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We evaluate the in-control performance of the np-control chart with estimated 

parameter conditional on the Phase I sample. We then apply the bootstrap method 

to adjust the control chart’ limits to guarantee the desired in-control average run 

length (ARL0) value in the monitoring stage. The adjusted limits ensure that the 

ARL0 would take a value greater than the desired value (say, B) with a certain 

specified probability, that is Pr 1 .  The results indicate that 

adjusting control limits is not always necessary. We present a method to design 

control charts such that in control and out of control run lengths are guaranteed 

with pre specified probabilities.  This method is an improvement of the classical 

statistical design approach employing constraints on in control and out of control 

average run lengths (ARL)  since, with this approach, there is a substantial 

probability that the actual run length in control may be too small.  In addition, 

using the ARL approach may result in an actual out of control run length that is 

too large.  Some numerical examples illustrate the efficacy of this design method. 
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Control charts are the important tools for monitoring a stable process to see if an 

assignable cause has impacted the process. This is labelled Phase II use in statistical process 

control. In Phase I, one wishes to try to estimate unknown process parameters through m 

available in-control samples each of size n. For a recent overview on Phase I issues and 

analyses, readers are referred to Jones-Farmer et al.[11] 

ARL is the usual measure of control charts performance. When the process is in the in-

control state, we would like no alarm to be triggered from a control chart and so we wish the 

in-control ARl to be large. The usual Shewhart control charts have an in control ARL=370. 

When an assignable cause of poor quality occurs, we wish to detect this rapidly. The speed at 

which control charts detect an assignable cause can be measured by the out-of-control ARL, or 

ARL1  

Considerable attention has been given to the effects of parameter estimation on the ARL0 

measure. Several authors have contributed to this topic, see for example, Chen[22&33], Braun[44], 

Jones et al.[55], Albers and Kallenberg[66], Chakraborti and Human[77&88], Bischak and 

Trietsch[99], Testik[1010], Castagliola et al.[1111&1212], and Castagliola and Wu[1313] among others. 

For thorough literature reviews on the impact of parameter estimation on the performance of 

different types of control charts, readers are referred to Jensen et al.[1414] and Psarakis et al.[1515]. 

Since different Phase I data sets give different process estimates, different practitioners 

or different sampling times will yield different conditional ARL values. Thus, there is a 

sampling distribution variation in the ARL values. Let AARL and SDARL be the average and 

standard deviation of the ARL distribution among different users, respectively. Most 

researchers advised practitioners to estimate parameters based on m Phase I samples each of 

size n such that AARL0 is close enough to B.  For example, Quesenberry[1616] concluded 

m=400/(n-1) Phase I samples guarantees the desired in-control performance, however, recent 

studies showed that SDARL0 can be so large that the desired ARL0 value cannot be guaranteed 

only with enormous number of Phase I samples (e.g., m=3000 or even higher). Jones and 

Steiner[1717] are the first to recognize the importance of the SDARL0 metric in determining the 

amount of Phase I data. Of course, small SDARL0 values mean that the ARL0 values will be 

close to the desired value B. Zhang et al.[1818&1919] , Lee et al.[2020]  and Faraz et al.[2121] showed 

that only considering the AARL0 measure can give misleading conclusions and it is common 

to have an AARL0 value close to the desired ARL0 value, but with very large SDARL0 values. 
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The findings imply a need for alternative techniques for constructing control charts based on 

practical amounts of Phase I data.  

The bootstrap method has become appealing because computing has become fast and 

inexpensive (Teyarachakul et al.[2222]). Recently, Jones and Steiner [1717] and Gandy and Kvalϕy 

[2323] applied the bootstrap method to adjust control limits’ thresholds such that the desired in-

control performance is guaranteed with a certain probability (1 ) among practitioners. For 

example, the adjustments ensure that 90% of the constructed control charts would have ARL0 

values greater than or equal to B=370. Faraz et al.[2121] extended this approach to the S2 chart, 

respectively. The proposed approach is effective, accurate and practical and therefore should 

be encouraged in practice.  

In this paper, we adjust the control limits of  np-charts based on the bootstrap method., a 

chart perhaps second in popularity only to the Xbar chart..  

The paper is organized as follows: In Section 2, we review the np-control chart with 

estimated parameter. In Section 3, we study the sampling distribution variability when 

assessing the np-chart in terms of the AARL0, SDARL0, and some percentiles of the ARL0 

distribution. In Section 4, we adjust the control limits and compare the in-control performance 

of the adjusted charts with the classical np-chart. Finally,some  concluding remarks and future  

research possibilities  are given in the last section. 

 

2. np-Control Charts with Estimated Parameters 

Consider a stable production process with in-control nonconforming probability p0, and that 

successive products are independent. Now suppose that a random sample of size n is selected and 

random variable X counts the number of nonconforming items. Then, X follows a binomial 

distribution with parameters n and p0; i.e; X ~ Bin (n, p0). In practice, the parameter p0 is usually 

unknown and therefore, it must be estimated from an available Phase I data set. Let , ,…,	  

be the number of nonconforming items for the m initial samples each of size n. Then the MLE 

estimator of parameter p0 is calculated as follows (See, Montgomery[2424]): 

̂ ̅
∑ ∑

      (1) 

where  is the fraction nonconforming for the sample j. Note that 

∑ ~ , . 
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The estimated classical control limits for monitoring the number of nonconformities over 

time then are calculated as follows: 

 ̅ K ̅ 1 ̅ 	    and  max 0, ̅ ̅ 1 ̅  (2) 

where  is the desired percentiles of the standard normal distribution. However, if  

0, the  should be adjusted to ̅ z ̅ 1 ̅ . At level 

0.0027, we have K=2.78 if 0, and K=3 otherwise.  

In the following, we derive alternative control limits for the np charts by using the 

cumulative distribution function (CDF) of the binomial distribution with the desired false alarm 

rate. Here, we adjust the control limits so that the in-control ARL is at least the desired value 

and the false alarm probability is split as equally as possible between the two sides of the chart. 

At what follows, F-1( , n, ) stands for the inverse CDF of a binomial distribution at point  

with parameters n and . 

F , , ̅       

F 1 1
2
, , ̅ 					 	 1

F 1 1 , , ̅ 					 	 0
       (3) 

In Phase II, since the number of nonconformities follow ,  and the chart limits 

are estimated, the ARL0 of the np-chart becomes a random variable. However, the conditional 

ARL0 given the estimate ̅ can be calculated as follows: 

| ̅
| ̅

 ; | ̅ 0      (4) 

Where 

| ̅
1 Pr 																																	 	 1

	1 	Pr 																																													 	 0
 

| ̅
1 F , , 0 1, , 0 										 	 1

1 F , , 0 																																															 	 0
      (5) 

where F(x, n, ) stands for the cumulative distribution function of the binomial distribution at 

point x with parameters n and . For example, suppose we have n=50, p0=0.01 and 

0.0027. The classical control limits are calculated using Equation (2) as  0	and	

2. Using equation (4), the false alarm probability is then 0.01382 and the ARL0 is in fact 72.37. 
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Using the alternative control limits given in (3), we have 0	and	 3 and it yields 

a false alarm rate of 0.0016 and an in-control ARL of 626.50. Hereafter, we shall use the 

alternative control limits due to their better in-control performance. In the next section, we 

study the estimation effect on the alternative control limits.  

 

3. The AARL and SDARL measures 

Equation (1) clearly shows that different practitioners might have different estimates and 

Equation (4) indicates that the ARL0 measure is also a function of the estimated parameter ̅ 

and hence it has a random behaviour with the mean AARL0 and the standard deviation 

SDARL0. Now, suppose that r different Phase I data sets consisting of m samples each of size 

n from a binomial distribution with parameters n and p0 are available. Let ̅  stand for the 

estimated in-control nonconforming probability for the ith Phase I sample,	 1,2,… , . Note 

that when the process parameters are known, the ARL0 measure becomes a constant value. 

Tables 1-4 give the AARL0, SDARL0, the Median and the 10% and 25% percentiles (Q0.10 and 

Q0.25, respectively) of the ARL0 distribution for different values of m, n, p and α for =100,000 

different simulated Phase I samples. The case m = ∞ corresponds to the case in which the 

process parameter p0 is known. Results indicate that the alternative control limits have a  good 

in-control performance. The degree at which the in-control performance is guaranteed depends on 

the sample size n, the number of Phase I samples m and the Type I error rate α.  

[Insert Tables 1 and 2 here.] 

Tables 1 – 4 can be used to see the effect of the amount of Phase I samples on the in-control 

performance of the np-charts with alternative control limits. For example, when p0=0.02, n=100 

and α=0.0027 we have Q0.25=1073.03 for m=50. That is, with fifty Phase I samples the desired 

in-control ARL can be guaranteed with probability 75%. Moreover, Q0.10 exceeds 370.4 for the 

first time when m=200 and so 200 samples are enough to guarantee the desired in-control ARL 

with probability 90%.  

[Insert Tables 3 and 4 here.] 

Tables 1 and 2 give the results for α=0.0027 and they show no specific pattern. However, 

the results are interesting when α=0.005. The rule of thumb is that the ARL0=200 is guaranteed 

with probability 75% by alternative control limits, i.e, Pr(ARL0>200)=75%. However, if one 

wants to design the np-charts such that Pr(ARL0>200)=90% then at least m=75 samples are 
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needed or the control limits should be adjusted. However, there are some exceptions where even 

m=25 samples are enough to have Pr(ARL0>200)=90%. For example for the case m=25, p0=0.01 

and n=100, we get AARL0=799.76, SDARL0=1099.36 and 90% of practitioners would have 

an in-control ARL value greater than 291.53 which is bigger than the desired value 200.  

In the next section, we use the bootstrap method to adjust the control chart limits to 

guarantee desired in-control performance with probability (1 ) when the number of Phase 

I samples is limited.  

 

4. The adjusted limits for the np charts 

     In this section, we apply the bootstrap method to obtain the control limit threshold of 

attribute control charts such that the conditional in-control ARL meets or exceeds the 

specified value with a certain probability. The bootstrap algorithm is summarized as 

follows: 

1- Given a Phase I data set, use equation (1) to estimate the process parameter ̅. 

2- Generate i=1,2,…, D bootstrap estimates ∗ /  where  comes from a , ̅  

and where D is a large number, e.g., D = 500.  

3- For each bootstrap np-chart, construct the alternative limits at level of  as follows: 

	 F , , ∗     (6) 

F 1 1
2
, , ∗ 					 	 1

F 1 1 , , ∗ 					 	 0
       (7) 

4- Find the (1 ) quantile of the bootstrap threshold   (say, ) and the  

quantile of the bootstrap threshold  (say,	 ) to guarantee the in-control 

performance with probability (1 )100%.  

 

Consider the case where p0=0.1, m=25, n=50 and α=0.0027. Table 2 shows that no 

practical amount of Phase I samples can guarantee the in-control performance with 

probability 90%. Hence, the control limits should be adjusted. We then compare the in-

control performance of the np-charts with and without adjustments for 500 different 

practitioners. First, for each given Phase I data set we estimate the process parameter using 

Equation (1). The alternative control limits and the conditional ARL0 are then calculated 
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using Equations (3) and (4), respectively. Second, for each given Phase I data set we adjust 

the control limits using the bootstrap algorithm given in section 4. The ARL0 for the 

adjusted charts is then calculated. Figure 1 illustrates the boxplots of the ARL0 

distributions for the np-control charts with and without adjustment. These results indicate 

that approximately 90% of the adjusted control charts meet the desired in-control 

performance while almost 50% of the np-charts without adjustment have poor in-control 

performance. Now consider the same case but with ARL0 = 200. Table 4 suggests that 

m=75 phase I samples are enough to guarantee the in-control performance with probability 

90%. If this amount of Phase I samples is not available then the control limits should be 

adjusted otherwise only 75% of the np-charts without adjustment have good in-control 

performance. 

[Insert Figure 1 here.] 

It is worth mentioning  that repeating the bootstrap method for a given Phase I sample gives 

different results which we call the within Phase I sample variation. Moreover, different results 

may be given for different Phase I samples, which we call the between Phase I sample variation. 

Faraz et al. (2015) proposed that one  run the algorithm for a certain number of times, e.g., r = 

1000 times, and then use the average as the final threshold. For example, Table 5 gives the 

suggested upper and lower thresholds for r = 10,000 different Phase I samples and for different 

values of m, n, p and α. 

[Insert Table 5 here.] 

The results indicate that the bootstrap method perfectly estimates the np-chart’s thresholds 

when the parameter is unknown. These limits can be used by practitioners as a standard guide 

to adjust the alternative control limits such that the in-control performance is guaranteed with 

probability 90%. 

 

5. Concluding Remarks and further research 

In our paper, the in-control performance of the np - charts with alternative control limits and 

with estimated parameters are evaluated using the AARL0 and SDARL0 metrics. Additionally, 

we applied the bootstrap method to adjust the upper and lower thresholds such that the ARL0 

takes a value greater than the desired value with a certain probability. This approach  can be 

extended to guarantee the in-control performance of the other type of attribute control charts 
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such as the Cornish-Fisher corrected p-chart (Joekesa and Barbosab[2525]), the AFV-chart 

(Haridy et al[2626]) and the MON-chart (Wu and Jiao[2727]).  
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Table 1. The distribution of in-control ARL for alternative limits with different values of n, 

m, p0 when α=0.0027. 

n 50 100 

p0 m 
Lower Quartiles 

MARL0 AARL0 SDARL0
Lower Quartiles 

MARL0  AARL0  SDARL0Q0.10 Q0.25 Q0.10  Q0.25 

0.01 

25 626.50 626.50 626.50 2324.25 2799.57 291.35 291.35 1870.79 1639.65 2395.07 

50 626.50 626.50 626.50 2110.19 2660.26 291.35 291.35 1870.79 1357.19 1233.10 

75 626.50 626.50 626.50 1621.62 2285.13 291.35 291.35 1870.79 1398.82 812.71 

100 626.50 626.50 626.50 1517.09 2182.45 291.35 291.35 1870.79 1412.62 738.69 

125 626.50 626.50 626.50 1281.98 1912.84 291.35 291.35 1870.79 1427.01 713.46 

150 626.50 626.50 626.50 1205.32 1809.82 291.35 1870.79 1870.79 1481.64 680.59 

200 626.50 626.50 626.50 1013.72 1505.10 291.35 1870.79 1870.79 1507.52 664.68 

∞ 626.50 626.50 626.50 626.50 0.00 1870.79 1870.79 1870.79 1870.79 0.00 

0.02 

25 311.55 311.55 2091.10 1557.67 2387.80 246.18 246.18 1073.03 1192.01 1344.27 

50 311.55 311.55 2091.10 1378.98 1211.41 246.18 1073.03 1073.03 1027.78 862.38 

75 311.55 311.55 2091.10 1397.18 926.16 246.18 1073.03 1073.03 968.91 598.12 

100 311.55 311.55 2091.10 1440.52 869.39 246.18 1073.03 1073.03 969.59 416.89 

125 311.55 311.55 2091.10 1470.66 848.04 246.18 1073.03 1073.03 983.78 317.82 

150 311.55 311.55 2091.10 1504.04 836.70 246.18 1073.03 1073.03 989.19 274.65 

200 311.55 311.55 2091.10 1563.21 812.86 1073.03 1073.03 1073.03 1013.43 220.68 

∞ 2091.10 2091.10 2091.10 2091.10 0.00 1073.03 1073.03 1073.03 1073.03 0.00 

0.05 

25 313.64 313.64 1322.78 1145.24 1256.27 233.96 233.96 682.90 885.97 921.65 

50 313.64 313.64 1322.78 995.46 753.72 233.96 682.90 682.90 769.52 547.72 

75 313.64 313.64 1322.78 977.50 564.98 233.96 682.90 682.90 729.12 433.33 

100 313.64 313.64 1322.78 984.90 496.82 233.96 682.90 682.90 707.09 354.02 

125 313.64 313.64 1322.78 1000.13 478.19 682.90 682.90 682.90 695.77 291.93 

150 313.64 313.64 1322.78 1029.30 460.24 682.90 682.90 682.90 687.94 241.90 

200 313.64 313.64 1322.78 1051.64 447.66 682.90 682.90 682.90 682.27 171.27 

∞ 1322.78 1322.78 1322.78 1322.78 0.00 682.90 682.90 682.90 682.90 0.00 
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Table 2. The distribution of in-control ARL for alternative limits with different values of n, 
m, p0 when α=0.0027. 

n 50 100 

p0 m 
Lower Quartiles 

MARL0 AARL0 SDARL0
Lower Quartiles 

MARL0  AARL0  SDARL0Q0.10 Q0.25 Q0.10  Q0.25 

0.10 

25 310.57 310.57 995.40 915.26 853.20 434.74 434.74 443.10 619.28 235.96 

50 310.57 310.57 995.40 823.99 573.16 434.74 443.10 885.53 699.53 223.80 

75 310.57 310.57 995.40 785.38 420.93 434.74 443.10 885.53 745.58 208.68 

100 310.57 310.57 995.40 789.72 357.83 434.74 885.53 885.53 777.29 192.87 

125 310.57 310.57 995.40 803.37 327.48 434.74 885.53 885.53 800.47 176.53 

150 310.57 310.57 995.40 806.98 312.72 434.74 885.53 885.53 817.60 161.37 

200 310.57 995.40 995.40 833.98 291.50 443.10 885.53 885.53 839.57 136.69 

∞ 995.40 995.40 995.40 995.40 0.00 885.53 885.53 885.53 885.53 0.00 

0.15 

25 337.26 445.37 1044.81 877.43 470.62 294.90 461.77 551.66 537.49 177.25 

50 445.37 445.37 1044.81 944.70 383.31 461.77 461.77 553.91 575.84 178.95 

75 445.37 1044.81 1044.81 964.52 325.48 461.77 461.77 553.91 591.19 179.94 

100 445.37 1044.81 1044.81 973.95 274.83 461.77 461.77 553.91 611.30 189.26 

125 445.37 1044.81 1044.81 984.23 239.02 461.77 461.77 553.91 619.05 191.35 

150 445.37 1044.81 1044.81 991.10 210.06 461.77 461.77 553.91 631.01 196.81 

200 1044.81 1044.81 1044.81 1001.55 171.15 461.77 553.91 553.91 649.18 203.43 

∞ 1044.81 1044.81 1044.81 1044.81 0.00 962.99 962.99 962.99 962.99 0.00 

0.20 

25 369.84 450.89 622.63 602.56 202.49 293.54 374.58 547.22 498.72 138.90 

50 369.84 450.89 622.63 632.59 201.70 374.58 415.66 628.03 534.95 121.89 

75 450.89 450.89 622.63 646.46 203.27 415.66 415.66 628.03 549.39 112.48 

100 450.89 450.89 622.63 649.84 205.25 415.66 415.66 628.03 556.09 106.64 

125 450.89 450.89 622.63 642.56 206.32 415.66 415.66 628.03 561.01 103.10 

150 450.89 450.89 622.63 643.64 207.64 415.66 415.66 628.03 563.61 100.59 

200 450.89 450.89 450.89 638.04 209.11 415.66 415.66 628.03 568.50 96.75 

∞ 450.89 450.89 450.89 450.89 0.00 628.03 628.03 628.03 628.03 0.00 
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Table 3. The distribution of in-control ARL for alternative limits with different values of n, 

m, p0 when α=0.005. 

n 50 100 

p0 m 
Lower Quartiles 

MARL0 AARL0 SDARL0
Lower Quartiles 

MARL0  AARL0 SDARL0Q0.10 Q0.25 Q0.10  Q0.25 

0.01 

25 72.37 626.5 626.5 1078.12 1755.61 291.35 291.35 291.35 799.76 1099.36 

50 626.5 626.5 626.5 795.99 1120.26 291.35 291.35 291.35 697.65 703.14 

75 626.5 626.5 626.5 705.05 748.26 291.35 291.35 291.35 592.57 621.24 

100 626.5 626.5 626.5 659.51 495.36 291.35 291.35 291.35 557.18 591.09 

125 626.5 626.5 626.5 636.58 275.81 291.35 291.35 291.35 530.13 565.82 

150 626.5 626.5 626.5 629.51 163.41 291.35 291.35 291.35 479.56 511.73 

200 626.5 626.5 626.5 627.39 84.45 291.35 291.35 291.35 443.32 465.77 

∞ 626.5 626.5 626.5 626.5 0 291.35 291.35 291.35 291.35 0 

0.02 

25 311.55 311.55 311.55 872.86 1196.09 246.18 246.18 246.18 637.17 725.48 

50 311.55 311.55 311.55 690.66 735.42 246.18 246.18 246.18 541.4 428.85 

75 311.55 311.55 311.55 598.91 655.58 246.18 246.18 246.18 509.69 390.05 

100 311.55 311.55 311.55 530.81 585.02 246.18 246.18 246.18 487.13 376.16 

125 311.55 311.55 311.55 509.52 559.6 246.18 246.18 246.18 467.67 366.22 

150 311.55 311.55 311.55 470.82 508 246.18 246.18 246.18 455.68 359.64 

200 311.55 311.55 311.55 411.74 410.19 246.18 246.18 246.18 425.06 340.46 

∞ 311.55 311.55 311.55 311.55 0 246.18 246.18 246.18 246.18 0 

0.05 

25 84.84 313.64 313.64 575.5 645.39 87.17 233.96 233.96 393.49 277.13 

50 313.64 313.64 313.64 498.33 411.36 233.96 233.96 233.96 388.89 233.95 

75 313.64 313.64 313.64 441.48 343.41 233.96 233.96 233.96 387.16 221.04 

100 313.64 313.64 313.64 418.23 310.55 233.96 233.96 233.96 373.41 210.25 

125 313.64 313.64 313.64 397.15 279.44 233.96 233.96 233.96 369.88 206.88 

150 313.64 313.64 313.64 374.01 240 233.96 233.96 233.96 359.01 201.51 

200 313.64 313.64 313.64 353.41 196.5 233.96 233.96 233.96 346.28 194.48 

∞ 313.64 313.64 313.64 313.64 0 233.96 233.96 233.96 233.96 0 
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Table 4. The distribution of in-control ARL for alternative limits with different values of n, 
m, p0 when α=0.005. 

n 50 100 

p0 m 
Lower Quartiles 

MARL0 AARL0 SDARL0
Lower Quartiles 

MARL0  AARL0  SDARL0Q0.10 Q0.25 Q0.10  Q0.25 

0.10 

25 106.9 310.57 310.57 409.4 306.3 203.98 254.88 254.88 310.17 89.62 

50 183.86 310.57 310.57 406.82 271.3 203.98 254.88 254.88 312.14 77.94 

75 310.57 310.57 310.57 386.95 235.79 254.88 254.88 254.88 309.85 74.04 

100 310.57 310.57 310.57 370.89 206.51 254.88 254.88 254.88 305.61 71.26 

125 310.57 310.57 310.57 357.44 181.15 254.88 254.88 254.88 301.15 68.8 

150 310.57 310.57 310.57 346.12 156.89 254.88 254.88 254.88 296.8 66.14 

200 310.57 310.57 310.57 333.37 125.03 254.88 254.88 254.88 289.18 61.27 

∞ 310.57 310.57 310.57 310.57 0 254.88 254.88 254.88 254.88 0 

0.15 

25 179.13 280.36 321.32 349.11 101.49 188.15 221.33 294.9 285.14 83.36 

50 280.36 280.36 445.37 372.49 93.22 221.33 221.33 341.01 303.36 72.17 

75 280.36 280.36 445.37 385.52 86.78 221.33 221.33 341.01 307.28 64.94 

100 280.36 280.36 445.37 392.64 83.28 221.33 221.33 341.01 310.03 60.43 

125 280.36 280.36 445.37 397.08 81.22 221.33 221.33 341.01 310.92 57.38 

150 280.36 445.37 445.37 400.76 79.36 221.33 294.9 341.01 312.25 55.06 

200 280.36 445.37 445.37 406.38 76.45 221.33 341.01 341.01 314.23 51.66 

∞ 445.37 445.37 445.37 445.37 0 341.01 341.01 341.01 341.01 0 

0.20 

25 167.31 263.39 263.39 337.14 114.63 157.82 250.93 257.47 263.94 66.62 

50 263.39 263.39 369.84 354.78 100.8 250.93 250.93 257.47 280 60.6 

75 263.39 263.39 450.89 358.76 95.79 250.93 250.93 257.47 283.16 58.37 

100 263.39 263.39 450.89 359.18 94.38 250.93 257.47 257.47 286.12 60.23 

125 263.39 263.39 450.89 358.52 93.91 250.93 257.47 257.47 287.82 61.92 

150 263.39 263.39 450.89 357.93 93.8 250.93 257.47 257.47 288.39 62.57 

200 263.39 263.39 450.89 357.84 93.74 250.93 257.47 257.47 288.78 63.37 

∞ 450.89 450.89 450.89 450.89 0 257.47 257.47 257.47 257.47 0 
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Table 5. The adjusted control limits for the np-charts to guarantee that 

Pr(ARL0 > B) = 90% 

B 
200  370.4 

n 
50  100  50  100 

p0  m 
LCLp  UCLp  LCLp  UCLp  LCLp  UCLp  LCLp  UCLp 

0.01 

25 0.00 3.42 0.00 4.84 0.00 3.70 0.00 5.23 

50 0.00 3.29 0.00 4.74 0.00 3.69 0.00 5.06 

75 0.00 3.18 0.00 4.64 0.00 3.60 0.00 4.99 

∞ 0.00 3.00 0.00 4.00 0.00 3.00 0.00 5.00 

0.02 

25 0.00 4.83 0.00 7.03 0.00 5.12 0.00 7.46 

50 0.00 4.67 0.00 6.84 0.00 4.99 0.00 7.25 

75 0.00 4.60 0.00 6.77 0.00 4.95 0.00 7.15 

∞ 0.00 4.00 0.00 6.00 0.00 5.00 0.00 7.00 

0.05 

25 0.00 7.84 0.00 12.30 0.00 8.28 0.00 12.79 

50 0.00 7.68 0.00 11.97 0.00 8.09 0.00 12.50 

75 0.00 7.53 0.00 11.87 0.00 7.99 0.00 12.43 

∞ 0.00 7.00 0.00 11.00 0.00 8.00 0.00 12.00 

0.10 

25 0.00 12.20 2.17 20.23 0.00 12.54 1.92 21.02 

50 0.00 11.85 2.25 19.95 0.00 12.17 2.00 20.69 

75 0.00 11.70 2.31 19.82 0.00 12.10 2.00 20.56 

∞ 0.00 11.00 3.00 19.00 0.00 12.00 2.00 20.00 

0.15 

25 1.05 16.19 5.28 26.90 0.92 16.72 4.78 27.65 

50 1.04 15.87 5.45 26.53 1.00 16.45 4.97 27.36 

75 1.03 15.78 5.54 26.36 1.00 16.34 5.02 27.17 

∞ 1.00 15.00 6.00 26.00 1.00 16.00 5.00 27.00 

0.20 

25 2.46 19.41 8.80 33.03 2.07 19.99 8.19 33.93 

50 2.65 19.13 9.03 32.69 2.12 19.79 8.41 33.58 

75 2.80 19.01 9.12 32.53 2.12 19.65 8.51 33.42 

∞ 3.00 19.00 10.00 32.00 3.00 19.00 9.00 33.00 
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Figure 1. The box-plot of the in-control ARL with and without limits adjustment for  

m=25, n=100, p0=0.05 and ARL0=370. Median and Upper quartile are overlapped. 


