are fitted over two real industrial datasets of component lifetime, and a
study of the nature of ageing is conducted. A discussion section ends this article by sketching
the main teachings of this study - how and when the two models can be relevant - and proposing
some avenues for further research.

2 The Inverse Pólya (IPD) model

2.1 Origin, definition and main features

The use of urn sampling schemes to model the behaviour of living [22, 13] or industrial [1, 5]
systems has often been considered. The basic principle of the numerous probabilistic models
based on the Pólya urn scheme [6, 15, 21], first introduced in the 20’s of the last century [9, 25],
is to consider an urn in which, at the beginning of the experience, there are a black balls and
b red ones, so that the probability to extract a black ball after a random trial is a/(a + b).
If a red ball is sampled, then z new black balls are added (together with the sampled red
ball), thus increasing the probability to sample a black ball. This scheme suggests an appealing
probabilistic lifetime model [8] for discrete data: each solicitation of the piece of equipment is
considered as a trial in a Pólya urn, where black balls are associated to the event ”failure” and
red ones to the event ”correctly operating”. Adding new black balls can easily be interpreted
as the result of a deterioration process (summarized by the term ”ageing”).

The random variable N ”number of the trial at which the failure occurs” follows a so-called
Inverse Pólya distribution (IPD), namely N ∼ IPD(α, ζ) where, following the parameterization
choices made in [6],

α =
a

a+ b
and ζ =

z

a+ b
, with 0 < α < 1 and ζ > 0.

Notice that α can be easily interpreted as the probability of failure at the first solicitation
(n = 1). The nature of ageing of the component governs the value of the parameter ζ: the
higher ζ, the more severe will be the ageing. The expression of the main reliability quantities
of interest are given below.

Hazard rate: λ(n) = P [N = n|N > n− 1] =
α+ (n− 1)ζ

1 + (n− 1)ζ

Probability of failure after n solicitations: p(n) = P [N = n] =
(1− α)n−1(α+ (n− 1)ζ)∏i=n

i=1 (1 + (i− 1))ζ

Survival function: S(n) = P [N > n] =
(1− α)n∏i=n

i=1 (i+ (i− 1))ζ

MTTF: E [N ] =
(1− ζ)ζ(1/ζ−2)

(1− β)(1−ζ)/ζ
exp

(
1− α
ζ

)
γ

(
1− ζ
ζ

,
1− α
ζ

)
(1)

In the expression of the Mean Time To Failure (MTTF) above, γ(·, ·) is the so-called lower
incomplete Gamma function:

γ(u, v) =

∫ v

0

xu−1 exp(−x) dx.

As an increasing function of n, the failure rate λ(n) makes the model likely to represent some
ageing behaviors.

2.2 Modelling ageing using IPD: a major limitation

The ageing of the component under investigation can be assumed by ensuring the condition
ζ > 0. However, in practical applications one is also interested in describing situations where
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the ageing increases or decreases as the observed lifetime N increases. This issue is solved by
studying the sign of the second-order derivative of the failure rate. In the case of the Pólya
model the second-order discrete derivative of λ(n) can be written, for n > 2 (after some algebra):

λ′′(n) = λ(n)− 2λ(n− 1) + λ(n− 2)

=
2(α− 1)ζ2

(1 + (n− 1)ζ)(1 + (n− 2)ζ)(1 + (n− 3)ζ)
. (2)

Under the conditions: α < 1, ζ > 0 and n > 2, it is easy to verify that the numerator and the
denominator of Equation 2 are negative and positive, respectively. Thus, for any value of ζ, the
second-order derivative of the failure rate is negative, namely the IPD can only model situations
of decelerated ageing. This result is confirmed by the intuition: if at each solicitation a number
z of black balls is added into the urn, n increases progressively and the number z of added
balls becomes smaller than the number of the black balls already present. For large values of
n, z becomes negligible and the added balls do not influence the failure probability anymore.
This situation can occur when a preventive maintenance is sufficient enough to prevent close
breakdowns, that typically herald the close end of a component lifetime. For this reason, and
because the meanings of its parameters are rather intuitive, the Inverse Pólya model deserves
interest in the reliability and risk community, although its use must also be strictly reserved to
low ageing components or systems.

Due to the non-trivial handling of IPD, numerical computations proposed in the remainder
needed to dispose of methods for simulating datasets and estimating the parameters in realistic
cases. More precisely, it is needed:

• to have a view of the range of realistic values for (α, ζ), associated to various ageing
situations;

• to describe a sampling method, given (α, ζ): this is done in Appendix;

• to describe an appropriate estimation method; a maximum likelihood (ML) method de-
voted to this task is presented in Appendix too.

An answer to the first item is provided by the experiment resumed in Table 1. It is inspired by
the case of both continuous and discrete Weibull distributions, in which the shape parameter
β appears as an immediate indicator of the nature of ageing (see also Section 3.2); in this
case, its value can help the reliability engineer to synthesize the behavior of the considered
component. Analogously, it is therefore wanted to simply characterize the nature of ageing for
the inverse Pólya model. In a non-exhaustive way, several situations can be simulated using
Weibull samples, on which inverse Pólya models are then fitted. On Table 1, a range of such
situations, from rejuvenation to accelerated ageing, are considered. In practice, the values of
ζ/α shown in this table have been obtained by fitting IPD on a number of (discretized) lifetimes
sampled from the usual (continuous) Weibull distribution.

Apart from providing ranges of plausible values for the ratio ζ/α in presence of rejuvenation
or soft ageing, these results highlight the fact that, following engineering common sense, finding
an estimate of this ratio upper than one discredits the ”physical” relevance of the inverse Pólya
model. Actually, a model considering that at each solicitation, the reliability decreases of an
amount greater than the initial reliability, although mathematically possible, seems not coherent
from an engineering viewpoint.

Except in situations of low aging, where the FED is composed with data reflecting both the
degradation and maintenance process affecting the component or system under investigation,
the irrelevance of the IPD model can be a serious concern for reliability engineers in several
cases. For instance, when the degradation of similar components can be fast and occur in
a small interval of time, despite possible maintenance efforts. Possible causes of accelerated
ageing can be brutal changes in the environnement. Another typical case is when the considered
maintenance is only corrective (namely, when a single replacement is made after a failure). The
poor predictive properties of the IPD model in presence of data concerning systems presenting
an increasing failure rate are exemplified later in the text (cf. Figure 2). For this reason, the
remainder of this chapter is mostly focused on another popular probabilistic model for discrete
lifetimes, derived from the continuous Weibull distribution.
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Scenario Weibull shape parameter β Ratio ζ/α
rejuvenation β ≤ 0.9 ≤ 10−5

no rejuvenation / no ageing β = 1 [8.10−5, 10−4]
soft decelerated ageing β = 1.2 [5.8.10−4, 7.10−4]
classical decelerated ageing (1) β = 1.5 [2.6.10−3, 3.2.10−3]
classical decelerated ageing (2) β = 1.8 [2.10−2, 4.10−2]
non-accelerated ageing β = 2 [0.25, 0.35]
accelerated ageing β = 2.25 [1.28, 1.35]
strongly accelerated ageing β = 2.5 [1.48, 1.85]

Table 1: Typical magnitudes for the ratio ζ/α as a function of a Weibull shape parameter β, that
indicates qualitatively the ageing behaviour of a component. These ranges of values were estimated
by ML estimation from 500 discretized Weibull samples of size 1000, generated using scale parameter
values in {10, 100, 500, 1000}.

3 The Weibull-1 (W1) model

3.1 Origin, definition and main features

The Weibull distribution is the most popular probabilistic model for continuous lifetime data in
engineering. Several discrete versions of the Weibull model for discrete data have been proposed.
The so-called ”Weibull-1” W1(η, β) distribution (or Type I Weibull distribution), which is
historically the first one, was proposed in 1975 [23] and is recommended by several authors [6].
It can be derived from the usual (continuous) Weibull distribution by time discretization [16] or
alternatively defined by means of its survival function, which has formally the same expression
as the continuous Weibull’s one. Thus, the following notations and definitions apply:



Hazard function: λ(n) = 1− exp

[
−
(
n

η

)β
+

(
n− 1

η

)β]

Prob. of failure after n solicitations: p(n) = exp

[
−
(
n− 1

η

)β]
− exp

[
−
(
n

η

)β]

Survival function: S(n) = exp

[
−
(
n

η

)β]
.

(3)

Although no closed form of the MTTF exists for the W1 model, upper and lower bounds are
provided in Proposition 2 (page 8). The W1 model is often re-parametrized as W1(θ, β), with
θ = exp

(
−1/ηβ

)
. This parametrization allows a very easy interpretation of the parameter θ:

actually, 1− θ is the probability of failure at the first solicitation (i.e. for n = 1). Nevertheless,
the advantage of the parametrization (η, β) is the easiness of the comparison between the
two distributions W1(η, β) and W(η, β) (i.e. W1 and continuous Weibull having the same
parameters) and will therefore be used in the remainder of this article. This comparison will
be conducted in Section 4.

Other discrete distributions can be derived from the continuous Weibull one, especially
the Weibull-2 distribution [33], which preserves the power function form of the hazard rate,
and the Weibull-3 distribution [24]. See also [14, 3, 4, 17] for examples of more complex
related distributions, as well as the recent review article of [2] which proposes several variants
of both discrete and continuous Weibull distributions. However, as reminded in [27], no discrete
distribution exists that can mimic all the functional forms and the properties, so familiar to
engineers, of the continuous Weibull one.

Although some uses of the W1 distribution can be found in the reliability literature, e.g.
modelling the number of shocks [32, 31] and the number of preventive maintenance actions [19,
20] before failure, as well as the number of items produced in an in-control state of a manufac-
turing process before shifting to an out-of-control state [35, 36, 37, 34], this model still remains
little used in the engineering practice. It is worth noting that it had some success outside the
industrial reliability context. It has been used for instance for modelling discretized durations of
wind events [7], recruitments of trees in Growth and yield models of forests [11], survival times
of individuals affected by infectious diseases [26], microbiological counts in drinking water [10],
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the distribution of polymeric particles hosting the active agent in drug release experiments [12]
or the number of cells population doublings until senescence in in vitro experiments [38].

3.2 Modelling ageing using the W1 distribution

The great flexibility of the hazard function λ(t) of the continuous Weibull distribution and
its ability to model various ageing mechanisms has made its success within the engineering
community. Moreover, the parameters (η, β) of this model have a clearly understandable
technical meaning. The first one is the quantile of the lifetime corresponding to a survival
probability of approximately 1/3 (actually 0.37) and the latter embodies (independently of the
value of η) the nature of the ageing of the corresponding component or system: (i) rejuvenation
if β < 1, (ii) constant hazard rate if β = 1 (exponential model), (iii) decelerated ageing if
β ∈]1, 2[, (iv) accelerated ageing if β > 2. The transposition of these properties to the W1
distribution are investigated in the following. From the expression of λ(n) (cf. Equations 3) it
can be shown that:

• For β = 1, the hazard function is constant. A trivial calculation gives: λ(n) = 1 −
exp(−1/η).

• For β > 1, the hazard function is an increasing function of n, as testified by the argument
of the exponential in the expression of λ(n), for n ≥ 2:(

n− 1

η

)β
−
(
n

η

)β
. (4)

This function of n is decreasing for β > 1, thus λ(n) is increasing.

• for β < 1, the hazard rate is a decreasing function of n, which can be shown following the
same reasoning about the monotonicity of the function (4) above, which is increasing if
β < 1.

The following proposition (proven in Appendix) states that decelerated aging can be diag-
nosed for the W1 model as for the usual Weibull model, by checking if β ∈]1, 2].

Proposition 1. For β ∈]1, 2], λ(n) is a concave function of n. Therefore the model is relevant
to model decelerated ageing.

For β > 2 no analytical result about λ(n) was obtained. However, as also highlighted in
[39], following the classical definition of λ(n) as a conditional probability, it is obvious that this
function cannot be strictly convex as it must tend to 1 as n→∞, which is not the case for the
Weibull continuous model.

It was found empirically, by studying the convexity of λ(n) for (η, β) ∈ [1, 1000]× [2.1, 20],
that for a given β, a value η0 of η exists, so that for each η < η0, λ(n) is strictly concave and
for each η > η0, λ(n) is initially convex, then concave, presenting thus an inflection point. The
main lesson learnt by this empirical study is that, unlike the continuous Weibull distribution,
the concavity of the hazard function does not depend on β only, but also on η. As a conclusion,
an interesting property of the Weibull model, particularly attractive for engineers, is actually
lost when switching to W1.

Figure (1) shows the value of n corresponding to the inflection points, found by means of
the empirical study described above. In practice, the presence of an inflection point is usually
not a serious issue if the corresponding value of n is a quantile corresponding to a very low
survival probability. In that case, it can be concluded that for the set of values of n interesting
for practical purposes, λ(n) is convex and can only embody phenomena of accelerated ageing.

The superiority of the W1 model over the IPD model, in terms of flexibility, can be tested
by seeing how these two distributions are able to reproduce two known hazard functions from
simulated samples. More precisely, starting from two known hazard functions, shown in Figure 2
(blue curves), two samples of 100 uncensored discrete lifetimes were randomly generated. Then,
using the two generated data sets, the Maximum Likelihood method was used to estimate the
parameters of the IPD and W1 models (cf. Appendix and ref. [6]). Then the estimated hazard
functions were plotted on Figure 2 (dotted curves). The relevance of this method to assess
the quality of the adjustment in the reliability context is defended in [6]. Not surprisingly, in
presence of convex hazard functions (i.e. accelerating ageing) the performance of the IPD model
is poor. Intuitively, as IPD can only have concave hazard functions, the best approximation it
can give of a convex λ is a linear function. Instead, the flexible W1 model returns a quite fair
approximation of λ.
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Figure 1: Weibull-1 model. Values of the solicitation number n corresponding to the inflection points
of the hazard function λ(n) as a function of η and β.

0 50 100 150 200 250 300 350 400
n

0.000

0.005

0.010

0.015

0.020

0.025

0.030

la
m

b
d
a

Data set 1

Actual
Polya
Weib.1

0 100 200 300 400 500 600 700 800
n

0.000

0.005

0.010

0.015

0.020

0.025

0.030

la
m

b
d
a

Data set 2

Actual
Polya
Weib.1

Figure 2: Actual (blue curves) hazard functions and estimated hazard functions according to Weibull-1
and IPD models, the parameters of which have been estimated by maximizing the likelihood of random
data sets of size 100.

4 Approximating W1 by the continuous Weibull model

4.1 Formal results

Face to the issues sketched hereinbefore, it may appear practical for the engineer to use the
usual (continuous) Weibull distribution for the assessment of main outcomes of interest in a
reliability study. If seen as a possible ”continuous approximation” of the Weibull-1 distribution,
its computational treatment (e.g. parameter estimation, sampling) is well known and familiar
to the practitioner. Consider the two random variables previously evoked in Section 3:

N ∼W1(η, β) and T ∼W(η, β). (5)

These two distributions have the same parameters but the first is discrete and the second is
continuous. The closeness of both models appears first in the proximity between both MTTF
(noted EW1

[N |η, β] and EW[T |η, β], respectively), summarized in the next proposition, proven
in Appendix. Especially, it highlights that the two MTTF’s become closer and closer as both
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quantities � 1.

Proposition 2. Given the two random variables T and N (defined by Equation 5), the following
inequality stands:

EW[T |η, β] ≤ EW1
[N |η, β] ≤ 1 + EW[T |η, β].

Pursuing the study of the closeness of W1(η, β) and W(η, β), by definition, the survival
functions of both models have the same mathematical form, namely they lead to the same
value of the survival and the failure probability for a given n. Consequently, the expression of
the quantile nq of probability q is the same for W1(η, β) and W(η, β):

nq = tq = η [− log(1− q)]1/β .

Therefore, from an engineering viewpoint, the most interesting features and quantities of interest
of both distributions (MTTF, quantiles, probability of failure) are similar when they have the
same parameters. Moreover, when estimating (η, β) from actual industrial feedback data in
presence of right-censored observations, the likelihoods of the two models tend also to be very
close: the inference, thus, leads to very similar estimates for η and β for both models. Actually,
it can be seen that the likelihoods of a given samples of discrete lifetime, according to W1(η, β)
and W(η, β) respectively, are closer and closer as (i) the rate of right-censored data increases,
and (ii) the (unknown) value of η is high.

The proof of the first part of the assertion is trivial: any right-censored datum n contributes
to the likelihood by means of the value of the survival function S(n|η, β), which has the same
expression for both Weibull and Weibull-1 distributions. As far as the second part of the
proposition is concerned, denoting fW(·) the density of W(η, β) and pW1

(·) the probability
distribution of W1(η, β), the contribution of an uncensored observation n to the likelihood of
the two models is equal to fW(n) and pW1(n), respectively.

Since the survival functions S(·) have the same expression for W1(η, β) and W(η, β), one
may write [16]:

pW1(n) = P[N > n− 1]− P[N > n],

= S(n− 1)− S(n),

=

∞∫
n−1

fW(t)dt−
∞∫
n

fW(t)dt,

=

n∫
n−1

fW(t)dt. (6)

It is easy to provide the following bounds for the last integral in the right hand side of Equation 6:

min
t∈[n−1,n]

fW(t) ≤ pW1
(n) ≤ max

t∈[n−1,n]
fW(t). (7)

Intuitively, the higher the values of η and n, the closer the bounds in Equation 6, and conse-
quently, the closer pW1(n) and fW(n). The graphics displayed on Figure 3 confirm, empirically,
this intuition.

More formally it is proven in Appendix the following result.

Proposition 3. For all β ≥ 1:

lim
η→∞

sup
t∈R+

|pW1
(t|β, η)− fW(t|β, η)| = 0.

In addition, note also that the convergence to 0 of |pW1(t|β, η)− fW(t|β, η)| when t→∞ is
trivial as both pW1(t|β, η) and fW(t|β, η) tend to 0.

In the following paragraph, these properties of approximation are exemplified and high-
lighted through an empirical study conducted using simulated datasets.

4.2 Numerical experiments

The previous results suggest that for practical industrial purposes (i.e. predicting probabilities
of failure and MTTF) the W1 and Weibull models provide very similar outcomes when η is
high. High values of η mean that the system under investigation is reliable in the common-sense
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Figure 3: Upper part: plot of the Weibull-1 (red lines) and Weibull distribution functions (blue lines)
for fixed values of β as a function of n and η; one can see that isolines are very close to one another.
Lower part: plot of the discrete Weibull-1 distribution (crosses) vs. the corresponding values of the
continuous Weibull for given values of η and β (continuous lines), as functions of n; as one can see, the
higher η and n are, the more the crosses tend to be superposed over the lines.

meaning, that is failures occur for high values of n (i.e. � 1). Moreover, industrial feedback
datasets contain generally a number of censored data. In particular, in the specific industrial
context considered here, the data are most of the time right-censored (and quite never left-
censored) because failures are to be strictly avoided as they have a costly impact on availability
of the overall production facility.

As shown previously, a set of lifetimes of a reliable system with a significant number of cen-
sored data leads to a very similar likelihood under the two hypotheses of Weibull-1 and Weibull
model. Hence, Maximum Likelihood estimations (MLE) of (η, β) for both models are expected
to be very close. To confirm these results, intensive numerical simulations were conducted, by
generating datasets likely to be encountered in industrial practice and thus evaluating the MLE
of (η, β) for Weibull-1 and Weibull model, noted (η̂W1

, β̂W1
) and (η̂W, β̂W), respectively.

More precisely, for (η, β) ∈ {10, 50, 300, 500, 800, 1000} × {0.5, 1, 1.5, 2, 2.5, 3, 5, 10}, and for
right-censored data rates of 0%, 25%, 50% and 75%, 5000 samples of sizes 50 and 100 were
generated from the Weibull-1 distribution W1(η, β). Based on these data, the MLE (η̂W1 , β̂W1)

and (η̂W, β̂W) were evaluated, as well as the relative errors concerning the estimations of (η, β):

η − η̂W1

η
,
β − β̂W1

β
,
η − η̂W
η

,
β − β̂W

β

and the relative errors of plug-in estimators of the following quantities of interest: hazard rates
corresponding to the quantiles of probabilities (0.5, 0.75, 0.90, 0.99) of the original distribution,

MTTF and quantiles. As data were generated from W1 distributions, the estimators (η̂W1
, β̂W1

)

are expected to be closer to the actual values of (η, β) than (η̂W, β̂W).

On Figure 4 are displayed the main results of this empirical study. The mean ML estimation
error under the W1 model assumption (x-axis) is plotted against the error under the continuous
Weibull model assumption. It can be seen that the points of the scatterplot are quite close to
the first bisector, showing that using the W1 model yields no significant improvement with
respect to the continuous approximation.
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Figure 4: Relative errors of the MLE of η (circles) and β (squares) and of the ML plug-in estimator of
the MTTF (triangles), obtained from data simulated from the Weibull-1 model under the hypothesis
of different censoring rates from 0% to 75%. The estimation is carried using the Weibull-1 and the
continuous Weibull model assumption. The colors correspond to different values of the true η.

5 Inference and ageing diagnostic from actual feedback
data

Two EDF datasets coming from actual industrial feedback are considered in this last technical
section. Even though this analysis is proposed for exemplary purposes only, these data are
nevertheless representative of those reliability engineers cope with in numerous fields. On
Table 2 are summarized the main features of the examined datasets, that allow to find out two
important characteristics. First, most of the data are right-censored lifetimes: the censoring
rates are equal to 96% and 81%, respectively. Second, the components under investigation are
reliable, in the sense that failures are expected to occur after a (relatively) high number of
solicitations: the empirical means of the (highly censored) observed data are 63.8 and 334.5
respectively.

Sample 1 (Aux. power device Sample 2

linings) [8])

Data size 497 48

Sum of observed data 31715 16058

Observed failures 18 9

Number of right-censors 479 39

Parameters estimation

Inv. Pólya
α̂ = 7.037 · 10−12

ζ̂ = 1.349 · 10−5

α̂ = 5.601 · 10−4

ζ̂ = 1.774 · 10−19

Weibull-1
η̂ = 306.814

β̂ = 2.320

η̂ = 1530.139

β̂ = 1.122

Weibull
η̂ = 320.580

β̂ = 2.320

η̂ = 1510.250

β̂ = 1.124

Table 2: Example of analysis of data set coming from actual industrial feedback. Upper part: data
summary. Lower part: Maximum Likelihood estimators of the parameters of Inverse Pólya, Weibull-1
and Weibull distribution.

In the same table are also shown the ML estimators of the parameters of the Inverse Pólya
(IPD), W1 and (continuous) Weibull models. Regarding the first dataset, the estimated pa-
rameters of both W1 and Weibull models (which have very similar values) suggest accelerated
ageing. The extremely high (and hardly understandable by a technical viewpoint) value of ra-

tio ζ̂/α̂ (order of magnitude: 106) highlights a poor modelling performance of the IPD model.
On Figure 5 are displayed the cumulative distribution functions (CDF) of the three estimated
distributions as well as the usual Kaplan-Meier estimator. In spite of the issues evoked here-
inbefore, the prediction properties of the three models (in terms of failure probabilities) are
quite equivalent within the range of observed data. Yet, as shown in Figure 6, the predictions
given by IPD for higher values of n are more optimistic and less conservative, in the sense IPD
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provides lower values of the CDF (i.e. higher values of the reliability function) than the ones
given by Weibull and Weibull-1, the CDF’s of which are practically indistinguishable.

As far as the Sample 2 is concerned (cf. Figure 7), the components do not show a significant
ageing (the Weibull shape parameter is close to 1). The three probabilistic models return a
very similar prediction in terms of CDF (and reliability function).

As a conclusion, these exemplary analyses confirm the conclusions presented in the previ-
ous sections, by means of theoretical and empirical considerations: for engineering purposes,
the continuous Weibull model is a fairly good alternative to the discrete model (Weibull-1)
investigated in the framework of the present study.

Remark. Although the data come from real surveys, the study conducted in this section is
given for exemplary purposes only and neither results nor methodology must be extrapolated to
make any general conclusion about the reliability of EDF industrial components or EDF risk
assessment policies.

6 Discussion

The study shown hereinbefore has highlighted some weaknesses of both inverse Pólya (IPD)
and Weibull-1 (W1) distributions as discrete models for lifetime of industrial components. The
IPD model carries the implicit hypothesis of decelerating ageing. This can be an issue as
this assumption can sometimes be hardly justified a priori in industrial studies. Nonetheless,
conducting wise preventive maintenance strategies can ensure that the perceived ageing of a
component remains low and decreases through time (for instance by benefiting of technological
improvements during the maintenance operations). In such cases, the IPD model appears a
very practical and intuitive model for the engineer.

As far as the Weibull-1 model is concerned, it has been shown that the popular interpretation
of the shape and scale parameters of the Weibull distribution is no longer (fully) valid for its
discrete version. In particular, the type of ageing that the model can embody does not depend
on the shape parameter β only but also on the scale parameter η.

Moreover, for practical purposes, the W1 model and the Weibull model are very close.
In practice, starting from the same (discrete) data the Maximum Likelihood estimation of
the parameters (η, β) computed under the hypotheses of W1 and Weibull models leads to
close numerical results, as far as the usual reliabilty quantities of interest are concerned. This
closeness increases with the value of η (i.e. the piece of equipment under investigation is reliable,
in the sense that it normally fails after a significantly high number of solicitations) and the rate
of censored data. This characterizes exactly lifetime data collected within industrial processes
where fortuitous failures can have a great impact on the availability of the production facilities
and lead to high unexpected costs (as in the particular context of EDF). Thus, the practical
impact of the use of W1 model for improving reliability analyses based on feedback data is
quite low, and our advice is rather to use a continuous Weibull distribution in the situations
uncovered by the IPD model.

Nonetheless, the easily-interpretable features of the Inverse Pólya distribution could remain
valuable in practice if the phenomenon of decelerating ageing could be discarded. It is likely
that adding a supplementary hypothesis of the following nature could improve the versatility
of the model: namely, the number z of balls added at solicitation n should follow an increas-
ing pattern in function of n rather than remaining constant. Defining and comparing several
patterns, from both analytical and computational viewpoints, should be a keypoint of future
studies aiming at preserving the interest of IPD in reliability analysis.
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fellow at INRIA - Paris Sud, under the supervision of Prof. Gilles Celeux, to whom the authors
owe particular debts of gratitude for his contribution and his ideas. The authors gratefully
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Figure 5: Data Sample 1: Cumulative distribution functions from ML estimations of Inverse Pólya,
Weibull and Weibull-1 model and non-parametric Kaplan-Meier estimator.
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Contagion. Journal of Applied Probability, 30(3):497–508, 1993.

[23] T. Nakagawa and S. Osaki. The discrete Weibull distribution. IEEE Transactions on
Reliability, 5(24):300–301, 1975.

[24] W.J. Padgett and J.D. Spurrier. Discrete failure models. IEEE Transactions on Reliability,
34(3):253–256, 1985.
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Appendix

Sampling from the inverse Pólya distribution Simulating a n−sample from the inverse
Pólya distribution can be numerically done using the following algorithm:

• Set n1 = n.

• Step k → k + 1, for k ≥ 1:

1. simulate a nk−sample x
(k)
1 , x

(k)
nk from the Bernoulli distribution with parameter

αk =
α+ (k − 1)ζ

1 + (k − 1)ζ
;

2. compute nk+1 =

nk∑
i=1

(
1− x(k)i

)
;

3. add to the sample the value k replicated
∑nk

i=1 x
(k)
i times;

4. stop if nk+1 = 0.

Maximum likelihood estimation of the inverse Pólya distribution Assume that among
the available data D there are s survival data and r failure observations. Besides, assume that
ki components have survived until the ni−th solicitation, for i = 1, . . . , s, and that the r
components have broken down after ns+1, . . . , ns+r solicitations, respectively. Denoting

α =

s∑
i=1

kini +

s+r∑
j=s+1

nj − r,

the likelihood of observed data D is written as

L(D|α, ζ) =

(1− α)
α

s+r∏
i=s+1

(α+ (ni − 1)ζ) s∏
j=1

(
nj−1∏
k=1

(1 + jζ)

)kj[ s+r∏
l=s+1

(
nl−1∏
p=1

(1 + pζ)

)] , (8)

=

(1− α)
α

Γµ(1/ζ)
s+r∏
i=s+1

(α+ (ni − 1)ζ)

ζα+r

[
s∏
j=1

Γkj (nj + 1/ζ)

][
s+r∏

k=s+1

Γ(nk + 1/ζ)

] with µ =

s∑
i=1

ki + r.

The parameters (α, ζ) are assumed to take their values in spaces Θ ∈ [0, 1] and ∆ ∈ [0,∞[. A
Newton-Raphson descent algorithm for assessing the maximum likelihood estimator (MLE) can
be carried out, based on the following rationale. Denoting `(α, ζ) = logL(D|α, ζ), the equation
∂`
∂α = 0 implies that

s+r∑
i=s+1

1− α
α+ (ni − 1)ζ

= α, (9)

and since ∂2`/∂α2 < 0, (9) has a unique solution maximizing (9) given ζ. Furthermore, ∂`
∂ζ = 0

implies that

s+r∑
i=s+1

ζ2

α+ (ni − 1)ζ
− (α+ r)ζ −

s+r+1∑
j=1

k′jΨ(n′j + 1/ζ) = 0 (10)

where k′j = kj for j = 1, . . . , s, k′j = 1 for j = s+ 1, . . . , s+ r and k′s+r+1 = µ. Besides, n′j = nj
for j = 1, . . . , s + r and n′s+r+1 = 0. Denoting Ψ the digamma function, a descent algorithm
can solve (9) and (10), following the iterative scheme(

αn+1

ζn+1

)
=

(
αn
ζn

)
− λnFn∇−1n
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where λn is an adaptive step, Fn = F (αn, ζn), ∇n = ∇(αn, ζn),

F (α, ζ) =


α

1−α −
s+r∑
i=s+1

1
α+(ni−1)ζ

s+r∑
i=s+1

ζ2

α+(ni−1)ζ − (α+ r)ζ −
s+r+1∑
j=1

k′jΨ(n′j + 1/ζ)


and

∇(α, ζ) =


α

(1−α)2 +
s+r∑
i=s+1

1
(α+(ni−1)ζ)2

s+r∑
i=s+1

ni−1
(α+(ni−1)ζ)2

−
s+r∑
i=s+1

ζ2

(α+(ni−1)ζ)2
s+r∑
i=s+1

2αζ
(α+(ni−1)ζ)3

+ (α+ r) +
s+r+1∑
j=1

k′j
ζ2 Ψ′(n′j + 1/ζ)

 .

In practice, the step λn can be calibrated in function of the bounds of the parametric space
(hence αn ∈ [0, 1] ∀n) and the possible lack of inversibility of ∇n. It is recommended to initialize
the method by using a crude likelihood maximization over a grid of Θ×∆.

Proof of Proposition 2: bounds for the MTTF of Weibull-1 distribution. Let write
the expression of the mean of W1(η, β), taking into account expression (6), showing the link
between the density fW(·) and the discrete pdf pW1

(·):

EW1(N) =

∞∑
i=1

i pW1(i) =

∞∑
i=1

i∫
i−1

i fW(t)dt =

∞∑
i=1

i∫
i−1

([t] + 1) fW(t)dt =

∞∫
0

([t] + 1) fW(t)dt,

[t] being the floor function of the random variable t ∼ W(η, β). As t − 1 < [t] ≤ t + 1 ⇒
tfW(t) < ([t] + 1) ≤ (t+ 1)fW(t) by integrating this inequality over t one concludes that:

∞∫
0

t fW(t)dt < EW1
(N) ≤

∞∫
0

t fW(t)dt+

∞∫
0

1 fW(t)dt,

i.e. EW(T ) < EW1(N) ≤ EW(T ) + 1.

Proof of Proposition 1: Concavity of Weibull-1 hazard function when 1 < β ≤ 2.
First notice that for n ≥ 3:

λ′′(n) = λ(n)− 2λ(n− 1) + λ(n− 2) = exp

[
−
(
n− 1

η

)β
+

(
n− 2

η

)β]
·A(n)

with:

A(n) = 2−exp

[
−
(
n

η

)β
+ 2

(
n− 1

η

)β
−
(
n− 2

η

)β]
−exp

[(
n− 1

η

)β
− 2

(
n− 2

η

)β
+

(
n− 3

η

)β]
.

Consider now the function G(x) = 2 − exp(−x) − exp(x). For x > 0, its first derivative
G′(x) = exp(−x) − exp(x) is negative; G(x) is strictly decreasing and as G(0) = 0, it also

negative for x > 0. For β > 1, G

[(
n− 1

η

)β
− 2

(
n− 2

η

)β
+

(
n− 3

η

)β]
< 0 as its argument

is positive.
Thus:

2−exp

[(
−n− 1

η

)β
+ 2

(
n− 2

η

)β
−
(
n− 3

η

)β]
−exp

[(
n− 1

η

)β
− 2

(
n− 2

η

)β
+

(
n− 3

η

)β]
< 0.

As for 1 < β ≤ 2 and n ≥ 3,

(
n

η

)β
− 2

(
n− 1

η

)β
+

(
n− 2

η

)β
is decreasing, thus:

− exp

[(
n

η

)β
− 2

(
n− 1

η

)β
+

(
n− 2

η

)β]
≤ − exp

[
−
(
n− 1

η

)β
+ 2

(
n− 2

η

)β
−
(
n− 3

η

)β]
.

Consequently, A(n) < 0 for 1 < β ≤ 2 and, trivially, λ′′(n) too.
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Proof of Proposition 3: L∞ convergence of Weibull-1 to continuous Weibull. Since

sup
t∈R+

|p(t|β, η)− fW (t|β, η)| ≤ sup
t∈R+

p(t|β, η) + sup
t∈R+

fW (t|β, η),

it is only needed to show that

lim
η→∞

sup
t∈R+

p(t|β, η) = lim
η→∞

sup
t∈R+

fW (t|β, η) = 0. (11)

The second equality comes from the fact that η is a scale parameter, and that the Weibull
density is bounded for β ≥ 1. Hence:

sup
t∈R+

fW (t|β, η) = sup
t∈R+

1

η
fW

(
t

η
|β, 1

)
=

1

η
sup
t∈R+

fW (t|β, 1)
η→∞−→ 0.

The first equality in (11) comes from the fact that, for all t ∈ [n− 1, n]:

p(t|β, η) =

∫ n

n−1
fW (t|β, η)dt

≤ sup
t∈[n−1,n]

fW (t|β, η),

hence
sup
t∈R+

p(t|β, η) ≤ sup
t∈R+

fW (t|β, η)�

18


	1 Introduction
	2 The Inverse Pólya (IPD) model
	2.1 Origin, definition and main features
	2.2 Modelling ageing using IPD: a major limitation

	3 The Weibull-1 (W1) model
	3.1 Origin, definition and main features
	3.2 Modelling ageing using the W1 distribution

	4 Approximating W1 by the continuous Weibull model
	4.1 Formal results
	4.2 Numerical experiments

	5 Inference and ageing diagnostic from actual feedback data
	6 Discussion

