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Abstract 
 

 

The objective of this paper is to present a mathematical model helping decision 

makers achieve optimum efficiency in risk management of product development. The 

optimum we are seeking considers qualitative data derived from expert opinions and 

quantitative information on project characteristics. The mathematical model 

proposed here aims at integrating data from these sources to identify opportunities 

for decreasing product risk. Reduction of overall product risk, before product 

release to production, is an indicator of the efficiency of the risk management 

intervention. Acceptable risk targets vary according to industry type, organization 

characteristics, regulations, etc. In general, the risk management process consists 

of identification of risks, analysis of risks, risk control and feedback. Here, we 

propose a mathematical approach to risk management using dynamic Bayesian networks 

for evaluation of product risks during the development period. The properties of 

the model are assessed using two validation methods: k-fold cross validation and 

leave-one-out techniques. Mathematical imputation methods, like multivariate normal 

imputation are invoked to deal with missing data. In addition, sensitivity analysis 
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is performed to assess the uncertainty embedded in the parameters derived from the 

dynamic Bayesian network.  

Decision makers should consider the overall risk in product development estimated 

by this mathematical model. It may help to determine whether to release a product 

for Beta testing or to conduct additional activities to reduce the overall risk 

level before customer shipment. In addition, the model may be used for prediction 

purposes as it provides an estimate of the expected risk at time t+1 based on the 

level of risk at time t.  

 

Key-words Bayesian networks; Dynamic Bayesian network; Risk; Expert Subjective 

Assessment; What-if scenario.  

 

 

1 Introduction 
 

 

Products and processes in product development are becoming increasingly 

complex. Consequently, errors associated with product development increase. 

This drives firm to search for appropriate procedural models such as Munich’s 

Procedural Model (MPM) which proposes risk management activities to ensure 

the achievement of the set of goals in the product development process1. In 

the literature, risk management models are defined with different 

perspectives. While several of them describe the risk management in a context 

of processes of project development2,3 others emphasize the technical 

aspects. Technical risk management focuses on the risks related to the 

performance of the product itself4. Reliability risk management can be seen 

as a subset of technical risk management focusing on safety and reliability 

issues of products5,6. Strategic risk management deals with the question of 

integrating different risk management activities into an overall enterprise 

risk management approach and providing central monitoring and early warning 

capabilities7. 
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Risk management models includes the following phases8:  

 Risk Identification: Potential risks are detected. This includes 

collecting the preliminary information available for every potential 

risk, including the rationale for the identification. 

 Qualitative Risk Analysis: A step that further deepens the 

understanding of a potential risk, without assigning any numerical 

judgment. This differs from the perception in some of the literature, 

especially. 

 Quantitative Risk Analysis: Numerical values are assigned to a 

risk’s probability of occurrence, magnitude of impact, and its 

timeframe. It can include mathematically exact models, as well as 

other types of quantification, for example the assignment to a 

certain (numerically specified) category based on team discussions. 

 Risk Prioritization: The quantitatively described risks are 

prioritized. The prioritization process can be conducted along a 

multitude of different measurement or priority systems, taking one 

or more of the quantified risk attributes into account. 

 Execution of Actions: This step is not considered to be “owned” by 

the risk management process, but by the line organization 

responsible for the risk. 

 Monitoring of Risks: It can be aimed at the risks themselves, or at 

the performance of the risk management process. The goal is to 

provide a transparent and current description of the risk situation 

and to trigger impulses to inform decision makers of significant 

changes. 

 Aggregation of Risks: In the Aggregation step, single risks are 

aggregated to the next higher level. This step is of central 

importance if an enterprise-wide integral risk management system is 

to be established over more than one hierarchical level. 
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Risk analysis has evolved over the years from addressing only the 

technical aspect of a system to that which covers additional aspects such 

as human and organizational factors affecting the system. This evolution is 

particularly apparent in critical systems such as nuclear power plants, oil 

rigs and chemical processes where regulations become more and more demanding 

according to safety rules9. In this paper, we propose a systematic model for 

assessing technical risks during the development cycle of a product or 

system. This model combines external factors related to the development 

cycle process. furthermore, it treats the total accumulated risks of a 

product instead of managing risks by ranking priority. While the current 

risk management model used by the company illustrated in the case study, 

uses top ranking risk method2, the proposed model provides assessment of the 

overall risk of a product which supports decision makers at different check 

points during the development process. In addition, the new approach 

provides indicators to control the level of the risks via mitigation plans 

designed to reduce the level of the recognized risks over the product 

development. 

 The technical risk discussed in the model refers to the uncertainty that 

a product design will not satisfy technical requirements and the 

consequences thereof. The amount of performance risk associated with any 

technical performance measurement depends on two factors: 1) the number of 

possible outcomes, cases, or situations that fail to meet requirements and 

2) the consequence or impact of each4.  

The systematic model proposed here considers qualitative data on risk 

assessment derived from expert opinions and quantitative information based 

on a project’s characteristics.  

The model examines both the probability and the severity of potential 

risks. We estimate the progression of each risk during product development 

using a dynamic Bayesian network. Other methods proposed in the literature 

include ARIMA, ARMAX10. The dynamic Bayesian network (DBN) 11,12 is an 
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expansion of a Bayesian Network (BN)13,14. It enables modeling of temporal 

relationships among variables at different points of time. In addition, it 

enables incorporation of external variables such as project characteristics 

as well as flexibility in generating predictions.12 

 Useful quantities to describe measurement and assessment of risk are15: 

1) The combination of probability and severity of risk impact; 

2) The triplet (𝑆𝑖, 𝑃𝑖, 𝐶𝑖), where 𝑆𝑖 is the i-th scenario, 𝑃𝑖 is the 

probability of that scenario, and 𝐶𝑖 the consequence of the  

i-th scenario, where i = 1,2, …N; 

3) The triplet (C’, Q, K), where C’ is some specified consequence, Q is 

a measure of the uncertainty associated with C’ (typically probability) and 

K is the background knowledge supporting C’ and Q (which includes a judgement 

of the strength of this knowledge); 

4) Expected consequences (damage, loss) of a risk event: 

1. Expected number of fatalities in a specific period or the expected 

number of fatalities per unit of exposure time; 

2. The product of the probability of the hazard occurring and the 

probability that the relevant object is exposed given the hazard, 

and the expected damage given that the hazard occurs and the object 

is exposed to it (the last term is a vulnerability metric; 

3. Expected disutility. 

  

The term consequences used here refers to the outcome of an event. 
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The traditional approach to risk analysis is based upon the principles 

and methods of probability and classical statistics (Nilsen and Aven16 ). 

The probability of an event is defined as the relative frequency of that 

event when the condition from which it develops is hypothetically repeated 

an infinite number of times17. Furthermore, Aven15 states that the way in 

which a risk is understood and described, strongly influences the way in 

which it is analyzed and hence may have serious implications for risk 

management and decision-making.  

In today's world, time-to-market is becoming shorter and shorter. 

Consequently, development cycles become shorter with little data for 

estimation of probabilistic inputs of the risks embedded in the product 

under development. As a result, assumptions that allow the use of available 

data are forced and supplementary information like expert opinions often 

substitutes the traditional data-driven analysis18. Furthermore, risk-data 

can be assessed in the context of a development process via integrated 

models of assessing it and its probability when we have limited information 

coming from varies activities of development1. 

However, since the goal of technical risk management is often limited to 

prioritizing activities of product development, organizations may on one 

hand miss the global perspective of a product's potential overall risk while 

ignoring risks of low priority and on the other hand may ignore the effect 

of external variables on risk assessment. One of the innovations in this 

work is the combination of mathematical risk modeling and systematic risk 

management of engineering products, which overcomes these deficiencies. The 

proposed approach can be used both as an indicator of the efficiency of risk 

management and as a calibration tool for adjusting and optimizing activities 

designed to achieve acceptable levels of risk during product development. 

All this requires a systematic approach with well-defined levels of risk, 

                                                           
1 Halabi, A., Kenett, R.S. and Sacerdote. L. (2016). Modeling the relationship between reliability assessment and risk predictors 
using Bayesian networks and multiple logistic regression model, quality Engineering, submitted paper 
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with customers informed on the value of the risks associated with the 

produced item, in particular upon receiving the first items from the 

production line.  

Section 2 in this paper details the methods used to evaluate the 

mathematical model; in Section 3 we present the mathematical formulation of 

the risk model and the model properties; Section 4 illustrates an application 

of the model to a real-life case; Section 5 is a discussion of the results and 

conclusions 

 

 

2 Methods  
 

This section presents the combined mathematical methods used to model 

risk and efficiency of risk management. The main methods which used to 

develop the model are Bayesian network, dynamic Bayesian network and ‘What-

if’ scenario. While Bayesian network is designed to model the static 

relationship between risk variables and project characteristics, dynamic 

Bayesian network is used to model temporal relationship, specifically 

between risk variables on different time points.  

Furthermore, we use supporting methods to ascertain the properties of the 

model including Cross validation methods such as K-fold and Leave-one-out 

19, sensitivity analysis and imputation methods. For treating missing values 

in the data set, imputation methods are used20; for purposes of prediction 

and inference, the methods of a “What if" scenario 21,22 are used as well as 

the measure of Euclidean distance 23 to assesses the strength of the 

relationship among variables and for learning the inaccuracy of the 

parameters of the model sensitivity analysis is performed. 
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2.1 Bayesian networks 

Bayesian networks (BN) implement a graphic modeling structure known as 

directed acyclic graphing (DAG) that enables effective representation and 

computation of joint probability distributions (JPD) over a set of random 

variables.24 The structure of a DAG is defined by its nodes that represent 

random variables and its directed arcs that represent direct dependencies 

among the variables. The nodes and are drawn as circles labeled by variable 

names while the arcs are drawn as arrows between nodes. A particular arc 

from node Xi to node Xj represents a statistical dependency between the 

corresponding variables indicating that a value taken on by variable Xj 

depends upon the value taken on by variable Xi.  Node Xi is then referred to 

as the ’parent’ of Xj and, similarly, Xj is referred to as the ’child’ of 

Xi.  An extension of these genealogical terms is often used to define the 

sets of 'descendants’, i.e., the set of nodes from which a specific node 

can be reached via a direct path from the original parent node. 

The DAG structure guarantees that no node can be its own ancestor (parent) 

or its own descendent (child). Such a condition is of vital importance in 

computing the joint probability of a collection of nodes since it allows 

the introduction of useful factorization. 

Although the arrows represent direct causal connections among variables, 

the reasoning process can operate on a BN by propagating information in any 

direction.  A BN reflects a simple statement of conditional independence, 

namely that each variable, given the state of its parents is independent of 

its non-descendants in the graph. This property can be applied to reduce, 

sometimes significantly, the number of parameters required to characterize 

the variables in a JPD. This reduction provides an efficient way to compute 

posterior probabilities given the evidence in the data 24,25.  
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The DAG structure is often considered as the qualitative part of the 

model, but it is also necessary to estimate the quantitative parameters of 

the model. We perform this task by calculating the local conditional 

probabilities for each node. For discrete random variables, we list these 

conditional probabilities in a table reporting the local probability of a 

child node at each of the feasible values for each combination of values of 

its parents. These tables uniquely determine the joint distribution of a 

collection of variables.  

Formally, for a BN, we introduce is an annotated graph B, that 

represents a joint probability distribution over a set of random 

variables, V.26 A network is defined by pair, B = (G, Θ) where G is the 

DAG whose nodes X1, X2, . . . , Xn   represent random variables and whose 

arcs represent direct dependencies among these variables. The graph G 

encodes assumptions of conditional independence, where variable Xi   is 

conditionally independent from its non-descendants given its parents in 

G. We denote the set of parents πi. The second component, Θ denotes the 

set of parameters of the network. This set contains the parameters, θxi 

|πi    
= PB (xi |πi ) for each realization xi  of Xi  conditioned upon πi, 

the set of parents of Xi  in G. Accordingly, B defines a unique joint 

probability distribution over V, namely, the set of parameters of the 

network. This set contains the parameters for each variable (X1, X2, . 

. . , Xn   ) in the network: 

 

 

𝑃𝐵 (𝑋1, 𝑋2, … . , 𝑋𝑛 ) =   ∏ 𝑃𝐵

𝑛

𝑖=1

(𝑋𝑖|𝜋𝑖) =  ∏ 𝜃𝑥𝑖 |𝜋𝑖

𝑛

𝑖=1

 . 

 

(1) 
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2.2 Dynamic Bayesian networks 

Dynamic Bayesian networks (DBN) model temporal relationships among 

variables. While a Bayesian network (BN), only represents probabilistic 

relationships among a set of variables at some point in time, a DBN 

relates the value of some variable to its value at previous points in time 

as well as to the values of other variables at previous points in time.  

 

To illustrate the structure of a DBN, let us assume that the variables 

Z1, Z2, . . ., Zn, defined on a BN, change over time. Let us consider Zi[j] 

to be a random variable representing the value Zi at time j for j=0,…,J  

and let  

 

𝑍[𝑗] = (
𝑍1[𝑗]

⋮
𝑍𝑛[𝑗]

) . 

(2) 

 

For all j, each variable Zi[j] is defined on a space which depends on index 

i and is called the space of Zi (for example, a space for discrete variable 

correspond to two states: low and high). A Dynamic Bayesian Network is defined 

through the variables that specify the J random vectors Z[j] determined by the 

following specifications: 

1. The initial BN, consisting of:  

a) DAG G0 containing the variables in  𝑍[0]  

b) an initial probability distribution, P0  of these variables. 

2. A transitional Bayesian BN, consisting of:  

a) transition DAG, G→ containing the variables Z[j] and Z[j+1] 

(for example, level of risk at consecutive months j and j+1) 
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b) a transitional probability distribution P→ which assigns 

conditional probabilities to each value of Z[j+1] given every 

value of Z[j], for each realization z[j+1] of Z[j+1] and 

z[j] of Z[j] that we specify as: 

 𝑃→  = (𝑍[𝑗 + 1] = 𝑧[𝑗 + 1]|𝑍[𝑗] = 𝑧[𝑗] ) . (3) 

 

3. The DBN containing the variables that each of them includes, i.e. the J 

random vectors consisting of:  

a) DAG composed of the DAG G0 and for 0 ≤ j ≤ J-1 the DAG G→ 

evaluated at j.  

b) Joint probability distribution: 

 

𝑃(𝑧[0], … , 𝑧[𝐽]) = 𝑃0(𝑧[0])× ∏ 𝑃→

𝐽−1

𝑗=0

(𝑧[𝑗 + 1]|𝑧[𝑗]) . 

(4) 
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2.3 Cross validation (CV) - k-Fold Cross-Validation 

This method involves randomly dividing the set of observations into k 

groups or folds of approximately equal size. Initially, the first fold is 

treated as the validation set and the method is subsequently applied on 

the remaining k − 1 folds. The Mean Squared Error (MSE(1)) is then computed 

on the observations in the held-out fold. This procedure is repeated k 

times; each time a different group of observations is treated as the 

validation set. This process results in k estimates of the test error, 

MSE(1), MSE(2), . . . , MSE(k).  

 

When applying k-fold, the estimated CV is computed by averaging these 

values: 

 

 

𝐶𝑉(𝑘) =  
1

𝑘
× ∑ 𝑀𝑆𝐸𝑖

𝑘

𝑖=1

 , 

Where 

(5) 

 

 

𝑀𝑆𝐸(𝑖) =  
1

𝑛
× ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2

 ,

𝑛

𝑖=1

 

 

(6) 

 

Here n is the number of observations in the sample, 𝑦𝑖 is observation i and 

𝑓(𝑥𝑖) is the prediction that 𝑓 gives for the i-th observation.19 

 

2.4 Cross validation - Leave-one-out 

The method proposed by James et al.19 involves splitting the set of 

observations into two parts. However, instead of creating two subsets of 

comparable size, a single observation (𝑥1, 𝑦1) is used as the validation set 
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with the remaining observations {((𝑥2, 𝑦2),, (𝑥𝑛 , 𝑦𝑛)} of the training set. The 

statistical learning method is applied to the n − 1 training observations 

and a prediction, �̂�1 is made for the excluded observation using its value, 

𝑥1. Since (𝑥1, 𝑦1)  was not used in the fitting process, MSE(1)= (𝑦1 − �̂�1)2 

provides an approximately unbiased estimate for the test error. But even 

though the MSE(1) is unbiased, due to its being based upon a single 

observation (𝑥1, 𝑦1), it is extremely variable and hence it is a poor 

estimate. The procedure is repeated by selecting (𝑥2, 𝑦2) for the validation 

data and the statistical learning procedure is then applied to the 

remaining n − 1 observations { (𝑥1, 𝑦1), (𝑥3, 𝑦3), … (𝑥𝑛 , 𝑦𝑛) } to get MSE(2) = 

(𝑦2 − �̂�2)2 . As in k-fold methodology, this procedure is repeated n times to 

produce n mean squared errors, MSE(1), . . . , MSE(n). The LOOCV (Leave-One-

Out Cross-Validation) estimate for the test MSE is the average of these n 

estimates of test error: 

 𝐶𝑉(𝑛) =  
1

𝑛
× ∑ 𝑀𝑆𝐸𝑖 .

𝑛

𝑖=1

 

 

(7) 

 

 

2.5 Multivariate normal imputation 

Missing values are an issue in a substantial number of statistical 

analyses, with most deleting or ignoring the observations with missing 

values. However, it is possible to resolve incomplete cases by using 

Multivariate Normal Imputation27,28, in which random values from the 

multivariate normal distribution are substituted for the missing values.  

The algorithm uses least squares imputation. Entries in the covariance 

matrix are computed by using all non-missing values for each variable along 

the diagonal elements while off-diagonal elements are computed using all 

non-missing values for both variables. In cases where the pairwise inverse 
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is singular, the algorithm uses minimum norm least squares imputation based 

upon the Moore-Penrose pseudo-inverse. (See Appendix A- report of 

imputation)  

 

2.6  Euclidean distance 

Euclidean distance is a measure used to evaluate the distance between 

two points in Euclidean space. In a DBN, it is used to assess the influence 

of one variable upon another by measuring the distance between the two 

discrete probability distributions of these variables. 

For this purpose, let us define two discrete probability distributions, 

P and Q: 

 𝑃 𝜖 {(𝑝1, 𝑝2, … , 𝑝𝑛)|𝑝𝑖 > 0, ∑ 𝑝𝑖 = 1,𝑛
𝑖=1   𝑛 > 1} (8) 

 𝑄 𝜖 {(𝑞1, 𝑞2, … , 𝑞𝑛)|𝑞𝑖 > 0, ∑ 𝑞𝑛
𝑖=1 = 1, 𝑛 > 1} (9) 

 

 

Then the Euclidean distance is defined as: 

 

𝐸(𝑃, 𝑄) = √∑(𝑝𝑖 − 𝑞𝑖)2

𝑛

𝑖=1

. 

(10) 

 If P and Q are two points in some N-dimensional space, (10) calculates 

the actual distance between the two points. When used to measure the 

distance between two discrete probability distributions, its range is 

(0,√2) since the sum of all elements is always equal to one. Euclidean 

distance is a symmetric measure. It is possible rescale the Euclidean 

distance to obtain a quantity in the range [0, 1]: 

 𝐸𝑛𝑜𝑟𝑚(𝑃, 𝑄) =
𝐸(𝑃, 𝑄)

(√2)
 . 

 

(11) 



15 

 

2.7 The “What if" scenario in Bayesian Networks 

“What if” scenario is an intervention method used to determine causality 

in Bayesian networks. Traditionally causality is based on application of 

randomized trails, where the design of the trail aims to identify the effect 

of an intervention.29 In general, causality has been studied from both 

“probabilistic” and “mechanistic” points of view. In the probabilistic view, 

the causal effect of an intervention is determined by comparing the evolution 

of the system in the two instances of presence/absence of intervention. The 

mechanistic view focuses on understanding the mechanisms determining how 

specific effects arise.  Causal inference on Bayesian networks has two types 

of interventions: “structural” and “parametric”. The “structural” 

intervention makes the intervened variable independent of its causes and 

therefore changes the causal structure of a system before and after 

intervention. The “parametric” intervention affects the parameterization of 

the conditional probability distribution of the intervened variables on its 

parents, while it still leaves the causal structure intact. For more on 

sensitivity analysis of BN see Cugnata et al.29 

 In causal Bayesian networks, a ‘do’ operator that separate a “structural” 

intervention from a “parametric” one can define the effect of any 

intervention. Pearl 30 states that the mathematical operator called ‘do’ 

simulates physical interventions by deleting certain functions from the 

model, replacing them with constant X=x, while keeping the rest of the model 

unchanged. For more details on causal calculus see Pearl 30. The ‘do’ operator 

makes it possible to conduct “what-if” scenarios even if counterfactuals 

cannot be directly tested, as it happens in the presence of nonexperimental 

data. 

 

2.8 Sensitivity Analysis (parameters inaccuracies) in Bayesian networks  

The robustness of the output probabilities of a Bayesian network can be 

investigated by performing a sensitivity analysis on the network. In Bayesian 
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network, a sensitivity analysis describes the relationship between the 

probability parameters of the network and its posterior marginals. For more 

details of the mathematical formulation see Kjaerulff and van der Gaag 31,32. 

In GeNIe SW we used the algorithm proposed by Kjaerulff and van der Gaag31,32 

to perform the analysis.  

In shortly, the algorithm calculates efficiently a complete set of 

derivatives of the posterior probability distributions over the target nodes 

over each of the numerical parameters of the Bayesian network. These 

derivatives give an indication of importance of precision of network 

numerical parameters for calculating the posterior probabilities of the 

targets. If the derivative is large for a parameter, then a small deviation 

in parameter may lead to a large difference in the posteriors of the targets. 

If the derivative is small, then even large deviations in the parameter make 

little difference in the posteriors. 

 

3 The risk model 
 

3.1 Mathematical formulation of the problem 
 

The model refers to risk data were collected over 𝐾 projects by different 

teams at different time intervals. The considered products were developed 

in series. Furthermore, data include project time cycles (in units of days) 

in order to determine their effect upon efficiency of risk management.  

Let us introduce a matrix, Rk of the k-th project (a process of product 

development) identified by engineers in the frame of technical risk 

management during product development. Let us assume that there are monthly 

observations made during J months and that n different risks are under 

consideration. 𝑅𝑗 Indicates variable j in matrix Rk. Elements, ri,j;k of matrix 

Rk represent the i-th risk in the j-th month of k-th project. Where: 𝑗 =

1, . . , 𝐽 ; 𝑖 = 1, . . , 𝑛 and 𝑘 = 1, . . , 𝐾. 
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In real-world development, organizations use technical risk management to 

prioritize risk mitigation plans. In this paper, we estimate the overall 

risks entailed in developing a product using data characterized by Rk   and 

we apply a dynamic Bayesian network to obtain the dependencies among 

variables 𝑅𝑗 which indicate the overall risk at month j.11,12,33 The 

probabilistic model for the dependencies embedded in the risk variables is: 

 

𝑝(𝑅1, … , 𝑅𝑗) =  𝑝1 (𝑅1)× ∏ 𝑝→ ( 𝑅𝑗+1| 𝑅𝑗),

𝐽

𝑗=1

 

(12) 

where 𝑅0 is a random variable indicating the risk in the first month and 

𝑝0 is its initial probability. The transition probability 𝑝→  assigns a 

conditional probability to every value of the variable  𝑅𝑗+1, given each value 

of 𝑅𝑗. 

In the problem under discussion, the dynamic Bayesian network models 

only the risk variables while we describe the other variables, like 

project characteristics, through a regular Bayesian network.21,22 

Furthermore, we characterize the project through two variables A and Z: 

A is a random variable indicating the specific technical project and Z 

is a continuous random variable accounting for the time required for 

development. Then, the joint probability of project characteristics and 

risks is: 

 𝑝(𝐴, 𝑍, 𝑅0, 𝑅1, … , 𝑅𝐽−1) = 𝑝(𝑍)×𝑝(𝐴|𝑇)×𝑝0 (𝑅0|𝐴)× ∏ 𝑝→ ( 𝑅𝑗+1| 𝑅𝑗 , 𝜋𝑗+1)𝐽−1
𝑗=0 . (13) 

Two ordinal variables have been defined for the risk dimensions: P 

accounts for the probability of occurrence and C for the severity of risk 

scenario. Each ordinal variable has 5 levels: from low (1) to high (5).  
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3.2 The mathematical model and its properties   

 

As defined earlier, risk assessment is a combination of probability 

and severity of scenarios. Here we subdivide the presentation of the 

risk model into two parts: Section 3.2.1 models only the probability 

of the progression of risks for different products over time, Section 

3.2.2 describes the progression of severity of risk over time, and 

then in Section 3.2.3 we present a risk as one model. The risk data 

analyzed come from the development cycle (which starts from the 

conception of a product to its release for production) only. In this 

model we assume that time censoring does not affect the assessment 

score.  

 

3.2.1 Dynamic Bayesian Network modeling - uncertainty of risk (probability) 

To model the risk evaluation over time, for different products, the DBNs 

considers the variables of product A, the length of the development cycle 

Z, and the probability of risk scenario P. We assign nodes to the DBN 

accordingly to these variables. We use the clustering algorithm of GeNIe SW 

to build the CPDs for the variables in the model. The output of the process 

is a global joint probability connecting the (𝐴, 𝑍, 𝑃) variables:  

 𝑃 (𝐴, 𝑍, 𝑃0, 𝑃1 , … , 𝑃𝐽−1) = 𝑝(𝑍)×P(𝐴|𝑍)×P(𝑃0|𝐴)× ∏ P

𝐽−1

𝑗=1

(𝑃𝑗|𝑃𝑗−1, 𝐴) . 

(14) 

                                

We evaluate the properties of the model using validation methods like k-

Fold and Leave-one out. For both methods, we compute the mean square error 

(MSE). Figure 1 describes the GeNIe SW worksheet. It contains the nodes 

defined in the model, the arcs connecting between them and two plates. One 

of them describes the static and the other the temporal relationships (a 

number on the arcs).  
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Figure 1- DBN for probability of risk – GeNIe SW 

 

The detailed process of building the DBN includes the following steps: 

at the first step, we define the structure of the model and set the arrows 

between the nodes (Figure1). The second step entails defining the properties 

of each node: the number of states and the type of each node (chance, ordinal 

etc`). The third step extrapolates the parameters from the real data 

collected. The real data may require treatment such as imputation of missing 

values and discretization of variables. 

 

3.2.2 Dynamic Bayesian Network modeling - Severity of risk  

The structure of the severity of risk scenario model is similar to that 

developed for the probability of risk scenario discussed in Section 3.2.1, 

except that here we consider the variables (𝐴, 𝑍, 𝐶) where 𝐶 indicates the 

severity of the risk. To build the CPDs for the variables in the model we 

use the Clustering algorithm of GeNIe SW. Equation (14) still holds but with 

C substituting P.  

 

3.2.3 Dynamic Bayesian Network modeling - risk 

We introduce here a new variable, M, describing an expected outcome 

due to risk occurrence. The value of this variable is the product of 

the probability score by the severity score. We substitute M for the 

variable C in the models for probability and severity, respectively. Now 

the model appears as: 

 

𝑃 (𝐴, 𝑍, 𝑀0 , 𝑀1 , … , 𝑀𝐽−1) = 𝑝(𝑍)×P(𝐴|𝑍)×P(𝑀0|𝐴)× ∏ P

𝐽−1

𝑗=1

(𝑀𝑗|𝑀𝑗−1, 𝐴) . 

(15) 
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4 Case study results 

 
We illustrate the proposed methodology by applying it to a real-life 

case. Risk data were collected during product development cycle of an 

electronic measurement product, which combines high precision mechanics 

with sophisticated electronic and optical components. The organization 

uses data for prioritizing activities related to the analyzed risks. In 

the current case, we augmented this data by applying a DBN both to assess 

the overall risk and to monitor the efficiency of risk management over 

time, i.e. including identification of risks, analysis, control and 

feedback. An engineer from the team involved in product development 

worked with the optical, mechanical and electronic teams to identify, 

collect and assess risks. The assessment of risks included evaluation 

of the probability and severity of each risk. Evaluations of probability 

and severity were measured on a 1-5 scale where 1 is a very low value 

and 5 is very high. Mitigation plans were defined for top-ranked risks. 

Based upon results determined from execution of these plans, risk 

assessment was updated. This process entails treating risks of high 

priority while ignoring the overall risk and the efficiency of the risk 

management process. We employ a dynamic Bayesian network to model overall 

risk and we use it for assessing the risk management process. In the 

following sections, we describe the data structure and the combined 

dynamic model used for monitoring risk and its features. 
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4.1 Data description 

 
4.1.1 Risk assessment over time:  

Data are uploaded onto double-entry spreadsheets. Each column corresponds 

to Probability risk (P), Severity risk (C) and Risk Loss (Combined 

Probability and Severity), respectively. 

 

Risk assessment data were collected from six projects in the organization 

(technical content has been omitted because of its proprietary nature). The 

product development cycle was 14 months long.  

In the next 2 Sub-Sections we summarize the descriptive statistics of 

risk variables and then in the followed Sub-Sections we build the dynamic 

Bayesian networks. 

 

4.1.2 Severity of risk  

Table 1: Descriptive statistics of severity of risk  

 

The average of severity at the first two slices (j =0 and j =1) are almost 

medium (value 3.2), its value increases to 3.6 on the following next slices 

from j =2 up to j =8. Then a trend of decrease is observed on the following 

slices from j =11 up to j =13. The variance of the severity increases at 

slice j =3 and a trend of decrease is observed after slice j =5.     

 

4.1.3 Probability of risk  

Table 2: Descriptive statistics of probability of risk  

The average probability of risk is medium or less on all slices except 

on slice j =4. The variance at Slice j =4 is higher compared to other slices.   

GeNIe SW was used to determine the BDN parameters. We present these 

results in Sections 4.2 - 4.4. To investigate the inaccuracy model 

parameters, we perform sensitivity analysis but we illustrate the use of 

this technique only in the case of the overall risk model (4.4), as it 



22 

 

includes the uncertainty determined by estimating both the parameters of 

severity and probability. 

 

4.2 Dynamic Bayesian network model for probability of risk 

 

The estimated parameters of the Dynamic Bayesian Network include the 

following nodes:  the project variable A, the length of the development 

cycle Z and the probability P of risk over 14 months based upon N = 

2,767 observations.  We used the GeNIe SW Clustering algorithm to build 

the probabilistic model (https://dslpitt.org/genie/wiki/Main_Page). 

 The first step in building such a model is estimating the parameters 

of the dynamic Bayesian network via calculating the conditional 

probability tables for all the nodes in the Network. The following 

examples illustrate the calculation of two types of conditional 

probability tables. The first example presents a static conditional 

probability between project node and probability of risk node at j=0. 

The second example presents temporal conditional probability between 

probabilities of risk at time j given the probability of risk scenario 

at j-1.   

Example 1: 

We consider two nodes: the probability at j=0, 𝑃0 and the project 

variable, 𝐴 . In this case, the project node is the ‘parent’ and the 

probability of risk scenario at j=0 is the ‘child’. The conditional 

probability expression is:  

 
P(𝑃0|𝐴) =  

P(𝑃0 ∩ 𝐴)

P(𝐴)
 . 

(16) 

 

To illustrate the computation of the P- probability, we set the 

probability at j =0 equal to zero (low probability) and the project 

equal to 0 (Project A).  
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P(𝑃0 = 0|𝐴 = 0) =

P(𝑃0 = 0, 𝐴 = 0)

P (𝐴 = 0)
 . 

(17) 

The projects in the sample are: A, B, C, D, E and F. we encode it 

with the corresponding numeric values: 0,1,2,3,4,5. 

To calculate the empirical probability from the data for this 

realization (Cell 1 in Table 3 with the highlighted rectangle) we use 

the ratio 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑃0 = 0 𝑎𝑛𝑑 𝐴 = 0  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐴 = 0
 

Table 3: Frequency of probability of risk, 𝑃0 conditioned on project, A  

 

The second step in this example, is to calculate the marginal distribution 

based upon the conditional probability table (table 3) obtained from the 

data. In Table 4 are reported the values of the marginal distribution for 

the probability of risk scenario at j =0.  

Table 4: Marginal distribution for the node at j=0 

 

Example 2: 

Table 5 shows the transition probabilities between probability of risk 

at time j =2 given the probability of risk scenario at j =1. For example, 

the probability to have risks with high probability at j =2 given risks with 

low probability at j =1 is about 85.7% on project B while in project A is 

100%. We create analogous tables for probability of risk at time j given 

probability of risk at j-1. 

 

Table 5: Transition probabilities between probability of risk at time j =2 

given the probability of risk scenario at j =1 

 

Figure 2- DBN structure and parameters expressed by marginal distributions for 

probability (j=0…4) 
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In Figure 2 we present the probability of risk scenario up to j =4 

while the next nine steps are presented in Figure 3. Each probability 

node has two states: low and high. We group different levels of risk 

together, putting values 1-3 in State 0 and assigning values 4 and 5 to 

State 1, which corresponds to a high probability of risk. 

Figure 3- DBN structure and parameters expressed by marginal distributions for 

probability (j=5…13)  

In this case 𝑁 = 216 𝑎𝑛𝑑  𝐽 = 14, and the resulting mathematical model 

is: 

 

𝑃 (𝐴, 𝑍, 𝑃) = 𝑝(𝑍)×𝑃((𝐴| 𝑍))× ∏ 𝑃(𝑃𝑗=1
𝑖 |𝐴)× ∏ ∏ (𝑃(𝑃𝑗

𝑖|𝑃𝑎(𝑃𝑗
𝑖))) .

216

𝑖=1

14

𝑗=2

216

𝑖=1

 

(18) 

 

 

The frequency of risks characterized by high probability exhibits an 

alternation of increasing and decreasing behaviors: it increases up to 

j =4, then at j =5 it decreases to 6%, but then becomes 11% at j =6 and 

then decreases up to j =11, but at j =12 it increases once again. The 

probability of risk scenario fluctuation is explained when creating new 

knowledge relating to existing problems or detecting new problems. This 

profile is most realistic in risk analysis4. 

As indicated in the Introduction, intense competition in the market 

accelerates companies to seek ways to shorten development cycle time to 

get to market first. Consequently, we examine the demand for shorter 

development time upon the model by using the methodology of a “What-if” 

scenario. For example, setting the length of the development cycle to a 

value of less than one year shows that the frequency of risks with high 

probability increases from zero to 6% at j =0. In addition, a sharp 

increase is noticed in j =3 as compared to the previous time.  
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Figure 4- Scenario of cycle development equal to 1 year as compared to a regular 

DBN  

 

In Figure 4 the marginal distribution of the DBN obtained from data 

is compared to the projected marginal distribution of the DBN conditioned 

to a one-year development cycle. Results show higher instability under 

the 1-year condition as compared to the DBN obtained from the data. 

Product managers to take balanced decisions relating time of development 

cycle and level of stability of risk can use such predicted inference. 

Furthermore, it could be a starting point for learning how to move the 

risk of the system to a more stable point focusing on the specific 

activities which most contribute to the instability under this new 

condition. 

For prediction matter, we analyzed the accuracy of the model using k-

fold and leave-one-out methods. The total accuracy of the model results 

to be 94.4%. We report the detailed accuracy of each node in Fig. 7: 

 

Figure 5- Summary of the accuracy of the probability model 

 

The model shows high accuracy in predictions for all nodes. While the 

model has great capability in predicting cases of low probability, it 

is “less accurate” to predict risks with high probability. The source 

of this result is imbalanced data set with low representation of risks 

with high probability. To solve this problem, we apply importance 

sampling algorithm called self-importance sampling (SIS)34 and ROSE 

procedure35 which take in account for this bias. We use the ROSE procedure 

for treating the target node(t=13). A report of the detailed accuracy 

is presented in Fig. 6. The capability of the model to predict risks 

with high probability is improved. The accuracy of the target node (at 

t=13) increases from 0% to 87%. 
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r 

Figure 6- Accuracy of the model when using oversampling method and self-

importance sampling algorithm 

 

4.3 Dynamic Bayesian network model for severity of risk 

 
In this section, we initially formulate the mathematical model, and 

then present inference results derived from it and finally summarize the 

accuracy of the model. 

 

The mathematical model of the DBN is: 

 

 

𝑃 (𝐴, 𝑍, 𝐶) = 𝑝(𝑍)×𝑃((𝐴| 𝑍))× ∏ 𝑃(𝐶𝑗=1
𝑖 |𝐴)× ∏ ∏ (𝑃(𝐶𝑗

𝑖|𝑃𝑎(𝐶𝑗
𝑖)))

216

𝑖=1

14

𝑗=2

216

𝑖=1

. 

 

(1) 

Figure 7 describes the development of severity over time. The high 

frequency for low severity risks is observed in the first two steps (j 

=0, 1), then their frequency decreases in j =3 and j =4. Instead, risks 

of high severity increase in correspondence to these steps. 

 

Figure 7- DBN structure and parameters expressed by marginal distributions for 

severity (Steps 0 to 6) 

 

In addition to describing the development of severity over time 

(figure 7), we determine the amount of influence of one node on the 

others. It is done via visualizing the thickness of the arcs between 

the nodes. The thickness of the arcs is determined by calculating the 

Euclidean distance measure between the distributions of any connected 

nodes.25 The strength of dependency values between nodes are much higher 

at the borders than to the center of the DBN (the thickest arcs are 

circled in Figure 8). The meaning of colors in the graph is the 
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following: green indicates a positive influence, red a negative and blue 

that no sign is determined. The influence between nodes in the edges of 

the DBN are positive. 

 

 

Figure 8- Strength of influence between severity nodes 

 

Furthermore, we create risk DBN per product via conditioning the DBN 

each time on different product. The analyzed three products exhibit 

similar fluctuations for the severity of risk scenario (Figure 11). 

These fluctuations though very sharp are consistent being similar 

between different projects.  

 

Figure 9- Comparison of severity values for 3 products out of 6    

 

Product B shows the highest instability as compared to the two others. 

The measure of instability used is Max minus Min. 

Accuracy analysis gives an accuracy of 95.4% which is very high. This 

result is determined by Leave-one-out and cross validation procedures. 

Detailed analysis presented in the next figure, shows that seventy per 

cent of the inaccuracy in the model occurred when predicting risk of 

high severity. 

 

Figure 10- Summary of model accuracy for severity 
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4.4 Dynamic Bayesian network model for risk 
 

In this Section, we combine the previous two models in one model. we 

summarize inference results derived from the model and perform 

sensitivity analysis for the model parameters to identify the effects 

of these inaccuracies on its outputs. The discussed sensitivity analysis 

refers to the effect of each conditional probability parameter on the 

marginal posterior distribution of the target node.  

 

4.4.1 The mathematical model  

We formulate the risk model via the following joint probability:  

 

𝑃(𝐴, 𝑍, 𝑀) = 𝑝(𝑍)×𝑃((𝐴| 𝑍))× ∏ 𝑃(𝑀𝑗=1
𝑖 |𝐴)× ∏ ∏ (𝑃(𝑀𝑗

𝑖|𝑃𝑎(𝑀𝑗
𝑖)))

216

𝑖=1

14

𝑗=2

216

𝑖=1

 

 

(20) 

The risk increases from 2% to 88% up to j =4. At j =7 the risk is 

again high but decreases up to j =12 before the final step, j =13. 

 

Figure 11- BDN for overall risk    

 

The overall picture of the products' risk is reported in Figure 12 is 

consistent. While overall risk is reduced by the end of this process, 

it seems that the products' levels of risk at the end are dissimilar, 

with Project B having a higher level of risk at j =13 as compared to 

the other two projects. 

 

Figure 12- Example of Overall risk over time of 3 out of 6 different products  
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4.4.2 Sensitivity analysis of the mathematical model: 

Let us consider j =13 as a target node on the mathematical model 

described in previous sub-section. We apply, the algorithm suggested by 

by Kjaerulff and van der Gaag31 to establish a relation between posterior 

marginal probability of j =13 and the other parameters in the model. In 

addition, we identify the parameters which most affect the marginal 

posterior of j =13. One could choose other node to be a target in the 

analysis, but in the discussed case we decided testing the final achieved 

risk (j =13). The overall risk at j =13 has two states: state 0 (risks 

with low probability or low impact or both) and state 1 (overall risk 

is high).  

Results of sensitivity analysis, where 𝑀[13] =  state 0 (overall risk 

is low) 

The posterior marginal value of the overall risk at j =13 is: about 

92%. The conditional probability parameter which most affect the 

posterior value of this state is the 

following: P(𝑀[13] = 0|𝐴 = 𝑠𝑡𝑎𝑡𝑒1: 𝑀[12] = 0), with calculated value of 82.8%. 

Then, we tested different scenarios of uncertainty of this parameter; 

Table 6 summarizes the results. 

 

 

 

Table 6: Range value of the target function of uncertainty of the most derivative 

parameter  

 

Such analysis can be repeated for other parameters which affect the 

posterior distribution of j =13.  In the following figure, we present 

the top 10 parameters affecting the marginal posterior distribution. 

 

 Figure 13- Result of sensitivity analysis of the posterior distribution of M13 = 0  
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Figure 13 shows the most sensitive parameters for a selected state of 

the node 𝑀[13] sorted from the most to least sensitive. The horizontal 

axis shows the absolute change in the posterior probability of 𝑀[13] = 

0 when each of the parameters changes by 10% percentage.  

 

 

Results of sensitivity analysis, where 𝑀[13] = state1 (high risks) 

The results show that the parameter which most affect the posterior 

distribution of 𝑀[13]  = state1 is similar to the parameter which affect 

the posterior with state0. Its value is 82.8%. In Table 7 we summarize 

the posterior distribution changes of this state as function of 

percentage of uncertainty in the parameter. 

 

Table 7: Range value of the target function of uncertainty of the most derivative 

parameter  

 

 

5 Discussion and conclusions 

 
In this paper, we establish mathematical risk modeling and systematic 

risk management in engineering products. The results of the proposed method 

can be used as feedback in the development process in addition to 

predicting potential levels of product risk. The risk model combines 

probability of occurrence of risk, severity, and loss. Providing a 

descriptive relationship, these models can provide input to decision-

making during development. 
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Using risk management as more than a prioritization tool enables 

measuring and monitoring risk over the development phase of the product. 

The global picture yielded reflects the maturity of the product, which 

can then be communicated to customers. Usually systematic risk analysis 

is conducted in hazardous industries, but it can be useful in other 

industries as well. 

  We use a DBN instead of the classical time series method because 

the flexibility of the DBN enables estimation of model parameters without 

assuming the linearity of the coefficients or incorporating prior 

knowledge. In addition, via the DBN we perform predictive inference and 

sensitivity analysis to address the uncertainty referring to the model 

as well as to the parameters. 

The general model includes all three parts: identification of risks, 

analysis of risks, and control and feedback. This provides a complete 

understanding of the overall risk and its components. The approach of 

managing the overall risk of a product, instead of limiting the analysis 

to specific instances of high risk, highlights “small” risks which may 

play more important roles than initially assumed. Usually, industry 

treats uncertainty assessment without assessing the knowledge or 

confidence in the assessment probabilities. Our model provides this.   

The paper does not discuss how to determine the acceptable level of 

risk. This is product and time specific and varies across companies.  It 

is nevertheless essential to compare the achieved risk to agreed-upon 

risk standards. The acceptable level of risk should be defined at the 

beginning of product development. 

 Finally, risk behavior can examine using additional risk predictors 

in order to understand the relationship between risk predictors and 

technical risk assessment. A comprehensive study of this will expand the 

work presented here. 
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The paper presents and applies new mathematical models. These models 

are a basis for a systematic approach when managing risks in product 

development. Product development processes are characterized by 

uncertainty and these models are suitable to deal with this challenge.  

 

References 
 

 

1. Lindemann U. Methodische entwicklung technischer produkte. Springer: 
Berlin,2005. 

2. Hall E. Managing risk- methods for Software systems development. 
Addison Wesley Longman: Reading, MA,1998 

3. Smith P, Merritt G. Proactive risk management – controlling 
uncertainty in product development. Productivity Press: New 

York,2002.  

4. Browning TR, Deyst JJ, Eppinger SD. Adding value in product development 
by creating information and reducing risk. IEEE Trans. On Engineering 

Management 2002;49:443-458. 

5. Birolini A. Reliability engineering, theory and practice, Fourth Edition. 
Springer: Berlin,2004. 

6. Stamatelatos M(Ed.). Probabilistic risk assessment procedures guide 
for NASA managers and practitioners, Version 1.1 NASA Headquarters, 

Office of Safety and Mission Assurance. Washington,2002. 

7. Lessing G, Sierpinski C, Beckman D. Integrales risk management, 
total risk management Presentation, Lessing IRM GmbH. Altenburg, 

Germany,2005. 

8. Oehmen J, Dick B, Lindemann U, Seering W. Risk management in product 
development - current methods. 9th International Design Conference. 

Dubrovnik, Croatia,2006. 

9. Léger A, Weber p, Levrat E, Duval C, Farret R.,Iung B. 
Methodological developments for probabilistic risk analyses of 

socio-technical systems. Proceedings of the Institution of 

Mechanical Engineers, Journal of Risk and Reliability 2009; 223 

(4):313-332. 

10. Hamilton J. Time series analysis. Princeton University Press: 

Princeton, N.J.,1994. 

11. Neapolitan ER. Learning Bayesian networks. Prentice-Hall: Upper 

Saddle River, N.J, 2003. 

12. Murphy KP. Dynamic Bayesian networks: representation, inference 

and learning. Doctoral dissertation, University of California, 

Berkeley, 2002. 

13. Jensen FV. An introduction to Bayesian networks. Taylor and 

Francis: London, 1996. 

14. Jensen FV. Bayesian networks and decision graphs. Springer: New 

York, 2001. 

15. Aven T. Risk assessment and risk management: Review of recent 

advances on their foundation. European journal of Operational 

Research 2016; 253:1-13. 

http://journals.sagepub.com/author/L%C3%A9ger%2C+A
http://journals.sagepub.com/author/Weber%2C+P
http://journals.sagepub.com/author/Levrat%2C+E
http://journals.sagepub.com/author/Duval%2C+C
http://journals.sagepub.com/author/Farret%2C+R
http://journals.sagepub.com/author/Iung%2C+B


33 

 

16. Nilsen T, Aven T. Models and model uncertainty in the context of 

risk analysis. Reliability Engineering & Systems Safety 2003; 

79:309-317. DOI: 10.1016/S0951-8320(02)00239-9 

17. Aven T. On when to base event trees and fault trees on probability 

models and frequentist probabilities in quantitative risk 

assessments. International Journal of Performability Engineering 

2012; 8:311-320. 

18. Aven, T. On the need for restricting the probabilistic analysis in 

risk assessments to variability. Risk Analysis 2010; 30: 354–360 

with discussion 381–384. 

19. James, G., Witten, D., Hastie,T. and Tibshiriani, R. An 

introduction to statistical learning, Springer New York Heidelberg 

Dordrecht London,2014. DOI 10.1007/978-1-4614-7138-7 

20. SAS Institute Inc. JMP 12 Basic Analysis. Cary, NC: SAS Institute 

Inc, 2015. 

21. Kenett RS. On Generating High InfoQ with Bayesian Networks. 

Quality Technology and Quantitative  Management 2016; 13(3):309-332. 

22. Kenett RS. Applications of Bayesian networks, SSRN Tech.  Rep. 

http://ssrn.com/abstract=2172713 [2012] 

23. Koiter JR. Visualizing inference in Bayesian networks. PhD thesis, 

Delft University of Technology, Delft, The Netherlands,2006. 

24. Pearl J. Causality: Models, reasoning, and inference, Cambridge 

University Press: UK, 2000. 

25. Lauritzen SL, Spiegelhalter DJ. Local computations with 

probabilities on graphical structures and their application to 

expert systems. Journal of the Royal Statistical Society 1988; 

Series B 50(2): 157–224. 

26. Ben-Gal I. Bayesian networks. Encyclopedia of statistics in 

quality and reliability. Ruggeri, Kenett and Faltin Editors, Wiley, 

2007. 

27. Lee JK, Carlin BJ. Multiple imputation for missing data: fully 

conditional specification versus multivariate normal imputation. 

American Journal of Epidemiology 2010; 171(5): 624-632. 

28. Schafer JL. Analysis of incomplete multivariate data. Chapman and 

Hall: London, United kingdom,1977. 

29. Cugnata F, Kenett RS, Salini S. Bayesian networks in survey data: 

Robustness and sensitivity issues. Journal of Quality Technology 

2016; 48(3): 253-264. 

30. Pearl J. Trygve Haavelmo and the Emergence of Causal Calculus. 

Economic Theory 2016; 31:152–179. 

31. Uffe K, Van der Gaag CL. Making sensitivity analysis 

computationally efficient. Uncertainty in Artificial Intelligence 

proceedings,2000. 

32. Castillo EF, Gutierrez JM, Hadi AS. Sensitivity analysis in 

discrete Bayesian networks. IEEE Transactions on Systems, Man, and 

Cybernetics-Part S: Systems and Humans 1997; 27(4):412-423. 

33. Dean T, Kanazawa K. A model for reasoning about persistence and 

http://ssrn.com/abstract=2172713


34 

 

causation. Artificial Intelligence 1989; 93(1–2):1–27. 

34. Druzdzel JM, Yuan CH. Importance sampling algorithms for Bayesian 

networks: Principles and Performance, Mathematical and Computer 

Modelling 2006; 43:1189–1207. 

35. Menardi G, Torelli N. Training and assessing classification rules 

with imbalanced data. Data Mining and Knowledge Discovery 

2014;28(1):92-122. DOI:10.1007/s10618-012-0295-5. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 
 

 
 
 

 



35 

 

 

Appendix 

 

 

 

 
 
 

 



36 

 

 
 

 

Table 1: Descriptive statistics of severity of risk 

Variable Average Variance Standard 

deviation 

Number of 

observation 

Severity at 

(j =0) 3.20 0.004 0.06 207 

Severity at 

(j =1) 3.20 0.004 0.06 207 

Severity at 

(j =2) 3.49 0.32 0.56 207 

Severity at 

(j =3) 4.05 0.13 0.36 163 

Severity at 

(j =4) 3.48 0.45 0.67 188 

Severity at 

(j =5) 3.14 0.06 0.25 199 

Severity at 

(j =6) 4.05 0.18 0.43 163 

Severity at 

(j =7) 3.48 0.11 0.33 179 

Severity at 

(j =8) 3.96 0.15 0.38 156 

Severity at 

(j =9) 2.88 0.14 0.38 158 

Severity at 

(j =10) 3.73 0.04 0.19 166 

Severity at 

(j =11) 2.83 0.01 0.12 197 

Severity at 2.54 0.05 0.22 153 
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Variable Average Variance Standard 

deviation 

Number of 

observation 

(j =12) 

Severity at 

(j =13) 2.81 0.16 0.40 123 

Table 1: Descriptive statistics of severity of risk 

 

Table 2: Descriptive statistics of probability of risk 

Variable Average Variance Standard 

deviation 

Number of 

observation 

Probability at 

(j =1) 2.60 0.02 0.12 207 

Probability at 

(j =2) 2.60 0.02 0.12 207 

Probability at 

(j =3) 2.96 0.29 0.54 207 

Probability at 

(j =4) 3.79 0.15 0.39 187 

Probability at 

(j =5) 3.03 0.47 0.69 187 

Probability at 

(j =6) 2.45 0.09 0.29 174 

Probability at 

(j =7) 2.39 0.22 0.47 187 

Probability at 

(j =8) 2.76 0.22 0.47 177 

Probability at 

(j =9) 2.51 0.24 0.49 187 

Probability at 2.21 0.14 0.37 187 
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Variable Average Variance Standard 

deviation 

Number of 

observation 

(j =10) 

Probability at 

(j =11) 1.82 0.03 0.18 166 

Probability at 

(j =12) 2.50 0.01 0.12 197 

Probability at 

(j =13) 2.84 0.03 0.16 184 

Probability at 

(j =14) 2.76 0.19 0.43 106 

Table 2: Descriptive statistics of probability of risk 

 

 

 

 

 

 Project A 

State 0 

Project B 

State 1 

Project C 

State 2 

Project D 

State 3 

Project E 

State 4 

Project F 

State 5 

Low 

probability 

State 0 

0.9411692 0.99999664 0.99997723 0.99999219 0.9999746 0.99998148 

High 

probability 

State 1 

0.058830796 
3.3634616e-

06 

2.2771347e-

05 
7.8125e-06 

2.5402632e-

05 

1.8518519e-

05 

Table 3: Frequency of probability of risk, 𝑃0 conditioned on project, A 

.  
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 Marginal 

probability 

distribution  

Low 

probability 

State 0 

0.9899 

High 

probability 

State 1 

0.0100 

Table 4: Marginal distribution for the node at j=0 

 

 

Table 5: Transition probabilities between probability of risk at time j =2 given 

the probability of risk scenario at j =1 

 

 

Percentage of 

uncertainty on the 

conditional parameter  

Range value of the 

parameter 

Range value of the 

target  (𝑀13 = 0) 

10% 74.5%-91.08% 89.9%-94.13% 

20% 66.2%-99.3% 87.8%-96.2% 

30% 57.9%-100% 85.8%-96.3% 

40% 49.6%-100% 83.7%-96.3% 

Table 6: Range value of the target function of uncertainty of the most derivative 

parameter  

 

j=2

low 

probability 

high 

probability 

low 

probability 

high 

probability 

low 

probability 

high 

probability 

low 

probability 

high 

probability 

low 

probability 

high 

probability 

low 

probability 

high 

probability 

low probability 0.0000 0.4985 0.1433 0.0022 0.0000 0.0076 0.0000 0.5000 0.0002 0.0002 0.0000 0.0015

high probability 1.0000 0.5015 0.8567 0.9978 1.0000 0.9924 1.0000 0.5000 0.9998 0.9998 1.0000 0.9985

j=1

State 0- project A State 1- project B State 2- project C State 3- project D State 4- project E State 5- project F
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Percentage of 

uncertainty 

Range value of the 

parameter 

Range value of the 

target, (𝑀13 = 1) 

10% 74.5%-91.08% 5.8%-10% 

20% 66.2%-99.3% 3.7%-12% 

30% 57.9%-100% 3.6%-14% 

40% 49.6%-100% 3.6%-16% 

Table 7: Range value of the target function of uncertainty of the most derivative 

parameter  

  


