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Abstract

Monitoring the multivariate coefficient of variation over time is a natural choice
when the focus is on stabilising the relative variability of a multivariate process,
as is the case in a significant number of real situations in engineering, health
sciences and finance, to name but a few areas. However, not many tools
are available to practitioners with this aim. This paper introduces a new
control chart to monitor the multivariate coefficient of variation through an
EWMA scheme. Concrete methodologies to calculate the limits and evaluate
the performance of the chart proposed, and determine the optimal values of
the chart’s parameters are derived, based on a theoretical study of the statistic
being monitored. Computational experiments reveal that our proposal clearly
outperforms existing alternatives, in terms of the average run length to detect
an out-of-control state. A numerical example is included to show the efficiency
of our chart when operating in practice.

Keywords: multivariate coefficient of variation, EWMA, average run length,
doubly noncentral F distribution, Nelder-Mead method, trimmed mean

1. Introduction

Statistical process monitoring (SPM) is an essential, powerful instrument for
ensuring quality in companies and industry. Research on this topic has provided
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practitioners with a wide range of different SPM tools adapted to the features of
the process and the specific quality characteristic being monitored, as well as
the requirements set for them.

In the past decade, more than twenty control charts aimed at monitoring the
coefficient of variation (CV; the ratio between the standard deviation and the
mean) of a normal distribution have been proposed, starting with the seminal
Shewhart-like chart by Kang et al. 1 . Some recent works worth mentioning
include a short-run variable sample size chart2, a short-run variable sampling
interval chart3 and a variable-sampling-interval exponentially weighted moving
average chart4. Monitoring the CV is of interest in processes where the mean
and the standard deviation may vary but the ratio between them is expected
to remain constant under in-control conditions. In other words, since the
CV is a relative measure of dispersion, a control chart for the CV permits
detection of unexpected shifts in the variability of the process with regards to
its mean. Teoh et al. 5 , among others, report examples from different domains in
which monitoring the CV and keeping it constant is a goal, including material,
mechanical, manufacturing and landfill engineering, as well as health sciences.
The CV is also used in finance as a way to measure the investment risk with
regards to the expected return, as shown by Sharpe 6 .

Several authors have attempted to extend the CV to the multivariate case. The
first definition of a multivariate coefficient of variation was given by Reyment 7 .
Other proposals were later formulated by Van Valen 8 , Voinov and Nikulin 9

and Albert and Zhang 10 ; the latter also includes a review of all the former.
A recent work by Aerts et al. 11 highlights the importance of using a multivariate
coefficient of variation to measure the relative dispersion of multidimensional
data and examines the sample properties (such as variability and robustness) of
all the aforementioned proposals. They also adduce the difficulties of working
with a coefficient of variation matrix rather than a single scalar, which is another
possible approach12–14.

SPM is not only applied to univariate quality characteristics but also to
situations in which several (correlated) random variables are involved in the
quality requirements being set and, therefore, have to be jointly monitored in
order to ensure stable process performance. As pointed out by MacGregor and
Kourti 15 , this is actually a more realistic and appropriate approach to quality
surveillance and improvement, since all the key quality characteristics for a
given process or product are not usually independent of each other. A review
on multivariate control charts can be found in Bersimis et al. 16 .

In this context, far from being a marginal or narrow-scope subject, the
development of specific tools for monitoring the multivariate coefficient of
variation (MCV) is relevant insofar as it deals with process variability; and in
fact, has been gaining attention recently. However, in contrast to the significant
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amount of research generated by the univariate case, few papers addressing
surveillance of the multivariate setting are available. Yeong et al. 17 introduced
the first chart aimed at monitoring the MCV. Due to the skewness of the MCV,
they proposed two one-sided, Shewhart-like control charts to separately control
undesired increases and decreases in the MCV. In both charts, the statistic being
plotted for each sample is the sample MCV (see the definition later in Section 2).
They derived the cumulative distribution function of the sample MCV and
its inverse, which were then used to define control limits based on a given
assumed probability of false alarm. They also provided theoretical formulae
to calculate performance measures, such as the average run length and the
standard deviation of the run length for a given unacceptable shifted MCV,
and they showed how to compute the so-called expected average run length for
random variations of the MCV. Lim et al. 18 developed a control chart for the
MCV based on run sums19. They also suggested simultaneously implementing
two one-sided charts. Lim et al. 18 investigated the optimisation of their chart, in
terms of the minimum average run length for different shift sizes. Their proposal
was shown to outperform the chart introduced by Yeong et al. 17 . Besides this,
Lim et al. 18 presented an interesting, real example about how their chart can
be applied to monitoring the relative dispersion of the inner diameters of steel
sleeves.

As far as we know, no other alternatives to monitor the MCV have been
published; there is clearly room for improvement. Specifically, SPM for the
MCV could benefit from relatively simple, well-known strategies, such as the
exponentially weighted moving average chart (EWMA), which is known to
improve the sensitivity of Shewhart-like charts for small shifts20. More precisely,
EWMA charts21 include information of past observations Y0, Y1, ..., Yt−1 into each
new sampled value Yt by calculating a weighted average of them, recursively
expressed as Zt = λYt + (1− λ)Zt−1, which is the actual value to be plotted and
monitored. See more on this in Section 3.

The control chart presented in the current paper aims to provide a new
alternative for monitoring the MCV using an EWMA scheme. It is based on
the definition of the MCV made by Voinov and Nikulin 9 , mainly because
of comparability with the two previously proposed charts. Moreover, this
formalisation of the MCV is concluded to be an advisable choice by Aerts et al. 11

for several reasons, namely: (1) it has an intuitive definition (see Section 2 below);
(2) it is invariant under any linear scale transformation (as also highlighted by10);
(3) its asymptotic variance is independent of the dimension of data being studied;
and (4) it outperforms other alternatives in terms of robustness.

The rest of the paper is structured as follows: In Section 2, basic assumptions
and definitions are given. Then, in Section 3, the chart to monitor the MCV based
on an EWMA scheme is presented and described. Some necessary theoretical
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results regarding the statistic being monitored are derived in Section 4. Sections 5
and 6 are aimed at further developing the implementation our chart, focusing
on how to measure its performance and how to optimise the selection of the
chart’s parameters. Computational experiences including a comparison with
previous proposals are reported in Section 7, and a numerical example aimed
at showing the usefulness and efficiency of the chart being constructed can be
found in Section 8. Conclusions about the performance of our proposal are
gathered in Section 9.

2. Basic definitions and assumptions

Consider a p-dimensional quality characteristic X following a multivariate
normal distribution with mean vector µ 6= 0 and covariance matrix Σ; that
is, X ∼ Np(µ, Σ). We will assume a surveillance plan consisting of drawing
independent n-unit random samples of X at equal time intervals. The i-th
observation of the j-th component of X will be denoted by Xij, 1 ≤ i ≤ n, 1 ≤
j ≤ p; and the (column) vector Xi =

(
Xi1, . . . , Xip

)T will stand for the i-th
observation of X, 1 ≤ i ≤ n. The (population) multivariate coefficient of variation
(MCV) of X is a scalar defined as9:

γ =
(

µTΣ−1µ
)− 1

2
. (1)

Note that, by definition, γ > 0. In particular, when p = 1, this definition of γ
reduces to the well-known one-dimensional coefficient of variation expressed in
absolute value, σ/|µ|, for X ∼ N(µ, σ).

A (biased) natural estimator of the MCV is the sample MCV γ̂,

γ̂ =
(

X̄TS−1X̄
)− 1

2
, (2)

where

X̄ =

(
1
n

n

∑
i=1

Xi1, . . . ,
1
n

n

∑
i=1

Xip

)T

and (3)

S =
1

n− 1

n

∑
i=1

(Xi − X̄) (Xi − X̄)T. (4)

In both existing proposals by Yeong et al. 17 and Lim et al. 18 referred to in
the introduction, the underlying process and the sampling strategy meet the
hypothesis just stated, and the definition of MCV they use is also the one given
by Voinov and Nikulin 9 .
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3. An EWMA chart for monitoring γ̂2

In this paper, we propose using an EWMA scheme to monitor γ̂2, the square
of the MCV. EWMA control charts were first introduced by Roberts 21 . Generally
speaking, they are known to improve the performance of Shewhart-like control
charts against small shifts by adding information from past observations to the
current ones. More precisely, according to an EWMA design, the following
statistic will be computed and plotted in our chart for the MCV-squared for
each sample t ≥ 1:

Zt = λγ̂2
t + (1− λ)Zt−1, (5)

where γ̂2
t , calculated as in (2), is the value of the computed MCV-squared in

sample t, and λ is a smoothing parameter to be fixed, 0 < λ ≤ 1. Z0 will be
initialised to µ0(γ̂2), the expected value of γ̂2 when the process is in control or
on target, i.e. when the value of the parameter γ is constant and equals a given
target or assumed value γ0; that is to say,

Z0 = µ0(γ̂
2) ≡ E[γ̂2 | n, p, γ = γ0]. (6)

This value µ0(γ̂2) would also be considered as the central line (CL) of the control
chart. The asymptotic limits of an EWMA chart are generally defined in terms
of the asymptotic mean µ(Z+∞) and the asymptotic standard deviation σ(Z+∞)
of the statistic Zt when the process is in control (i.e., when γ = γ0), which are
known to be22

µ(Z+∞) = µ0(γ̂
2),

σ(Z+∞) =

√
λ

2− λ
σ0(γ̂

2),

where σ0(γ̂2) is the standard deviation of γ̂2 when the process is in control or on
target:

σ0(γ̂
2) ≡

√
Var[γ̂2 | n, p, γ = γ0]. (7)

Exact analytic expressions to calculate both µ0(γ̂2) and σ0(γ̂2) will be provided
in Section 4 (see Equations (16) and (17)). By definition (see (2)), the value of γ̂2

cannot take values below zero; and, therefore, neither can Zt, while neither of
them are upperly bounded. Moreover, practitioners will be mainly interested in
avoiding unforeseen rises in the relative variability of the multivariate process
being monitored. This is why, in this case, we propose using a one-sided control
chart to detect unexpected increases in γ. More precisely, we define the following
upper control limit (UCL) for our chart:

UCL = µ0(γ̂
2) + K

√
λ

2− λ
σ0(γ̂

2), (8)
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where K > 0 is a chart parameter that represents the distance between the CL
and the UCL expressed in number of standard deviations of Zt.

Both λ and K are constant parameters to be determined by the final user.
The value of these parameters directly affects the performance of the chart
—more specifically, (i) its ability to detect abnormal or undesired shifts of the
parameter γ and (ii) its expected false alarm rate. In Section 6, we propose a means
to automatically determine the values of λ and K in an optimal way, according
to any given performance requirements stated by the user. Beforehand, Section 5
will detail how the performance of this chart can be measured.

4. Sampling distribution of γ̂2

In this section, necessary theoretical results regarding the sampling distribu-
tion of the MCV are derived. More precisely, an expression for the cumulative
distribution function (cdf) of the square of the sample MCV will be obtained, as
well as for its mean and its standard deviation.

4.1. cdf of γ̂2

Based on Wijsman 23 , Yeong et al. 17 deduced that

n(n− p)
(n− 1)pγ̂2 ∼ F

(
p, n− p,

n
γ2

)
, (9)

where F(ν1, ν2, δ) stands for the (singly) noncentral F distribution with ν1 and ν2
degrees of freedom and noncentrality parameter δ24,25. This distribution can be
seen as a particular case of the doubly noncentral F distribution F(ν1, ν2, δ1, δ2)25

with the second noncentrality parameter δ2 = 0. Actually, we will always use the
notation with four parameters from now on, even if the last parameter δ2 = 0.
As in the ordinary version of the F distribution, the following equivalence holds
(by definition; see Equation (A.1) in Appendix A):

(F(ν1, ν2, δ1, δ2))
−1 ∼ F(ν2, ν1, δ2, δ1). (10)

More details on the singly and doubly noncentral F distributions can be found
in Johnson et al. 26 , Paolella 27 , Walck 28 and Forbes et al. 29 .

From (9) and (10), it follows that

(n− 1)p
n(n− p)

γ̂2 ∼ F
(

n− p, p, 0,
n
γ2

)
. (11)

The cdf Fγ̂2(u | n, p, γ) of γ̂2 can be easily derived from (9) in a similar way
to that used for γ̂ by Yeong et al. 17 :

Fγ̂2(u | n, p, γ) = 1− FF′

(
n(n− p)
(n− 1)pu

∣∣∣∣ p, n− p,
n
γ2 , 0

)
, (12)
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where FF′ stands for the cdf of a singly noncentral F distribution with degrees
of freedom p and n− p and noncentrality parameter n/γ2.

4.2. Raw moments. Mean and standard deviation of γ̂2

4.2.1. General case
In order to calculate the mean and the standard deviation of the sample

MCV-squared, γ̂2 (which will be mainly applied to obtain µ0(γ̂2) and σ0(γ̂2)),
we introduce the following workable expressions for the first and second raw
moments of F′′ ∼ F(n− p, p, 0, n/γ2):

µ′1(F′′) =
p
2
C
( p

2
− 1,− n

2γ2

)
, (13)

µ′2(F′′) =
p2

4(p− 4)

(
2

n− p
+ 1
)(

2−
( n

γ2 + p− 4
)
C
( p

2
− 1,− n

2γ2

))
. (14)

The term C(a, z) can be calculated as the following continued fraction:

C(a, z) =
1

a +
− az

a + 1 +
z

a + 2 +
− (a + 1)z

a + 3 +
2z

a + 4 +
− (a + 2)z

a + 5 +
3z

a + 6 + · · ·

. (15)

Appendix A shows how these equations were derived. Other equivalent
expressions for either the raw moments of a doubly noncentral F variable
or its mean and standard deviation are available in the literature (see26

and27, for instance). Expressions (13) to (15) have been successfully tested
for computational accuracy by us, which is why we use and report them here.

Therefore, and taking Equation (11) into account, the average and the
standard deviation of γ̂2 can be easily computed using

µ(γ̂2) =
n(n− p)
(n− 1)p

µ′1(F′′) and (16)

σ(γ̂2) =
n(n− p)
(n− 1)p

√
µ′2(F′′)− (µ′1(F′′))2. (17)
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4.2.2. Case p ≤ 4
Note that, as mentioned in Appendix A, the first raw moment of F′′, µ′1(F′′),

is not defined when p ≤ 2, while the second raw moment, µ′2(F′′), is not defined
when p ≤ 4. Therefore, expressions (16) and (17) are supposed to be valid only
for p > 2 and p > 4, respectively; formally speaking, µ(γ̂2) and σ(γ̂2) do not
exist when p ≤ 2 and p ≤ 4, respectively.

In this paper, we only use µ(γ̂2) and σ(γ̂2) as a means to calculate the CL
and UCL of the chart being constructed (see Section 3), following the traditional
scheme of EWMA charts. Continuing with this approach, we propose addressing
those specific cases in which the dimension p of the quality characteristic being
studied is less than or equal to 4 in the following way:

Case p = 1 (unidimensional) The expressions (13) and (14) we have derived
for the raw moments of F′′ can be calculated to a finite value when p = 1,
and so do the mean and the standard deviation of the sample MCV-squared
according to Equations (16) and (17), as long as µ′2(F′′) ≥ (µ′1(F′′))2. The
values obtained in this way were validated using Monte-Carlo simulation,
and therefore, we consider that they could still be used in their roles,
despite the fact that according to probability theory, the distribution
of γ̂2 does not have any mean or standard deviation in this case. The
behaviour of this extension of µ(γ̂2) and σ(γ̂2) to cases in which they do
not theoretically exist can be seen in an example in Appendix B.

Case p = 2 In this case, both the first and the second raw moments of F′′

compute to infinity, mostly because of the presence of a very skewed
right-hand tail in the distribution of F′′. We propose skipping this issue
by calculating a truncated or trimmed version of them, according to the
following procedure:

Step 1 Fix a small value ε (for instance, 10−4, 10−5, etc.) that will be used
for right-trimming the distribution of F′′.

Step 2 Calculate u0 = F−1
F′′ (1 − ε|n − p, p, 0, n/γ2) or, equivalently (re-

call (10)), u0 = 1/F−1
F′ (ε|p, n − p, n/γ2, 0), where F′′ ∼ F(n −

p, p, 0, n/γ2) and F′ ∼ F(p, n − p, n/γ2, 0). To minimise computa-
tional errors, the second way to calculate u0 is recommended, since
most of the available implementations of F−1

F′′ show accuracy issues
when evaluated at values close to 1.

Step 3 Calculate the trimmed versions of µ′1(F′′) and µ′2(F′′) as:

µ̃′1(F′′) =
1

1− ε

∫ u0

0
u fF′′(u)du, (18)

µ̃′2(F′′) =
1

1− ε

∫ u0

0
u2 fF′′(u)du, (19)
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where fF′′ stands for the probability density function of F′′. These
integrals can be numerically calculated using the usual methods such
as the adaptive Gauss-Kronrod rules (see30, for instance).

Step 4 Similar to Equations (16) and (17) in the general case, calculate the
trimmed versions of µ(γ̂2) and σ(γ̂2) as follows:

µ̃(γ̂2) =
n(n− p)
(n− 1)p

µ̃′1(F′′), (20)

σ̃(γ̂2) =
n(n− p)
(n− 1)p

√
µ̃′2(F′′)− (µ̃′1(F′′))2. (21)

The reason why this is an appropriate way to substitute the nonexistent
values of µ′1(F′′) and µ′2(F′′) is further developed in Appendix B.

Case p = 3 In this case, µ′1(F′′) and, therefore, µ(γ̂2) exist and can be normally
computed to finite values using Equations (13) and (16), respectively.
Besides, as in Case p = 1, µ′2(F′′) and σ(γ̂2) do not theoretically exist, but
the value returned by expressions (14) and (17) are acceptable according
to Monte-Carlo simulation.

Case p = 4 In this case, µ′1(F′′) and µ(γ̂2) can be calculated once more as in the
general case (Equations (13) and (16)), while µ′2(F′′) computes to infinity
and, therefore, as in Case p = 2, the trimmed version of σ(γ̂2) should be
used, in a similar way to Equation (21):

σ̃(γ̂2) =
n(n− p)
(n− 1)p

√
µ̃′2(F′′)− (µ′1(F′′))2, (22)

with µ̃′2(F′′) calculated as in Equation (19).

To sum up, in the case p ∈ {1, 2, 3, 4}, appropriate substitutes for µ0(γ̂2)
and σ0(γ̂2) can be found, either by directly applying Equations (16) and (17)
or by calculating their trimmed versions in Equations (20) and (21), or (22), as
explained previously.

5. Performance measures

The performance of a given control chart with fixed sample size and fixed
sampling interval is usually measured in terms of its average run length (ARL),
that is to say, how many samples have to be drawn, on average, in order to
obtain a point Zt outside the control limits, depending on the actual value of
the parameter under study (γ, in our case). The standard deviation of the run
length (SDRL) can also be given as additional information.
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In this paper, the approach based on discrete-state Markov chains is used to
estimate the ARL and SDRL of a control chart such as the one described in
Section 3 for a process operating under a given value of the MCV γ. Simulation
will also be used as an auxiliary method in order to double check the accuracy
of the estimations obtained with the Markov approach.

The ARL approximation by discrete-state Markov chains was first introduced
by Brook and Evans 31 for the case of cumulative-sum control charts. Later, Lucas
and Saccucci 22 explicitly extended it to EWMA charts. In the following, we
briefly describe how to adapt it to the one-sided EWMA chart for γ̂2 that we are
proposing here.

From a Markov-chain point of view, the ARL is the expected number of steps
or transitions needed to reach the absorbing state of being outside the control
limits starting from the initial state. More precisely, a control chart is actually
seen as a discrete-time continuous-state Markov process, in which each sample t
would be a step, each possible value of Zt within the control limits would be a
different transient state, and the range of values outside the control limits would
represent a unique absorbing state. For the sake of computability, this model is
approximated by a discrete-state Markov chain, in which the range within control
limits is divided into s equally wide subintervals, each of them representing a
transient state (see Figure 1). The larger the number of subintervals s, the better
the approximation to the continuous original setting. Consequently, existing
formulae can be used in order to calculate the expected number of steps to
absorption. These formulae require the computation of the s× s matrix Q of
transition probabilities between transient states and the column vector q of s initial
probabilities. The following algorithm summarises the procedure of computing
the ARL and SDRL of the EWMA chart proposed in Section 3, for a shifted
MCV γ = γ1.

Algorithm 1: Calculation of the ARL and SDRL of the EWMA chart for the MCV-
squared
Input information: n, p, γ0, γ1, λ, UCL, s.

Step 1 Calculate the width of each subinterval w = UCL/s.

Step 2 Calculate the lower and upper limits and midpoint of each subinterval
[eL

j , eU
j ]:

eL
j = (j− 1)w,

eU
j = jw,

hj = (eL + eU)/2,
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j = 1, . . . , s (i.e., eU
j−1 = eL

j , for j = 2, . . . , s). The midpoints hj will be
considered as the representatives of each subinterval when calculating the
transition probabilities (see Step 3).

Step 3 Calculate the elements of the matrix of transition probabilities Q =
[qi,j]i,j=1,...,s:

qi,j = Pr(eL
j ≤ Zt ≤ eU

j | Zt−1 = hi)

using Equation (5): = Fγ̂2

( eU
j − (1− λ)hi

λ

∣∣∣∣ n, p, γ1

)
− Fγ̂2

( eL
j − (1− λ)hi

λ

∣∣∣∣ n, p, γ1

)
,

for i, j = 1, . . . , s, using Equation (12).

Step 4 Calculate the vector of initial probabilities q = (q1, . . . , qs)T. All the
components of this vector are equal to zero except the one corresponding
to the subinterval containing the value Z0 = µ0(γ̂2) (which has already
been calculated using Equation (16) or (20) with γ = γ0 when computing

LCL = 0eL
1

h1

eL
2 = eU

1

1st subinterval

h2

eL
3 = eU

2

2nd subinterval

eL
j = eU

j−1

hj

eL
j+1 = eU

j

j-th subinterval
w/2

w/2

eL
j0 = eU

j0−1

hj0

eL
j0+1 = eU

j0

j0-th subinterval
CL = Z0

eL
s = eU

s−1

hs

eU
s

s-th subinterval

UCL

Out-of-control zone

Figure 1: Subdivision of the in-control range into s equally spaced
subintervals, according to the Markov approach explained in Algorithm 1.

11



the UCL). Therefore:

qj =

{
1, if j = j0
0, otherwise

,

where j0 = dµ0(γ̂2)/we; d·e stands for the ceiling function, which returns
the lowest integer being greater than or equal to a given real number.

Step 5 Return the ARL and SDRL, which can be calculated as follows:

ARL(γ1 | n, p, λ, K) = qT(I−Q)−11, (23)

SDRL(γ1 | n, p, λ, K) =
√

2qT(I−Q)−2Q1−ARL2 + ARL, (24)

where I stands for the s× s identity matrix and 1 = (1, . . . , 1)T.

The equations in Step 5 were introduced by Brook and Evans 31 and are
either totally or partially reproduced by Montgomery 20 , Lucas and Saccucci 22

and Castagliola et al. 32 , among others.
Also, note that the initial probabilities calculated in Step 4 correspond to

the so-called initial starting or zero state. Alternatively, a vector of steady-state
probabilities could also be given; Lucas and Saccucci 22 explained how this vector
can be calculated if necessary.

6. Optimal determination of the chart’s parameters

6.1. Optimisation model and solving strategies
As explained in Section 3, it is advisable to provide practitioners with a

method to determine the optimal values of the parameters λ and K that make the
proposed EWMA chart meet some given performance requirements. Generally
speaking, any control chart with a fixed sampling interval should present a
small false alarm rate, which means a large enough ARL when the process
is in control; at the same time, the ARL when the process is operating under
undesired conditions should be as small as possible (see33, for instance). In
the case of our EWMA chart for the MCV-squared, both conditions can be
simultaneously achieved by means of the following optimisation model:

Min f (λ, K) := ARL(λ, K | n, p, γ1)

s.t.: ARL(λ, K | n, p, γ0) = ARL0

0 < λ ≤ 1, K > 0
. (25)

In model (25), γ0 represents the in-control value of the MCV, γ, while γ1 > γ0
stands for an unacceptably shifted value of γ; ARL0 is the desired in-control
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ARL (presumably high). All of them are parameters to be provided by the
final user (representing the requirements to be fulfilled by the control chart
being designed), together with n and p. It is, therefore, a constrained nonlinear
optimisation problem with two continuous variables to be determined, λ and K
(the chart’s parameters).

Actually, since the only constraint in model (25) is an equality, it is somehow
equivalent to an unconstrained univariate problem, as long as the value of any
of the decision variables, λ or K, can be obtained from and is determined by
the value of the other one through the equation in the model. That is why we
suggest using the following approach.

Algorithm 2: Determination of the optimal values of the parameters of the EWMA chart
for the MCV-squared
Stage 1 Implement a method to determine the value K0(λ) of K such that

ARL(λ, K0(λ) | n, p, γ0) = ARL0, for any given λ. This can be done by
means of any appropriate root-finding technique. This method will be
intensively used in Stage 2.

Stage 2 Look for the value λ∗ such that λ∗ = arg min f (λ, K0(λ)), the only
constraints being the bounds on λ: 0 < λ ≤ 1 (in practice, a lower bound
for λ such as 0.01, for instance, can be considered). This can be done
by means of any suitable unconstrained nonlinear global optimisation
method.

Stage 3 The optimal solution to model (25) is given by (λ∗, K∗ = K0(λ∗)).

Since an analytic, explicit expression for the ARL of our chart is not available (see
Algorithm 1 in Section 5), the use of derivative-free methods in Stages 1 and 2
becomes almost necessary. As a result of its own definition, the behaviour of the
ARL as a function of K —the rest of the parameters being fixed— is expected to
be monotonic and smooth, which makes any well-performed (derivative-free)
root-finding method suitable for Stage 1. Besides, the optimal value of λ in
Stage 2 is also expected to be findable without much trouble using any classical
method, since the search is limited to a bounded set, ]0, 1]. Computationally
speaking, the calculations of the ARL and K0(λ) at each iteration of the numerical
method being applied in Stage 2 are, presumably, the main bottlenecks to pay
attention to.

6.2. Implementation of the chart
As a guide for practitioners, we now summarise the steps to be followed to

carry out a monitoring plan based on our proposal.

PHASE I

13



Step 1 Collect exploratory data from the process being studied, organised
as m n-unit independent random samples, equally spaced in time. For
each sample t, statistics such as γ̂t, X̄t and St can be calculated using
Equations (2), (3) and (4). It is traditionally suggested that m = 20. See
also general recommendations by Vining 34 regarding Phase I.

Step 2 Check whether it can be assumed that the MCV is constant in our process.
As suggested by Yeong et al. 17 , this can be done by performing a regression
analysis based on the pairs of data {(X̄T

t X̄t, γ̂2
t )}t=1,2,...,m collected in Step 1.

If no significant relationship between γ̂2 and X̄TX̄ can be inferred, then the
MCV can be assumed to be constant.

Step 3 Determine or estimate the in-control MCV, γ0. This can be carried
out using the in-control samples collected in Step 1; additional random
samples (up to a total of m in-control samples) can be drawn. More
precisely, the following estimation for γ0 was suggested by both Yeong
et al. 17 and Lim et al. 18 : γ̂0 = (∑m

t=1 γ̂2
t /m)1/2.

CHART DESIGN

Step 4 Decide the values for ARL0 (ARL to be reached by the chart when
in control) and γ1 (an unacceptable, shifted value of γ to be detected,
γ1 > γ0), according to the stated quality requirements to be met by the
process.

Step 5 Calculate µ0(γ̂2) and σ0(γ̂2) as explained Subsection 4.2, taking the value
of γ0 estimated in Step 3. These calculated values are used in Steps 6
and 7.

Step 6 Find λ∗ and K∗, the optimal values for λ and K, by solving model (25)
using Algorithm 2 as described in Subsection 6.1 above.

Step 7 Calculate the CL as µ0(γ̂2) and the UCL of the chart according to
Equation (8), using the optimal values for λ and K found in Step 6.

PHASE II

Step 8 Initialise the chart by setting Z0 = CL = µ0(γ̂2).

Step 9 Start the regular monitoring process, taking n-unit random samples at
equal time intervals. For each sample t, calculate the EWMA statistic
Zt according to Equation (5). An out-of-control signal must be raised
whenever Zt > UCL.
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This is the complete scheme to be followed to apply the chart from the
beginning as operating under a zero-state situation. The steps and calculations
(specially the computations of the ARL in Step 6) should be adapted for the
steady-state case.

7. Computational experiments

7.1. Implementation details
The methodology described in the preceding sections was implemented

in Scilab 6.0.035 on a computer running a Windows operating system. The
following three functions were programmed:

• Mean_and_StDev(n, p, γ). This function returns the mean and the standard
deviation of the sample MCV-squared of a n-sized random sample of a p-
dimensional normal variable with a population MCV equal to γ, following
the formulae deduced in Subsection 4.2.

• ARL_and_SDRL(n, p, γ0, γ1, λ, K). This function returns the ARL and SDRL
of the chart proposed in this paper, following Algorithm 1 in Sec-
tion 5. Note that, in accordance with Algorithm 1, this function calls
Mean_and_StDev to calculate the CL and the UCL of the chart by using
Equations (6) and (8).

• Optimal_λ_and_K(n, p, γ0, γ1, ARL0). This function returns the optimal
value of parameters of the chart proposed in this paper, following
Algorithm 2 in Subsection 6.1. In accordance with Algorithm 2, this
function calls ARL_and_SDRL when needed.

A total of 300 nested fractions to calculate C according to Equation (15) in
Mean_and_StDev were found to converge with sufficient accuracy in preliminary
tests, as well as a number of s = 400 Markov-chain states in ARL computations
(see Section 5) in ARL_and_SDRL. Built-in Scilab functions were used for Stages 1
and 2 of the optimisation strategy (see Section 6) in Optimal_λ_and_K. More
precisely, a modification of the Powell hybrid method36 was applied as a
root-finding technique, while the Nelder-Mead algorithm37 was used as a
derivative-free minimisation technique. All these details are given for the sake
of reproducibility.

7.2. Benchmark instances
Below, we show the outcomes from calculating the optimal values of λ

and K for the set of instances resulting from combining these parameter
values: p ∈ {1, 2, 3, 4, 5, 6, 7, 8}, n ∈ {5, 10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
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τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, where τ = γ1/γ0; cases not satisfying n > p have
been omitted. For the sake of comparison with the charts by Yeong et al. 17

and Lim et al. 18 , ARL0 was set to 370.4, which is a usual reference value since
it happens to be the ARL for a Shewhart X̄ chart with typical control limits
µ0 ± 3σ0/

√
n for a normally-distributed in-control process.

The purpose of this extensive set of performance calculations under different
input settings is three-fold: it allows us to show the efficiency of our method
and to compare it against existing proposals; it also facilitates comparison with
future research on this topic; and finally, it provides practitioners with useful
and easy-to-use look-up tables.

The results of a performance comparison with Yeong et al. 17 and Lim et al. 18

in terms of the out-of-control ARL and SDRL (i.e., ARL(γ1) and SDRL(γ1)) are
also presented. More precisely, our chart (which will be identified as EWMA chart
for short) was separately compared against the upward chart (the one designed
to detect increases in γ) from each of these papers, only using those instances
with results reported by the authors in each case; namely, those combining
p ∈ {2, 3, 4}, n ∈ {5, 10, 15}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, τ ∈ {1.2, 1.5, 2.0} for the
chart by Yeong et al. 17 (abbreviated MCV chart when needed); and p ∈ {2, 3},
n ∈ {5, 10}, γ0 ∈ {0.1, 0.3, 0.5}, τ ∈ {1.1, 1.25, 1.5} in the case of Lim et al. 18

(also referred to here as RS chart).

7.3. Numerical results
Table 1 contains the values of µ0(γ̂2) and σ0(γ̂2), the mean and the standard

deviation of the sample MCV-squared when the process operates under γ = γ0,
calculated using Equations (16) and (17), respectively, for the values of n, p and
γ0 being considered (note that µ0(γ̂2) will also become the CL of the chart in each
case). According to what was explained in Subsection 4.2.2, Equation (20) was
used instead of Equation (16) to calculate µ̃0(γ̂2) when p = 2, and Equations (21)
and (22) were used instead of Equation (17) to calculate σ̃0(γ̂2) for p = 2 and
p = 4, respectively. A value of ε = 10−5 was used in those cases.

Tables 2 to 9 show, for each of the values of p being considered, the outcomes
of solving model (25) using Algorithm 2 for the aforementioned set of instances.
More precisely, the optimal values λ∗ and K∗ of λ and K are shown, together
with the resulting UCL, ARL(γ1) and SDRL(γ1).

As expected, the optimal out-of-control ARL decreases when the shift to
detect τ increases (from an average number of 37.2651 samples when τ = 1.1 to
2.6883 for τ = 2.0; these average values are calculated considering the results
of all the tested instances). A similar behaviour is observed with regards to n:
the larger the sample size, the smaller the number of samples needed to detect
an out-of-control situation on average (from 24.8985 samples when n = 5 to
7.19384 when n = 20, which are average results based on the tested instances
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with p ≤ 4). On the other hand, an increase in the dimension p results in an
increase in the optimal ARL(γ1), provided that the rest of parameters remain
constant (8.60874 for p = 1 versus 15.8993 for p = 8 on average, based on the
instances with n ≥ 10). The effect of a higher in-control MCV γ0 is a slight
increase in the average number of samples needed to detect the same relative
shift (from 13.5346 for γ0 = 0.1 to 17.6951 for γ0 = 0.5, on average). Similar
conclusions can be drawn for the out-of-control SDRL.

7.4. Comparison with existing alternatives
The results shown in Subsection 7.3 compare very favourably with the

performance entries reported by Yeong et al. 17 and Lim et al. 18 for their
respective charts. Table 10 shows the relative variation of the ARL and the SDRL
(both in percentages) in the EWMA chart with regards to the MCV chart for
each of the instances considered in the paper by Yeong et al. 17 . Table 11 contains
the same information regarding the RS chart for the instances considered by
Lim et al. 18 .

Decreases in the out-of-control ARL of 38.5–76.8% are recorded in the EWMA
chart with respect to the MCV chart, for all the cases being compared. The
outperformance of our chart is observed to be higher for smaller shifts τ, larger
sample sizes, higher values of γ0 and larger values of p, in decreasing order of
significance. As for the SDRL, an increase of up to 148.2% was observed in 24%
of the instances being compared, mostly associated with the case τ = 2.0.

Similar results can be seen from the comparison with the RS chart: our chart
reduces the ARL by 41.5 to 67.4% in all the compared instances. The decrease in
the ARL is significantly higher for smaller shifts τ; the rest of the parameters
(n, p and γ0) do not exert any relevant effect. Some 25% of the cases register an
increase in the SDRL, mostly when τ takes the highest value considered in the
comparison.

8. Illustrative example

A funding company makes investments in p = 3 industrial sectors S1
(automotive), S2 (aeronautic) and S3 (electronic), in n = 5 world regions R1
(Africa), R2 (North America), R3 (South America), R4 (Asia) and R5 (Europe).
The rates of return (in %) of this company are provided in Table 12 from 2000
to 2016 for the p = 3 industrial sectors {S1, S2, S3} and the n = 5 world regions
{R1, R2, R3, R4, R5}. For instance, in 2000, the rate of return for sector S1 and
region R1 was 17.8% which means that, if this company invested V, then the
gain was (1+ 0.178)×V = 1.178×V (no matter the real value of V). A negative
rate of return implies a loss for the company (this does not happen here). For a
single characteristic (a particular industrial sector), the volatility of an investment
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can be quantified by the standard deviation of the rate of return. The greater
the volatility the greater the investment risk (you can gain a lot but you can
also gain little or even lose a lot). If volatility can be used as a measure of risk
for an investment, the coefficient of variation is a better measure of risk. It
quantifies the dispersion of an investment’s returns in relation to the expected
return, and, thus, the relative risk of the investment. Hence, the coefficient of
variation permits comparison between different investments. This is also the
same for the multivariate coefficient of variation when several characteristics are
combined (here, p = 3 industrial sectors).

In Table 12, for years 2000–2016, we also present the estimated mean vectors
X̄, the estimated variance-covariance matrices S and the estimated multivariate
coefficients of variation squared γ̂2. The values for γ̂2 are also plotted in
Figure 2(top). Years 2000–2009 are considered by the company as satisfactory in
terms of investment returns and these years are used here as a Phase I sample
for estimating the in-control multivariate coefficients of variation squared γ2

0.
Using the average of the values obtained during the period 2000–2009, we have
γ̂2

0 = 0.00163769 (i.e. γ̂ = 0.0404684). In order to detect a change of τ = 2
from γ0 to γ1 = 2× γ0, an EWMA γ2 chart was designed for n = 5, p = 3 and
ARL0 = 370.4. Based on Equations (16) and (17), we have µ0(γ̂2) = 0.000819114
and σ0(γ̂2) = 0.000820298. Moreover, the optimal values (obtained using the
optimization algorithm presented in Section 6) for this EWMA γ2 chart are
λ = 0.2314 and K = 3.622. This gives the upper control limit of the EWMA γ2

chart as

UCL = 0.000819114 + 3.622×
√

0.2314
2− 0.2314

× 0.000820298 = 0.001894,

according to Equation (8).
The rightmost column of Table 12 provides the EWMA values Z computed

from the γ̂2 values. These values are also plotted in Figure 2(bottom) along with
the upper control limit UCL = 0.001894. As it can immediately be noticed, from
2012 to 2016, several out-of-control situations (in bold in Table 12) are detected
by the EWMA γ2 chart clearly illustrating that a change occurred in the rates of
return of the funding company.

9. Conclusions and future research

A new one-sided EWMA chart for the MCV-squared of a multidimensional
normal process was developed, including optimisation of the chart parameters
λ and K with respect to performance requirements in terms of the ARL using
derivative-free algorithms. The derivation of explicit expressions for the CL
and UCL of the chart was addressed by means of a theoretical study of the
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p n γ0 µ0(γ̂
2) σ0(γ̂

2) p n γ0 µ0(γ̂
2) σ0(γ̂

2) p n γ0 µ0(γ̂
2) σ0(γ̂

2) p n γ0 µ0(γ̂
2) σ0(γ̂

2)

1 5 0.1 0.010061 0.007201 3 5 0.1 0.005010 0.005051
1 5 0.2 0.041001 0.030476 3 5 0.2 0.020164 0.020840
1 5 0.3 0.095364 0.076005 3 5 0.3 0.045858 0.049559
1 5 0.4 0.178635 0.161619 3 5 0.4 0.082858 0.096345
1 5 0.5 0.303758 0.335545 3 5 0.5 0.132594 0.175019

1 10 0.1 0.010030 0.004781 3 10 0.1 0.007786 0.004199 5 10 0.1 0.005550 0.003535 7 10 0.1 0.003323 0.002727
1 10 0.2 0.040490 0.019945 3 10 0.2 0.031237 0.017306 5 10 0.2 0.022133 0.014392 7 10 0.2 0.013174 0.010971
1 10 0.3 0.092547 0.048173 3 10 0.3 0.070648 0.040917 5 10 0.3 0.049546 0.033331 7 10 0.3 0.029197 0.024903
1 10 0.4 0.168375 0.094844 3 10 0.4 0.126540 0.077986 5 10 0.4 0.087443 0.061629 7 10 0.4 0.050815 0.044755
1 10 0.5 0.271636 0.170682 3 10 0.5 0.199726 0.133565 5 10 0.5 0.135322 0.101141 7 10 0.5 0.077244 0.070742

1 15 0.1 0.010020 0.003828 3 15 0.1 0.008577 0.003534 5 15 0.1 0.007138 0.003218 7 15 0.1 0.005703 0.002870
1 15 0.2 0.040324 0.015896 3 15 0.2 0.034378 0.014560 5 15 0.2 0.028495 0.013150 7 15 0.2 0.022675 0.011637
1 15 0.3 0.091671 0.038037 3 15 0.3 0.077614 0.034362 5 15 0.3 0.063898 0.030618 7 15 0.3 0.050508 0.026739
1 15 0.4 0.165416 0.073605 3 15 0.4 0.138655 0.065169 5 15 0.4 0.113053 0.056957 7 15 0.4 0.088534 0.048826
1 15 0.5 0.263686 0.128197 3 15 0.5 0.218053 0.110367 5 15 0.5 0.175543 0.093988 7 15 0.5 0.135835 0.078650

1 20 0.1 0.010015 0.003283 3 20 0.1 0.008952 0.003100 5 20 0.1 0.007891 0.002906 7 20 0.1 0.006832 0.002700
1 20 0.2 0.040242 0.013605 3 20 0.2 0.035861 0.012766 5 20 0.2 0.031516 0.011896 7 20 0.2 0.027205 0.010987
1 20 0.3 0.091243 0.032408 3 20 0.3 0.080894 0.030102 5 20 0.3 0.070731 0.027771 7 20 0.3 0.060751 0.025396
1 20 0.4 0.164003 0.062226 3 20 0.4 0.144332 0.056960 5 20 0.4 0.125297 0.051808 7 20 0.4 0.106868 0.046729
1 20 0.5 0.260019 0.106976 3 20 0.5 0.226592 0.096010 5 20 0.5 0.194869 0.085708 7 20 0.5 0.164719 0.075942

2 5 0.1 0.007530 0.006207 4 5 0.1 0.002500 0.003553
2 5 0.2 0.030493 0.025933 4 5 0.2 0.010000 0.014473
2 5 0.3 0.070117 0.063086 4 5 0.3 0.022500 0.033624
2 5 0.4 0.128885 0.127323 4 5 0.4 0.040000 0.062773
2 5 0.5 0.211854 0.252166 4 5 0.5 0.062497 0.105388

2 10 0.1 0.008906 0.004497 4 10 0.1 0.006667 0.003878 6 10 0.1 0.004436 0.003155 8 10 0.1 0.002213 0.002222
2 10 0.2 0.035843 0.018644 4 10 0.2 0.026667 0.015883 6 10 0.2 0.017636 0.012770 8 10 0.2 0.008748 0.008887
2 10 0.3 0.081490 0.044544 4 10 0.3 0.060000 0.037159 6 10 0.3 0.039280 0.029276 8 10 0.3 0.019293 0.019975
2 10 0.4 0.147085 0.086228 4 10 0.4 0.106667 0.069713 6 10 0.4 0.068836 0.053356 8 10 0.4 0.033353 0.035414
2 10 0.5 0.234625 0.150994 4 10 0.5 0.166667 0.116672 6 10 0.5 0.105556 0.085887 8 10 0.5 0.050278 0.055025

2 15 0.1 0.009298 0.003683 4 15 0.1 0.007857 0.003378 6 15 0.1 0.006420 0.003049 8 15 0.1 0.004987 0.002681
2 15 0.2 0.037342 0.015231 4 15 0.2 0.031429 0.013858 6 15 0.2 0.025577 0.012409 8 15 0.2 0.019788 0.010828
2 15 0.3 0.084596 0.036191 4 15 0.3 0.070714 0.032483 6 15 0.3 0.057163 0.028701 8 15 0.3 0.043933 0.024718
2 15 0.4 0.151878 0.069313 4 15 0.4 0.125714 0.060996 6 15 0.4 0.100663 0.052892 8 15 0.4 0.076659 0.044730
2 15 0.5 0.240440 0.118960 4 15 0.5 0.196429 0.101905 6 15 0.5 0.155357 0.086215 8 15 0.5 0.116944 0.071232

2 20 0.1 0.009483 0.003192 4 20 0.1 0.008421 0.003003 6 20 0.1 0.007361 0.002804 8 20 0.1 0.006303 0.002591
2 20 0.2 0.038047 0.013186 4 20 0.2 0.033684 0.012330 6 20 0.2 0.029356 0.011447 8 20 0.2 0.025062 0.010514
2 20 0.3 0.086042 0.031248 4 20 0.3 0.075789 0.028926 6 20 0.3 0.065719 0.026591 8 20 0.3 0.055828 0.024185
2 20 0.4 0.154080 0.059551 4 20 0.4 0.134737 0.054337 6 20 0.4 0.116008 0.049263 8 20 0.4 0.097871 0.044200
2 20 0.5 0.243073 0.101338 4 20 0.5 0.210526 0.090705 6 20 0.5 0.179605 0.080766 8 20 0.5 0.150197 0.071220

Table 1: Expected value (µ0(γ̂
2)) and standard deviation (σ0(γ̂

2)) of the sample MCV-squared, γ̂2, for different values of n, p and γ0, calculated as in Equations (16)
and (17). Entries in bold represent nonexistent values that have been replaced by their trimmed versions, computed according to Equations (20), (21) (for the
trimmed mean and standard deviation when p = 2) and (22) (for the trimmed standard deviation when p = 4); see also Subsection 4.2.2.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 5

0.1 (0.0106 , 1.3316); 0.0108 (0.0406 , 2.2023); 0.0123 (0.0587 , 2.4348); 0.0131 (0.1875 , 3.2105); 0.0175 (0.3875 , 3.7770); 0.0234
(38.0189 , 26.8192) (17.9581 , 11.6940) (13.5069 , 8.7772) (5.3865 , 3.6508) (2.3168 , 1.4813)

0.2 (0.0106 , 1.3357); 0.0440 (0.0376 , 2.1693); 0.0502 (0.0532 , 2.3961); 0.0531 (0.1625 , 3.1764); 0.0698 (0.3000 , 3.6840); 0.0882
(38.9156 , 27.7666) (18.4706 , 12.1147) (13.9435 , 9.1023) (5.6265 , 3.8044) (2.4527 , 1.5543)

0.3 (0.0102 , 1.3166); 0.1025 (0.0102 , 1.3166); 0.1025 (0.0422 , 2.2720); 0.1207 (0.1297 , 3.1102); 0.1576 (0.2586 , 3.7461); 0.2051
(40.4097 , 29.4577) (18.7833 , 11.4164) (14.7524 , 9.6377) (6.0743 , 4.1136) (2.6939 , 1.7538)

0.4 (0.0103 , 1.2918); 0.1936 (0.0103 , 1.2919); 0.1936 (0.0103 , 1.2919); 0.1936 (0.0797 , 2.7949); 0.2707 (0.1735 , 3.5502); 0.3555
(43.2610 , 32.7561) (19.9824 , 12.8041) (15.5318 , 9.5622) (6.8155 , 4.5428) (3.0784 , 2.0311)

0.5 (0.0102 , 1.2106); 0.3329 (0.0121 , 1.3241); 0.3384 (0.0141 , 1.4320); 0.3442 (0.0324 , 2.0767); 0.3932 (0.1001 , 3.1622); 0.5473
(48.3997 , 39.1636) (22.4349 , 15.5963) (17.5563 , 11.8017) (7.9684 , 5.2304) (3.6787 , 2.4830)

n = 10

0.1 (0.0150 , 1.5416); 0.0107 (0.1002 , 2.6525); 0.0129 (0.1255 , 2.7759); 0.0135 (0.3508 , 3.3623); 0.0174 (0.6439 , 3.7207); 0.0223
(24.9511 , 15.0345) (10.5149 , 6.6706) (7.7627 , 4.7910) (3.0448 , 1.9039) (1.4151 , 0.7006)

0.2 (0.0172 , 1.6399); 0.0435 (0.1000 , 2.6804); 0.0528 (0.1379 , 2.8654); 0.0560 (0.2750 , 3.2846); 0.0666 (0.6129 , 3.8083); 0.0910
(25.9095 , 15.9654) (10.9668 , 7.0974) (8.1195 , 5.2406) (3.2160 , 1.9491) (1.4979 , 0.7803)

0.3 (0.0141 , 1.5195); 0.0987 (0.0795 , 2.5867); 0.1179 (0.1125 , 2.8005); 0.1255 (0.2422 , 3.3090); 0.1517 (0.5131 , 3.8773); 0.2023
(26.9127 , 16.7618) (11.7107 , 7.4590) (8.7165 , 5.5702) (3.5093 , 2.1608) (1.6419 , 0.8972)

0.4 (0.0141 , 1.5233); 0.1806 (0.0492 , 2.3297); 0.2035 (0.0767 , 2.6186); 0.2180 (0.1938 , 3.2866); 0.2705 (0.4004 , 3.9218); 0.3545
(28.7275 , 18.5241) (12.8344 , 7.8193) (9.6064 , 5.9548) (3.9422 , 2.4513) (1.8543 , 1.0579)

0.5 (0.0106 , 1.3296); 0.2882 (0.0422 , 2.2599); 0.3283 (0.0659 , 2.5753); 0.3528 (0.1469 , 3.2136); 0.4261 (0.2721 , 3.8150); 0.5300
(30.4751 , 20.2903) (14.3244 , 8.9872) (10.8470 , 6.9214) (4.5424 , 2.8601) (2.1451 , 1.2576)

n = 15

0.1 (0.0329 , 2.0031); 0.0110 (0.1516 , 2.8079); 0.0131 (0.1827 , 2.9008); 0.0135 (0.4652 , 3.3725); 0.0171 (0.8258 , 3.6271); 0.0217
(19.4996 , 11.5686) (7.7417 , 4.8249) (5.6801 , 3.3998) (2.2384 , 1.3128) (1.1585 , 0.4155)

0.2 (0.0376 , 2.0942); 0.0449 (0.1456 , 2.8194); 0.0529 (0.1750 , 2.9155); 0.0547 (0.4189 , 3.3885); 0.0681 (0.7756 , 3.7041); 0.0872
(20.2008 , 12.4072) (8.1040 , 5.1063) (5.9564 , 3.6098) (2.3696 , 1.3909) (1.2072 , 0.4781)

0.3 (0.0438 , 2.1970); 0.1042 (0.1253 , 2.7848); 0.1191 (0.1377 , 2.8377); 0.1210 (0.3625 , 3.4146); 0.1528 (0.6762 , 3.8025); 0.1950
(21.4423 , 13.8735) (8.7011 , 5.4667) (6.4331 , 3.8158) (2.5914 , 1.5337) (1.2968 , 0.5753)

0.4 (0.0137 , 1.5000); 0.1746 (0.0986 , 2.7024); 0.2107 (0.1193 , 2.8183); 0.2177 (0.2720 , 3.3620); 0.2636 (0.5730 , 3.9190); 0.3482
(22.4988 , 13.0925) (9.5489 , 5.9329) (7.1009 , 4.2767) (2.9076 , 1.7014) (1.4350 , 0.7054)

0.5 (0.0166 , 1.6270); 0.2828 (0.0771 , 2.6082); 0.3306 (0.0970 , 2.7600); 0.3436 (0.2002 , 3.2844); 0.4041 (0.4379 , 3.9631); 0.5327
(24.5927 , 15.1044) (10.6794 , 6.6304) (7.9933 , 4.8654) (3.3273 , 1.9468) (1.6275 , 0.8571)

n = 20

0.1 (0.0470 , 2.1856); 0.0111 (0.1600 , 2.7910); 0.0127 (0.2443 , 2.9863); 0.0137 (0.5393 , 3.3465); 0.0167 (0.9145 , 3.5287); 0.0206
(16.0667 , 9.4078) (6.2407 , 3.6156) (4.5669 , 2.7069) (1.8206 , 0.9958) (1.0622 , 0.2547)

0.2 (0.0532 , 2.2688); 0.0453 (0.1607 , 2.8225); 0.0516 (0.2220 , 2.9793); 0.0546 (0.5068 , 3.3845); 0.0671 (0.9010 , 3.6107); 0.0847
(16.6641 , 10.1286) (6.5319 , 3.8727) (4.7972 , 2.8337) (1.9262 , 1.0706) (1.0890 , 0.3073)

0.3 (0.0477 , 2.2267); 0.1025 (0.1469 , 2.8206); 0.1170 (0.2130 , 3.0162); 0.1250 (0.4648 , 3.4462); 0.1527 (0.8125 , 3.7241); 0.1911
(17.6957 , 10.8133) (7.0316 , 4.2210) (5.1907 , 3.1518) (2.1050 , 1.2009) (1.1429 , 0.3914)

0.4 (0.0313 , 2.0033); 0.1797 (0.1255 , 2.7902); 0.2089 (0.1726 , 2.9738); 0.2209 (0.3625 , 3.4326); 0.2645 (0.7313 , 3.8754); 0.3471
(19.1156 , 11.2651) (7.7366 , 4.6724) (5.7356 , 3.4575) (2.3567 , 1.3366) (1.2336 , 0.5063)

0.5 (0.0314 , 2.0198); 0.2873 (0.0986 , 2.7096); 0.3260 (0.1440 , 2.9473); 0.3479 (0.2976 , 3.4512); 0.4144 (0.5844 , 3.9760); 0.5333
(20.8678 , 12.8141) (8.6511 , 5.2017) (6.4540 , 3.9303) (2.6839 , 1.5492) (1.3686 , 0.6375)

Table 2: Optimal setting of the EWMA chart for the MCV-squared for p = 1, n ∈ {5, 10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 5

0.1 (0.0103 , 1.3181); 0.0081 (0.0344 , 2.1162); 0.0093 (0.0449 , 2.2913); 0.0097 (0.1361 , 3.0559); 0.0127 (0.3127 , 3.7348); 0.0175
(44.3806 , 33.0765) (21.4777 , 14.5503) (16.3060 , 10.8373) (6.6035 , 4.5163) (2.8162 , 1.8941)

0.2 (0.0103 , 1.3238); 0.0330 (0.0103 , 1.3238); 0.0330 (0.0500 , 2.3826); 0.0404 (0.1314 , 3.0817); 0.0517 (0.2610 , 3.6713); 0.0674
(45.4549 , 34.2081) (21.2595 , 13.2806) (16.8291 , 11.5726) (6.9007 , 4.7919) (2.9889 , 2.0084)

0.3 (0.0105 , 1.3315); 0.0762 (0.0112 , 1.3732); 0.0766 (0.0112 , 1.3732); 0.0766 (0.1079 , 3.0067); 0.1154 (0.2129 , 3.6305); 0.1492
(47.3744 , 36.3898) (22.1696 , 14.3144) (17.2814 , 10.6502) (7.4520 , 5.1832) (3.3053 , 2.2475)

0.4 (0.0103 , 1.3098); 0.1409 (0.0110 , 1.3471); 0.1416 (0.0110 , 1.3471); 0.1416 (0.0752 , 2.7879); 0.1991 (0.1501 , 3.4487); 0.2540
(50.5746 , 39.9269) (23.6727 , 15.9188) (18.4432 , 11.8793) (8.3547 , 5.7646) (3.8200 , 2.6146)

0.5 (0.0104 , 1.2211); 0.2341 (0.0131 , 1.3766); 0.2401 (0.0141 , 1.4247); 0.2421 (0.0141 , 1.4248); 0.2421 (0.0938 , 2.9752); 0.3783
(56.2020 , 46.4424) (26.8470 , 19.1351) (20.9426 , 14.3669) (9.6378 , 6.1310) (4.6406 , 3.1926)

n = 10

0.1 (0.0134 , 1.4730); 0.0094 (0.0799 , 2.5416); 0.0112 (0.1191 , 2.7653); 0.0120 (0.3007 , 3.3061); 0.0152 (0.6000 , 3.7349); 0.0199
(26.5016 , 16.2784) (11.4078 , 7.1010) (8.4288 , 5.3033) (3.3071 , 2.0595) (1.5101 , 0.7897)

0.2 (0.0141 , 1.5186); 0.0382 (0.0806 , 2.5695); 0.0457 (0.1127 , 2.7646); 0.0484 (0.2783 , 3.3229); 0.0607 (0.5482 , 3.7842); 0.0792
(27.4531 , 17.1119) (11.8752 , 7.5478) (8.8084 , 5.5907) (3.4963 , 2.1955) (1.6047 , 0.8702)

0.3 (0.0110 , 1.3630); 0.0860 (0.0785 , 2.5898); 0.1048 (0.0894 , 2.6701); 0.1072 (0.2316 , 3.2997); 0.1347 (0.4912 , 3.8782); 0.1801
(28.2635 , 17.8397) (12.7026 , 8.2880) (9.4668 , 5.9211) (3.8219 , 2.4008) (1.7700 , 1.0105)

0.4 (0.0141 , 1.5245); 0.1582 (0.0565 , 2.4244); 0.1827 (0.0766 , 2.6254); 0.1923 (0.1910 , 3.2862); 0.2392 (0.3631 , 3.8446); 0.3032
(30.7563 , 20.2624) (13.8751 , 8.8564) (10.4279 , 6.6149) (4.3044 , 2.7364) (2.0143 , 1.1796)

0.5 (0.0118 , 1.4046); 0.2509 (0.0501 , 2.3866); 0.2924 (0.0501 , 2.3866); 0.2924 (0.1407 , 3.1778); 0.3666 (0.2649 , 3.7822); 0.4578
(32.9725 , 22.4195) (15.5487 , 10.2086) (11.7599 , 7.2991) (4.9720 , 3.1632) (2.3539 , 1.4181)

n = 15

0.1 (0.0376 , 2.0835); 0.0104 (0.1406 , 2.7811); 0.0121 (0.1790 , 2.9033); 0.0127 (0.4523 , 3.3816); 0.0160 (0.8133 , 3.6530); 0.0204
(20.4035 , 12.5808) (8.1546 , 5.0872) (5.9879 , 3.6415) (2.3570 , 1.4060) (1.1916 , 0.4609)

0.2 (0.0424 , 2.1659); 0.0422 (0.1255 , 2.7509); 0.0482 (0.1721 , 2.9180); 0.0510 (0.4195 , 3.4097); 0.0641 (0.7250 , 3.7030); 0.0799
(21.1889 , 13.5120) (8.5264 , 5.2774) (6.2818 , 3.8685) (2.4976 , 1.5021) (1.2469 , 0.5228)

0.3 (0.0313 , 2.0041); 0.0937 (0.1064 , 2.7007); 0.1078 (0.1441 , 2.8718); 0.1136 (0.3379 , 3.3847); 0.1398 (0.6568 , 3.8066); 0.1809
(22.3474 , 13.9039) (9.1580 , 5.6367) (6.7786 , 4.1417) (2.7325 , 1.6236) (1.3475 , 0.6286)

0.4 (0.0133 , 1.4837); 0.1603 (0.0860 , 2.6245); 0.1904 (0.1193 , 2.8234); 0.2012 (0.2848 , 3.4021); 0.2480 (0.5127 , 3.8452); 0.3084
(23.4608 , 13.8336) (10.0602 , 6.1664) (7.4915 , 4.5874) (3.0722 , 1.8511) (1.5026 , 0.7573)

0.5 (0.0149 , 1.5577); 0.2565 (0.0753 , 2.5946); 0.3015 (0.1000 , 2.7820); 0.3164 (0.2156 , 3.3419); 0.3786 (0.4250 , 3.9297); 0.4833
(25.5753 , 15.7867) (11.2576 , 7.0523) (8.4421 , 5.2424) (3.5227 , 2.1222) (1.7175 , 0.9307)

n = 20

0.1 (0.0469 , 2.1887); 0.0106 (0.1602 , 2.7989); 0.0121 (0.2344 , 2.9772); 0.0129 (0.5189 , 3.3456); 0.0158 (0.9127 , 3.5482); 0.0199
(16.6261 , 9.8643) (6.4812 , 3.8152) (4.7478 , 2.8263) (1.8878 , 1.0431) (1.0750 , 0.2811)

0.2 (0.0548 , 2.2884); 0.0431 (0.1578 , 2.8209); 0.0489 (0.2253 , 2.9952); 0.0521 (0.4953 , 3.3876); 0.0637 (0.8641 , 3.6196); 0.0797
(17.2626 , 10.6952) (6.7893 , 4.0674) (4.9901 , 3.0071) (1.9985 , 1.1258) (1.1057 , 0.3352)

0.3 (0.0478 , 2.2309); 0.0969 (0.1508 , 2.8400); 0.1114 (0.1788 , 2.9297); 0.1147 (0.4506 , 3.4396); 0.1440 (0.7816 , 3.7238); 0.1792
(18.3289 , 11.3457) (7.3147 , 4.4845) (5.3941 , 3.1695) (2.1867 , 1.2596) (1.1666 , 0.4233)

0.4 (0.0408 , 2.1596); 0.1726 (0.1125 , 2.7323); 0.1938 (0.1565 , 2.9206); 0.2048 (0.3630 , 3.4390); 0.2505 (0.6695 , 3.8342); 0.3161
(19.7947 , 12.3171) (8.0461 , 4.7954) (5.9663 , 3.5550) (2.4521 , 1.4135) (1.2676 , 0.5394)

0.5 (0.0391 , 2.1541); 0.2739 (0.0989 , 2.7122); 0.3058 (0.1318 , 2.8911); 0.3209 (0.3007 , 3.4578); 0.3905 (0.5701 , 3.9537); 0.4961
(21.7176 , 13.9539) (9.0014 , 5.4756) (6.7161 , 4.0504) (2.8002 , 1.6421) (1.4166 , 0.6826)

Table 3: Optimal setting of the EWMA chart for the MCV-squared for p = 2, n ∈ {5, 10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 5

0.1 (0.0114 , 1.3775); 0.0055 (0.0114 , 1.3775); 0.0055 (0.0145 , 1.5473); 0.0057 (0.1079 , 2.9778); 0.0086 (0.2250 , 3.6188); 0.0115
(55.4228 , 44.5164) (26.0340 , 17.5602) (20.6702 , 13.3567) (8.7773 , 6.3244) (3.7371 , 2.6591)

0.2 (0.0114 , 1.3816); 0.0223 (0.0141 , 1.5303); 0.0228 (0.0141 , 1.5303); 0.0228 (0.0953 , 2.9137); 0.0337 (0.2006 , 3.5774); 0.0451
(56.7578 , 45.9490) (27.2341 , 18.7375) (21.1757 , 13.8764) (9.1662 , 6.5868) (3.9764 , 2.8420)

0.3 (0.0110 , 1.3473); 0.0508 (0.0141 , 1.5321); 0.0523 (0.0141 , 1.5321); 0.0523 (0.0680 , 2.6858); 0.0708 (0.1627 , 3.4708); 0.0970
(58.8348 , 48.5082) (28.4920 , 20.0550) (22.1663 , 14.8958) (9.8812 , 6.9481) (4.4210 , 3.1712)

0.4 (0.0106 , 1.3121); 0.0921 (0.0106 , 1.3121); 0.0921 (0.0106 , 1.3121); 0.0921 (0.0501 , 2.4677); 0.1210 (0.1095 , 3.1684); 0.1563
(62.6297 , 52.7296) (29.7295 , 21.4705) (23.2528 , 16.0660) (11.0343 , 7.7305) (5.1521 , 3.6603)

0.5 (0.0103 , 1.2360); 0.1481 (0.0106 , 1.2499); 0.1486 (0.0106 , 1.2499); 0.1486 (0.0106 , 1.2499); 0.1486 (0.0719 , 2.7538); 0.2257
(68.5426 , 59.4569) (32.8520 , 24.7297) (25.7392 , 18.5598) (12.2691 , 8.0960) (6.3035 , 4.4508)

n = 10

0.1 (0.0156 , 1.5723); 0.0084 (0.0803 , 2.5571); 0.0100 (0.0970 , 2.6655); 0.0103 (0.2719 , 3.2818); 0.0133 (0.5521 , 3.7438); 0.0175
(28.8210 , 18.4048) (12.4802 , 8.0402) (9.2626 , 5.7680) (3.6356 , 2.2967) (1.6322 , 0.8987)

0.2 (0.0126 , 1.4453); 0.0332 (0.0766 , 2.5512); 0.0400 (0.1063 , 2.7463); 0.0425 (0.2401 , 3.2578); 0.0521 (0.5135 , 3.7913); 0.0698
(29.3366 , 18.7203) (13.0004 , 8.4440) (9.6684 , 6.2638) (3.8455 , 2.4215) (1.7409 , 0.9907)

0.3 (0.0126 , 1.4465); 0.0754 (0.0766 , 2.5835); 0.0918 (0.0766 , 2.5835); 0.0918 (0.2190 , 3.2823); 0.1177 (0.4133 , 3.7764); 0.1495
(30.7626 , 20.0631) (13.9240 , 9.3148) (10.3930 , 6.5012) (4.2101 , 2.7015) (1.9310 , 1.1264)

0.4 (0.0118 , 1.4049); 0.1350 (0.0438 , 2.2608); 0.1529 (0.0705 , 2.5724); 0.1649 (0.1627 , 3.1684); 0.2001 (0.3252 , 3.7565); 0.2556
(32.6530 , 21.9021) (15.1591 , 9.5212) (11.4350 , 7.3367) (4.7476 , 3.0103) (2.2149 , 1.3300)

0.5 (0.0113 , 1.3767); 0.2136 (0.0399 , 2.2236); 0.2421 (0.0547 , 2.4426); 0.2544 (0.1158 , 3.0048); 0.2992 (0.2314 , 3.6279); 0.3750
(35.3934 , 24.5958) (16.8976 , 10.9446) (12.8775 , 8.2868) (5.4979 , 3.4588) (2.6135 , 1.5955)

n = 15

0.1 (0.0104 , 1.3067); 0.0089 (0.1377 , 2.7800); 0.0112 (0.2001 , 2.9730); 0.0121 (0.4322 , 3.3812); 0.0149 (0.7633 , 3.6623); 0.0187
(20.7776 , 11.5969) (8.6313 , 5.4737) (6.3602 , 4.0763) (2.4925 , 1.5069) (1.2318 , 0.5086)

0.2 (0.0378 , 2.1030); 0.0386 (0.1283 , 2.7706); 0.0449 (0.1627 , 2.8980); 0.0469 (0.3625 , 3.3455); 0.0573 (0.7131 , 3.7231); 0.0747
(22.2438 , 14.1678) (9.0287 , 5.7383) (6.6508 , 4.1260) (2.6403 , 1.5653) (1.2944 , 0.5776)

0.3 (0.0378 , 2.1160); 0.0877 (0.0877 , 2.5964); 0.0967 (0.1252 , 2.7981); 0.1025 (0.3134 , 3.3500); 0.1272 (0.6500 , 3.8209); 0.1687
(23.5725 , 15.3752) (9.7003 , 5.8309) (7.1827 , 4.3322) (2.8941 , 1.7271) (1.4078 , 0.6916)

0.4 (0.0150 , 1.5599); 0.1475 (0.0844 , 2.6141); 0.1744 (0.1125 , 2.7894); 0.1830 (0.2596 , 3.3406); 0.2227 (0.5002 , 3.8339); 0.2829
(24.7092 , 14.9220) (10.6400 , 6.6123) (7.9355 , 4.8844) (3.2590 , 1.9620) (1.5807 , 0.8269)

0.5 (0.0126 , 1.4464); 0.2307 (0.0703 , 2.5469); 0.2717 (0.0938 , 2.7353); 0.2850 (0.1908 , 3.2399); 0.3342 (0.4010 , 3.8664); 0.4317
(26.4993 , 16.4589) (11.9027 , 7.4702) (8.9440 , 5.5664) (3.7484 , 2.2397) (1.8216 , 1.0099)

n = 20

0.1 (0.0485 , 2.2075); 0.0100 (0.1566 , 2.7947); 0.0115 (0.2128 , 2.9403); 0.0121 (0.5111 , 3.3541); 0.0150 (0.8902 , 3.5635); 0.0188
(17.2319 , 10.4305) (6.7484 , 4.0147) (4.9470 , 2.9142) (1.9617 , 1.1028) (1.0905 , 0.3098)

0.2 (0.0563 , 2.3041); 0.0409 (0.1547 , 2.8164); 0.0463 (0.2126 , 2.9740); 0.0490 (0.4830 , 3.3884); 0.0603 (0.8627 , 3.6366); 0.0763
(17.9244 , 11.3201) (7.0711 , 4.2818) (5.1984 , 3.1332) (2.0784 , 1.1865) (1.1256 , 0.3677)

0.3 (0.0376 , 2.0973); 0.0896 (0.1344 , 2.7831); 0.1034 (0.1757 , 2.9251); 0.1082 (0.4189 , 3.4075); 0.1337 (0.7752 , 3.7333); 0.1703
(19.0097 , 11.4259) (7.6141 , 4.6006) (5.6209 , 3.3392) (2.2763 , 1.3094) (1.1940 , 0.4600)

0.4 (0.0243 , 1.8523); 0.1560 (0.1049 , 2.6931); 0.1804 (0.1662 , 2.9572); 0.1950 (0.3260 , 3.3721); 0.2291 (0.6754 , 3.8442); 0.3007
(20.4858 , 11.9471) (8.3860 , 4.9841) (6.2276 , 3.8212) (2.5581 , 1.4596) (1.3062 , 0.5838)

0.5 (0.0121 , 1.4241); 0.2373 (0.0969 , 2.6971); 0.2850 (0.1315 , 2.8867); 0.3001 (0.2724 , 3.3799); 0.3554 (0.5063 , 3.8555); 0.4421
(21.8196 , 12.5015) (9.3831 , 5.7513) (7.0104 , 4.2780) (2.9260 , 1.7008) (1.4715 , 0.7209)

Table 4: Optimal setting of the EWMA chart for the MCV-squared for p = 3, n ∈ {5, 10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 5

0.1 (0.0108 , 1.3348); 0.0028 (0.0108 , 1.3348); 0.0028 (0.0108 , 1.3348); 0.0028 (0.0500 , 2.4987); 0.0039 (0.1298 , 3.3654); 0.0056
(78.8677 , 70.4443) (38.1383 , 29.7481) (29.8234 , 22.2537) (14.0641 , 10.4950) (6.1277 , 4.7226)

0.2 (0.0105 , 1.3248); 0.0114 (0.0105 , 1.3248); 0.0114 (0.0105 , 1.3248); 0.0114 (0.0105 , 1.3248); 0.0114 (0.1126 , 3.2544); 0.0215
(80.6827 , 72.3257) (39.2290 , 30.8341) (30.7171 , 23.1254) (14.3112 , 9.7865) (6.5253 , 5.0148)

0.3 (0.0110 , 1.3474); 0.0259 (0.0110 , 1.3475); 0.0259 (0.0110 , 1.3475); 0.0259 (0.0110 , 1.3475); 0.0259 (0.0969 , 3.1481); 0.0464
(83.8713 , 75.9344) (41.0687 , 32.7700) (32.2280 , 24.6620) (15.1750 , 10.5689) (7.2686 , 5.6026)

0.4 (0.0102 , 1.3020); 0.0458 (0.0102 , 1.3020); 0.0458 (0.0102 , 1.3020); 0.0458 (0.0107 , 1.3244); 0.0461 (0.0657 , 2.8003); 0.0724
(88.3605 , 80.7605) (44.0353 , 35.6913) (34.7301 , 27.0474) (16.5947 , 11.8345) (8.4806 , 6.4326)

0.5 (0.0104 , 1.2790); 0.0723 (0.0104 , 1.2790); 0.0723 (0.0104 , 1.2791); 0.0723 (0.0104 , 1.2791); 0.0723 (0.0104 , 1.2791); 0.0723
(95.7768 , 89.3745) (48.4857 , 40.4801) (38.4139 , 30.8581) (18.8168 , 13.7506) (10.0491 , 7.0645)

n = 10

0.1 (0.0110 , 1.3482); 0.0071 (0.0626 , 2.4290); 0.0084 (0.0914 , 2.6531); 0.0089 (0.2387 , 3.2450); 0.0113 (0.5180 , 3.7764); 0.0153
(30.5817 , 19.8644) (13.8447 , 8.8161) (10.2933 , 6.5848) (4.0566 , 2.5967) (1.7932 , 1.0439)

0.2 (0.0106 , 1.3374); 0.0282 (0.0626 , 2.4462); 0.0336 (0.0891 , 2.6608); 0.0358 (0.2269 , 3.2614); 0.0452 (0.4566 , 3.7720); 0.0593
(31.4925 , 20.6407) (14.4063 , 9.3265) (10.7511 , 6.9677) (4.2932 , 2.7816) (1.9194 , 1.1370)

0.3 (0.0117 , 1.4018); 0.0640 (0.0564 , 2.4059); 0.0752 (0.0862 , 2.6739); 0.0811 (0.1880 , 3.2045); 0.0984 (0.3756 , 3.7484); 0.1270
(33.3128 , 22.3644) (15.3727 , 10.0360) (11.5550 , 7.6603) (4.7036 , 3.0361) (2.1409 , 1.2958)

0.4 (0.0106 , 1.3389); 0.1135 (0.0470 , 2.3148); 0.1317 (0.0627 , 2.5056); 0.1381 (0.1378 , 3.0616); 0.1647 (0.3002 , 3.7142); 0.2155
(35.2467 , 24.2538) (16.7756 , 10.9938) (12.7027 , 8.2346) (5.3171 , 3.3783) (2.4741 , 1.5342)

0.5 (0.0103 , 1.3214); 0.1778 (0.0345 , 2.1314); 0.1996 (0.0384 , 2.2045); 0.2026 (0.1250 , 3.0784); 0.2594 (0.2158 , 3.5703); 0.3115
(38.2003 , 27.1806) (18.6313 , 12.1399) (14.2765 , 8.9401) (6.1711 , 4.0416) (2.9448 , 1.8437)

n = 15

0.1 (0.0121 , 1.4025); 0.0082 (0.1125 , 2.6873); 0.0101 (0.1722 , 2.9110); 0.0109 (0.4002 , 3.3677); 0.0135 (0.7447 , 3.6908); 0.0175
(22.0245 , 12.5806) (9.1622 , 5.6618) (6.7485 , 4.2581) (2.6481 , 1.6112) (1.2812 , 0.5668)

0.2 (0.0281 , 1.9348); 0.0346 (0.1253 , 2.7698); 0.0414 (0.1503 , 2.8687); 0.0428 (0.3503 , 3.3496); 0.0528 (0.6824 , 3.7362); 0.0687
(23.3752 , 14.5211) (9.6050 , 6.2079) (7.0745 , 4.4046) (2.8075 , 1.6940) (1.3520 , 0.6380)

0.3 (0.0125 , 1.4425); 0.0744 (0.0941 , 2.6444); 0.0898 (0.1252 , 2.8083); 0.0943 (0.3008 , 3.3424); 0.1164 (0.6256 , 3.8258); 0.1546
(24.0701 , 14.2056) (10.2917 , 6.4177) (7.6374 , 4.7081) (3.0810 , 1.8655) (1.4796 , 0.7607)

0.4 (0.0167 , 1.6270); 0.1348 (0.0758 , 2.5554); 0.1567 (0.1095 , 2.7795); 0.1665 (0.2350 , 3.2816); 0.1988 (0.5084 , 3.8628); 0.2633
(26.1162 , 16.1745) (11.3047 , 7.0048) (8.4460 , 5.2704) (3.4762 , 2.0919) (1.6731 , 0.9148)

0.5 (0.0141 , 1.5240); 0.2095 (0.0626 , 2.4753); 0.2418 (0.0781 , 2.6184); 0.2502 (0.2034 , 3.2928); 0.3093 (0.3629 , 3.7790); 0.3777
(28.1184 , 17.8549) (12.6384 , 7.8879) (9.5231 , 5.8110) (4.0079 , 2.4708) (1.9431 , 1.0936)

n = 20

0.1 (0.0548 , 2.2776); 0.0096 (0.1719 , 2.8486); 0.0110 (0.2221 , 2.9719); 0.0116 (0.4959 , 3.3590); 0.0142 (0.8754 , 3.5840); 0.0179
(17.9237 , 11.2752) (7.0525 , 4.3772) (5.1677 , 3.1373) (2.0440 , 1.1648) (1.1092 , 0.3419)

0.2 (0.0476 , 2.2178); 0.0380 (0.1542 , 2.8232); 0.0437 (0.2001 , 2.9539); 0.0458 (0.4695 , 3.3912); 0.0568 (0.8502 , 3.6548); 0.0724
(18.6163 , 11.5436) (7.3856 , 4.5440) (5.4291 , 3.2741) (2.1675 , 1.2536) (1.1492 , 0.4033)

0.3 (0.0313 , 1.9938); 0.0831 (0.1346 , 2.7909); 0.0975 (0.1722 , 2.9222); 0.1017 (0.4256 , 3.4302); 0.1274 (0.7502 , 3.7374); 0.1595
(19.7603 , 11.6971) (7.9524 , 4.8842) (5.8723 , 3.5273) (2.3774 , 1.4009) (1.2259 , 0.4987)

0.4 (0.0188 , 1.6967); 0.1437 (0.1127 , 2.7384); 0.1711 (0.1610 , 2.9442); 0.1821 (0.3382 , 3.4043); 0.2182 (0.6500 , 3.8326); 0.2792
(21.2014 , 12.1845) (8.7549 , 5.3692) (6.5109 , 4.0228) (2.6739 , 1.5664) (1.3505 , 0.6280)

0.5 (0.0119 , 1.4135); 0.2204 (0.0986 , 2.7099); 0.2665 (0.1130 , 2.7938); 0.2725 (0.2813 , 3.4055); 0.3355 (0.5379 , 3.9034); 0.4253
(22.5823 , 13.0843) (9.8110 , 6.1161) (7.3309 , 4.3772) (3.0675 , 1.8236) (1.5320 , 0.7851)

Table 5: Optimal setting of the EWMA chart for the MCV-squared for p = 4, n ∈ {5, 10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 10

0.1 (0.0141 , 1.5109); 0.0060 (0.0656 , 2.4747); 0.0072 (0.0844 , 2.6281); 0.0075 (0.2222 , 3.2495); 0.0096 (0.4699 , 3.7941); 0.0130
(34.5843 , 23.5649) (15.6248 , 10.4836) (11.6567 , 7.6742) (4.6193 , 3.0571) (2.0138 , 1.2353)

0.2 (0.0102 , 1.3115); 0.0235 (0.0532 , 2.3615); 0.0278 (0.0813 , 2.6249); 0.0299 (0.1911 , 3.1875); 0.0370 (0.3875 , 3.7195); 0.0484
(34.6688 , 23.5699) (16.2369 , 10.6467) (12.1771 , 8.0913) (4.8894 , 3.2017) (2.1626 , 1.3276)

0.3 (0.0117 , 1.4010); 0.0531 (0.0438 , 2.2554); 0.0608 (0.0704 , 2.5599); 0.0658 (0.1690 , 3.1611); 0.0816 (0.3379 , 3.7167); 0.1054
(36.8462 , 25.6531) (17.2973 , 11.2562) (13.0644 , 8.6760) (5.3627 , 3.5392) (2.4252 , 1.5265)

0.4 (0.0102 , 1.3179); 0.0933 (0.0353 , 2.1312); 0.1050 (0.0557 , 2.4346); 0.1128 (0.1424 , 3.1073); 0.1405 (0.2614 , 3.6219); 0.1740
(38.8727 , 27.6520) (18.8188 , 12.2457) (14.3571 , 9.4668) (6.0704 , 4.0348) (2.8224 , 1.7981)

0.5 (0.0110 , 1.3562); 0.1455 (0.0141 , 1.5232); 0.1483 (0.0392 , 2.2196); 0.1671 (0.1001 , 2.9032); 0.2027 (0.1941 , 3.4763); 0.2506
(42.5545 , 31.3094) (20.4015 , 12.5872) (16.0887 , 10.4461) (7.0471 , 4.5944) (3.3865 , 2.1733)

n = 15

0.1 (0.0137 , 1.4802); 0.0075 (0.1048 , 2.6601); 0.0092 (0.1657 , 2.9057); 0.0099 (0.3632 , 3.3408); 0.0122 (0.6750 , 3.6854); 0.0156
(23.4017 , 13.7107) (9.7890 , 6.1028) (7.2251 , 4.6342) (2.8305 , 1.7283) (1.3421 , 0.6266)

0.2 (0.0125 , 1.4362); 0.0300 (0.1065 , 2.6906); 0.0369 (0.1380 , 2.8336); 0.0386 (0.3188 , 3.3167); 0.0475 (0.6129 , 3.7129); 0.0609
(24.1239 , 14.2223) (10.2415 , 6.5255) (7.5681 , 4.7333) (3.0035 , 1.8204) (1.4225 , 0.7006)

0.3 (0.0134 , 1.4815); 0.0676 (0.0940 , 2.6505); 0.0819 (0.1157 , 2.7706); 0.0849 (0.2719 , 3.2938); 0.1039 (0.5586 , 3.7803); 0.1360
(25.4861 , 15.3977) (10.9992 , 7.0185) (8.1716 , 5.0661) (3.2996 , 2.0025) (1.5655 , 0.8292)

0.4 (0.0133 , 1.4809); 0.1200 (0.0751 , 2.5522); 0.1418 (0.1002 , 2.7290); 0.1488 (0.2294 , 3.2733); 0.1802 (0.4625 , 3.8038); 0.2319
(27.2505 , 16.9582) (12.0744 , 7.6276) (9.0373 , 5.6537) (3.7290 , 2.2855) (1.7827 , 0.9979)

0.5 (0.0149 , 1.5587); 0.1882 (0.0564 , 2.4074); 0.2141 (0.0750 , 2.5909); 0.2236 (0.1750 , 3.1765); 0.2680 (0.3754 , 3.8076); 0.3476
(29.8455 , 19.3646) (13.4925 , 8.4179) (10.1899 , 6.2882) (4.3086 , 2.6284) (2.0865 , 1.2204)

n = 20

0.1 (0.0476 , 2.2041); 0.0089 (0.1544 , 2.8042); 0.0102 (0.1971 , 2.9234); 0.0107 (0.4795 , 3.3604); 0.0134 (0.8770 , 3.6074); 0.0172
(18.6650 , 11.6065) (7.3752 , 4.5295) (5.4104 , 3.2378) (2.1364 , 1.2337) (1.1319 , 0.3788)

0.2 (0.0472 , 2.2147); 0.0356 (0.1502 , 2.8163); 0.0411 (0.1844 , 2.9205); 0.0426 (0.4379 , 3.3700); 0.0527 (0.8004 , 3.6568); 0.0670
(19.4026 , 12.1957) (7.7339 , 4.8098) (5.6860 , 3.4163) (2.2666 , 1.3136) (1.1772 , 0.4397)

0.3 (0.0376 , 2.1009); 0.0788 (0.1192 , 2.7301); 0.0898 (0.1564 , 2.8760); 0.0940 (0.3883 , 3.3877); 0.1169 (0.7002 , 3.7212); 0.1466
(20.5629 , 12.7200) (8.3229 , 5.0437) (6.1540 , 3.6698) (2.4876 , 1.4585) (1.2634 , 0.5384)

0.4 (0.0281 , 1.9417); 0.1373 (0.1002 , 2.6734); 0.1571 (0.1501 , 2.9057); 0.1682 (0.3100 , 3.3523); 0.1997 (0.6027 , 3.7940); 0.2544
(22.1314 , 13.5158) (9.1662 , 5.5556) (6.8203 , 4.2070) (2.8037 , 1.6366) (1.4016 , 0.6724)

0.5 (0.0377 , 2.1312); 0.2202 (0.0813 , 2.5914); 0.2406 (0.1251 , 2.8559); 0.2581 (0.2391 , 3.2860); 0.2987 (0.5199 , 3.8739); 0.3917
(24.4381 , 16.1878) (10.2648 , 6.2199) (7.6936 , 4.7696) (3.2234 , 1.8754) (1.6015 , 0.8438)

Table 6: Optimal setting of the EWMA chart for the MCV-squared for p = 5, n ∈ {10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.

24



γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 10

0.1 (0.0102 , 1.3077); 0.0047 (0.0501 , 2.3302); 0.0056 (0.0626 , 2.4699); 0.0058 (0.1875 , 3.1974); 0.0077 (0.3885 , 3.7564); 0.0103
(37.9565 , 26.7642) (18.0310 , 12.1353) (13.5485 , 8.8941) (5.4135 , 3.6626) (2.3320 , 1.4917)

0.2 (0.0113 , 1.3763); 0.0190 (0.0391 , 2.1837); 0.0216 (0.0596 , 2.4537); 0.0231 (0.1691 , 3.1579); 0.0299 (0.3381 , 3.7035); 0.0390
(39.5100 , 28.2135) (18.7208 , 12.2766) (14.1362 , 9.3400) (5.7326 , 3.8715) (2.5128 , 1.6170)

0.3 (0.0110 , 1.3584); 0.0422 (0.0406 , 2.2209); 0.0486 (0.0493 , 2.3469); 0.0502 (0.1377 , 3.0558); 0.0636 (0.2876 , 3.6546); 0.0831
(41.3637 , 30.0385) (19.9420 , 13.4569) (15.1454 , 9.9315) (6.2891 , 4.2049) (2.8323 , 1.8499)

0.4 (0.0110 , 1.3576); 0.0742 (0.0110 , 1.3576); 0.0742 (0.0313 , 2.0600); 0.0827 (0.1148 , 2.9733); 0.1080 (0.2126 , 3.4872); 0.1330
(44.2043 , 32.8699) (20.8426 , 12.8372) (16.6188 , 10.5353) (7.1214 , 4.7737) (3.3186 , 2.1650)

0.5 (0.0104 , 1.3265); 0.1138 (0.0133 , 1.4863); 0.1160 (0.0188 , 1.7210); 0.1199 (0.0751 , 2.6983); 0.1513 (0.1690 , 3.3766); 0.1937
(47.8654 , 36.5159) (23.2007 , 14.8772) (18.4161 , 11.4790) (8.2854 , 5.3816) (4.0089 , 2.6445)

n = 15

0.1 (0.0158 , 1.5719); 0.0068 (0.0877 , 2.5751); 0.0081 (0.1381 , 2.8238); 0.0088 (0.3225 , 3.3035); 0.0108 (0.6273 , 3.6935); 0.0140
(24.9964 , 15.1322) (10.5372 , 6.4885) (7.7707 , 4.9024) (3.0485 , 1.8640) (1.4178 , 0.6999)

0.2 (0.0306 , 1.9905); 0.0287 (0.0861 , 2.5836); 0.0324 (0.1192 , 2.7660); 0.0342 (0.2879 , 3.2819); 0.0423 (0.6193 , 3.7609); 0.0568
(26.4510 , 17.3830) (11.0100 , 6.8701) (8.1533 , 5.0655) (3.2372 , 1.9732) (1.5088 , 0.7904)

0.3 (0.0134 , 1.4820); 0.0607 (0.0845 , 2.5976); 0.0728 (0.0985 , 2.6877); 0.0747 (0.2469 , 3.2523); 0.0922 (0.5299 , 3.7785); 0.1223
(27.0436 , 16.7130) (11.8212 , 7.5582) (8.8096 , 5.4116) (3.5603 , 2.1746) (1.6706 , 0.9212)

0.4 (0.0133 , 1.4833); 0.1071 (0.0752 , 2.5593); 0.1274 (0.0861 , 2.6424); 0.1303 (0.2221 , 3.2648); 0.1617 (0.4322 , 3.7722); 0.2054
(28.9453 , 18.4072) (12.9896 , 8.4048) (9.7373 , 6.0442) (4.0303 , 2.5175) (1.9151 , 1.1029)

0.5 (0.0126 , 1.4466); 0.1653 (0.0470 , 2.2946); 0.1861 (0.0815 , 2.6481); 0.2024 (0.1814 , 3.2091); 0.2427 (0.3344 , 3.7121); 0.2988
(31.3021 , 20.5332) (14.4971 , 8.9503) (10.9836 , 7.0412) (4.6675 , 2.9349) (2.2567 , 1.3363)

n = 20

0.1 (0.0469 , 2.1998); 0.0083 (0.1409 , 2.7681); 0.0095 (0.1938 , 2.9263); 0.0100 (0.4500 , 3.3494); 0.0124 (0.8125 , 3.6138); 0.0157
(19.5047 , 12.2963) (7.7418 , 4.7335) (5.6836 , 3.4547) (2.2404 , 1.3011) (1.1592 , 0.4156)

0.2 (0.0423 , 2.1570); 0.0330 (0.1375 , 2.7795); 0.0380 (0.1755 , 2.9050); 0.0397 (0.4067 , 3.3485); 0.0487 (0.7756 , 3.6700); 0.0628
(20.2551 , 12.6831) (8.1157 , 5.0268) (5.9740 , 3.6123) (2.3784 , 1.3815) (1.2106 , 0.4821)

0.3 (0.0313 , 1.9969); 0.0724 (0.1188 , 2.7342); 0.0840 (0.1696 , 2.9277); 0.0894 (0.3817 , 3.3920); 0.1095 (0.7197 , 3.7542); 0.1406
(21.4451 , 13.0905) (8.7391 , 5.3863) (6.4702 , 4.0121) (2.6137 , 1.5583) (1.3071 , 0.5916)

0.4 (0.0114 , 1.3822); 0.1212 (0.0985 , 2.6674); 0.1459 (0.1345 , 2.8463); 0.1537 (0.3068 , 3.3542); 0.1863 (0.5826 , 3.7844); 0.2355
(22.4755 , 12.8881) (9.6248 , 5.9078) (7.1655 , 4.3763) (2.9495 , 1.7506) (1.4603 , 0.7267)

0.5 (0.0135 , 1.4932); 0.1896 (0.0876 , 2.6380); 0.2252 (0.1129 , 2.7931); 0.2348 (0.2322 , 3.2674); 0.2753 (0.5008 , 3.8472); 0.3592
(24.6029 , 14.7188) (10.7875 , 6.7444) (8.0859 , 4.9709) (3.3976 , 1.9967) (1.6805 , 0.9088)

Table 7: Optimal setting of the EWMA chart for the MCV-squared for p = 6, n ∈ {10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 10

0.1 (0.0104 , 1.3173); 0.0036 (0.0137 , 1.4971); 0.0037 (0.0461 , 2.3028); 0.0043 (0.1375 , 3.0523); 0.0056 (0.3127 , 3.7144); 0.0077
(44.4142 , 33.1917) (21.1225 , 13.1176) (16.3594 , 10.9110) (6.6360 , 4.5407) (2.8351 , 1.9063)

0.2 (0.0102 , 1.3131); 0.0142 (0.0102 , 1.3131); 0.0142 (0.0500 , 2.3676); 0.0173 (0.1408 , 3.0960); 0.0225 (0.2877 , 3.6900); 0.0298
(45.8149 , 34.4236) (21.5439 , 13.3797) (17.0582 , 11.6724) (7.0307 , 4.9089) (3.0645 , 2.0827)

0.3 (0.0103 , 1.3210); 0.0316 (0.0103 , 1.3210); 0.0316 (0.0375 , 2.1865); 0.0367 (0.1001 , 2.8736); 0.0456 (0.2445 , 3.6138); 0.0628
(48.1157 , 36.7599) (22.7313 , 14.4230) (18.2156 , 12.2023) (7.7153 , 5.2049) (3.4705 , 2.3798)

0.4 (0.0103 , 1.3228); 0.0551 (0.0103 , 1.3228); 0.0551 (0.0108 , 1.3426); 0.0552 (0.0907 , 2.8361); 0.0785 (0.2000 , 3.5091); 0.1032
(51.4161 , 40.1260) (24.4775 , 15.9561) (19.2344 , 11.9543) (8.7282 , 5.9729) (4.0902 , 2.8277)

0.5 (0.0103 , 1.3190); 0.0840 (0.0156 , 1.5989); 0.0873 (0.0156 , 1.5989); 0.0873 (0.0719 , 2.6917); 0.1140 (0.1318 , 3.1975); 0.1373
(55.8428 , 44.6551) (27.7330 , 18.9556) (21.7497 , 14.1392) (10.1367 , 6.9146) (4.9672 , 3.3563)

n = 15

0.1 (0.0141 , 1.5029); 0.0061 (0.0805 , 2.5403); 0.0072 (0.1377 , 2.8413); 0.0079 (0.2719 , 3.2360); 0.0094 (0.6187 , 3.7391); 0.0129
(26.5664 , 16.3929) (11.4194 , 7.1170) (8.4498 , 5.4960) (3.3171 , 2.0151) (1.5130 , 0.7965)

0.2 (0.0165 , 1.6102); 0.0244 (0.0876 , 2.6055); 0.0292 (0.1000 , 2.6815); 0.0298 (0.2753 , 3.2850); 0.0379 (0.5525 , 3.7396); 0.0496
(27.7521 , 17.4610) (11.9336 , 7.6966) (8.8660 , 5.4623) (3.5196 , 2.1949) (1.6167 , 0.8800)

0.3 (0.0126 , 1.4461); 0.0536 (0.0768 , 2.5515); 0.0641 (0.1111 , 2.7719); 0.0685 (0.2346 , 3.2433); 0.0821 (0.4750 , 3.7407); 0.1063
(28.7741 , 18.1895) (12.8071 , 8.2530) (9.5659 , 6.2092) (3.8746 , 2.4141) (1.8004 , 1.0227)

0.4 (0.0127 , 1.4503); 0.0942 (0.0501 , 2.3171); 0.1067 (0.0866 , 2.6547); 0.1161 (0.1908 , 3.1746); 0.1389 (0.3812 , 3.6987); 0.1762
(30.8202 , 20.0293) (14.0698 , 8.6522) (10.5704 , 6.7478) (4.3932 , 2.7333) (2.0774 , 1.2187)

0.5 (0.0126 , 1.4474); 0.1449 (0.0368 , 2.1407); 0.1589 (0.0688 , 2.5426); 0.1736 (0.1487 , 3.0696); 0.2043 (0.3127 , 3.6664); 0.2600
(33.4895 , 22.4700) (15.7032 , 9.5499) (11.9133 , 7.5728) (5.0969 , 3.1587) (2.4646 , 1.4928)

n = 20

0.1 (0.0391 , 2.1019); 0.0076 (0.1254 , 2.7190); 0.0087 (0.1800 , 2.9014); 0.0093 (0.4375 , 3.3571); 0.0116 (0.8264 , 3.6488); 0.0151
(20.4094 , 12.6801) (8.1583 , 4.9456) (5.9921 , 3.6479) (2.3585 , 1.3931) (1.1925 , 0.4632)

0.2 (0.0377 , 2.0956); 0.0304 (0.1253 , 2.7403); 0.0350 (0.1724 , 2.9064); 0.0370 (0.4070 , 3.3685); 0.0459 (0.7568 , 3.6876); 0.0588
(21.2017 , 13.2441) (8.5480 , 5.2774) (6.2995 , 3.8708) (2.5052 , 1.4906) (1.2505 , 0.5304)

0.3 (0.0346 , 2.0575); 0.0677 (0.1000 , 2.6476); 0.0762 (0.1532 , 2.8805); 0.0818 (0.3500 , 3.3557); 0.1000 (0.6820 , 3.7499); 0.1293
(22.4705 , 14.1647) (9.2125 , 5.5573) (6.8185 , 4.2016) (2.7547 , 1.6411) (1.3586 , 0.6428)

0.4 (0.0180 , 1.6690); 0.1143 (0.0985 , 2.6714); 0.1353 (0.1313 , 2.8379); 0.1420 (0.2945 , 3.3373); 0.1717 (0.5609 , 3.7741); 0.2170
(23.9303 , 14.3223) (10.1437 , 6.3370) (7.5600 , 4.6753) (3.1146 , 1.8676) (1.5283 , 0.7872)

0.5 (0.0154 , 1.5737); 0.1752 (0.0830 , 2.6068); 0.2059 (0.1111 , 2.7856); 0.2160 (0.2375 , 3.2871); 0.2564 (0.4691 , 3.8013); 0.3245
(25.8658 , 15.8301) (11.3668 , 7.1384) (8.5368 , 5.3171) (3.5943 , 2.1618) (1.7709 , 0.9767)

Table 8: Optimal setting of the EWMA chart for the MCV-squared for p = 7, n ∈ {10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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γ0 τ = 1.1 τ = 1.2 τ = 1.25 τ = 1.5 τ = 2.0

n = 10

0.1 (0.0111 , 1.3565); 0.0024 (0.0111 , 1.3565); 0.0024 (0.0142 , 1.5305); 0.0025 (0.1032 , 2.9362); 0.0037 (0.2414 , 3.6735); 0.0052
(55.3228 , 44.5806) (25.9977 , 17.5742) (20.7007 , 13.3671) (8.8174 , 6.3026) (3.7639 , 2.7028)

0.2 (0.0110 , 1.3502); 0.0096 (0.0110 , 1.3502); 0.0096 (0.0110 , 1.3502); 0.0096 (0.0971 , 2.9056); 0.0146 (0.2006 , 3.5314); 0.0192
(56.9625 , 46.2461) (26.8989 , 18.3728) (21.0311 , 13.6582) (9.3322 , 6.6915) (4.0764 , 2.9046)

0.3 (0.0114 , 1.3802); 0.0214 (0.0114 , 1.3802); 0.0214 (0.0114 , 1.3802); 0.0214 (0.0845 , 2.8191); 0.0311 (0.1626 , 3.3797); 0.0394
(60.0330 , 49.2267) (28.5770 , 19.8141) (22.4036 , 14.7828) (10.2264 , 7.3226) (4.6335 , 3.2913)

0.4 (0.0114 , 1.3820); 0.0371 (0.0114 , 1.3820); 0.0371 (0.0114 , 1.3820); 0.0371 (0.0609 , 2.5870); 0.0496 (0.1321 , 3.2360); 0.0638
(64.1148 , 53.4807) (30.8560 , 21.8914) (24.2821 , 16.4061) (11.5487 , 8.0846) (5.4803 , 3.8970)

0.5 (0.0114 , 1.3787); 0.0560 (0.0114 , 1.3787); 0.0560 (0.0114 , 1.3787); 0.0560 (0.0535 , 2.5046); 0.0731 (0.1016 , 3.0402); 0.0890
(69.5283 , 59.1928) (33.9474 , 24.7490) (26.8411 , 18.6455) (13.3692 , 9.4530) (6.6768 , 4.7230)

n = 15

0.1 (0.0126 , 1.4275); 0.0053 (0.0808 , 2.5569); 0.0064 (0.1048 , 2.7064); 0.0067 (0.2849 , 3.3041); 0.0086 (0.5000 , 3.6689); 0.0107
(28.3665 , 17.9327) (12.4945 , 8.0578) (9.2645 , 5.8641) (3.6430 , 2.3252) (1.6372 , 0.8873)

0.2 (0.0110 , 1.3587); 0.0209 (0.0782 , 2.5545); 0.0254 (0.1126 , 2.7676); 0.0271 (0.2532 , 3.2673); 0.0333 (0.5158 , 3.7506); 0.0437
(29.1223 , 18.4818) (13.0616 , 8.4983) (9.7223 , 6.3578) (3.8709 , 2.4569) (1.7544 , 1.0006)

0.3 (0.0142 , 1.5221); 0.0471 (0.0502 , 2.3087); 0.0531 (0.0883 , 2.6479); 0.0580 (0.2000 , 3.1649); 0.0700 (0.4252 , 3.7051); 0.0915
(31.2859 , 20.4578) (14.0466 , 8.6161) (10.4848 , 6.6899) (4.2678 , 2.6593) (1.9645 , 1.1506)

0.4 (0.0142 , 1.5254); 0.0824 (0.0375 , 2.1443); 0.0899 (0.0829 , 2.6383); 0.1012 (0.1784 , 3.1479); 0.1207 (0.3566 , 3.6782); 0.1533
(33.5562 , 22.5271) (15.4178 , 9.3186) (11.5993 , 7.5648) (4.8424 , 3.0682) (2.2806 , 1.3803)

0.5 (0.0141 , 1.5228); 0.1261 (0.0250 , 1.8960); 0.1321 (0.0595 , 2.4544); 0.1476 (0.1406 , 3.0409); 0.1765 (0.2783 , 3.5845); 0.2196
(36.5324 , 25.2762) (17.1612 , 10.1957) (13.0574 , 8.3102) (5.6268 , 3.5516) (2.7230 , 1.6760)

n = 20

0.1 (0.0346 , 2.0359); 0.0070 (0.1255 , 2.7292); 0.0081 (0.1754 , 2.9014); 0.0086 (0.4125 , 3.3504); 0.0107 (0.7756 , 3.6606); 0.0139
(21.4299 , 13.3009) (8.6273 , 5.3460) (6.3443 , 3.9248) (2.4935 , 1.4873) (1.2328 , 0.5111)

0.2 (0.0409 , 2.1444); 0.0283 (0.1256 , 2.7506); 0.0325 (0.1627 , 2.8876); 0.0341 (0.4000 , 3.3808); 0.0428 (0.7193 , 3.6962); 0.0542
(22.3203 , 14.3955) (9.0468 , 5.7081) (6.6691 , 4.1274) (2.6518 , 1.6106) (1.2985 , 0.5826)

0.3 (0.0377 , 2.1097); 0.0629 (0.1031 , 2.6713); 0.0709 (0.1376 , 2.8305); 0.0744 (0.3504 , 3.3741); 0.0934 (0.6504 , 3.7497); 0.1188
(23.6674 , 15.3979) (9.7367 , 6.0369) (7.2189 , 4.4244) (2.9190 , 1.7815) (1.4195 , 0.7016)

0.4 (0.0135 , 1.4889); 0.1033 (0.0940 , 2.6500); 0.1239 (0.1253 , 2.8171); 0.1301 (0.2813 , 3.3189); 0.1572 (0.5375 , 3.7627); 0.1987
(24.7690 , 14.7770) (10.7300 , 6.7615) (8.0077 , 4.9948) (3.3031 , 2.0018) (1.6077 , 0.8556)

0.5 (0.0142 , 1.5228); 0.1594 (0.0672 , 2.4824); 0.1832 (0.1049 , 2.7534); 0.1963 (0.2224 , 3.2459); 0.2320 (0.4322 , 3.7448); 0.2902
(26.9909 , 16.7025) (12.0168 , 7.3534) (9.0444 , 5.6627) (3.8188 , 2.3071) (1.8750 , 1.0506)

Table 9: Optimal setting of the EWMA chart for the MCV-squared for p = 8, n ∈ {10, 15, 20}, γ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and τ ∈ {1.1, 1.2, 1.25, 1.5, 2.0}, obtained according to Algorithm 2. The first row of each block contains the pair (λ∗, K∗)
followed by the resulting UCL; the second row shows the pair (ARL(γ1), SDRL(γ1)), with γ1 = τγ0.
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p = 2 p = 3 p = 4

γ0 τ = 1.2 τ = 1.5 τ = 2.0 γ0 τ = 1.2 τ = 1.5 τ = 2.0 γ0 τ = 1.2 τ = 1.5 τ = 2.0

n = 5 n = 5 n = 5

0.1 (−71.2 , −57.0) (−56.5 , −33.2) (−41.7 , 4.3) 0.1 (−71.4 , −57.3) (−55.2 , −35.6) (−41.0 , −5.9) 0.1 (−63.4 , −52.8) (−53.1 , −35.7) (−38.5 , −14.5)
0.2 (−74.6 , −59.0) (−56.8 , −34.7) (−42.9 , 0.3) 0.2 (−70.5 , −56.8) (−56.1 , −36.8) (−41.9 , −8.8) 0.2 (−63.1 , −52.8) (−58.6 , −38.1) (−39.8 , −16.6)
0.3 (−74.3 , −59.9) (−58.1 , −37.2) (−44.2 , −5.6) 0.3 (−70.2 , −57.4) (−58.4 , −39.0) (−43.9 , −13.7) 0.3 (−62.7 , −53.0) (−59.4 , −40.5) (−41.6 , −20.0)
0.4 (−74.0 , −61.1) (−60.4 , −40.5) (−47.0 , −13.2) 0.4 (−70.8 , −59.3) (−60.5 , −42.1) (−47.6 , −20.4) 0.4 (−62.3 , −53.2) (−60.6 , −43.7) (−45.7 , −25.2)
0.5 (−72.5 , −61.2) (−66.2 , −45.3) (−50.8 , −22.3) 0.5 (−70.1 , −60.1) (−66.7 , −48.4) (−52.4 , −28.8) 0.5 (−61.3 , −53.5) (−62.2 , −47.6) (−55.0 , −33.9)

n = 10 n = 10 n = 10

0.1 (−74.0 , −57.4) (−53.3 , −14.8) (−49.1 , 62.4) 0.1 (−73.3 , −57.8) (−54.1 , −18.8) (−47.1 , 49.7) 0.1 (−73.7 , −58.0) (−55.0 , −22.7) (−45.1 , 36.9)
0.2 (−73.9 , −58.2) (−54.3 , −18.1) (−47.9 , 51.4) 0.2 (−73.5 , −58.5) (−55.6 , −21.8) (−46.2 , 40.4) 0.2 (−73.6 , −58.7) (−55.7 , −25.5) (−45.1 , 28.8)
0.3 (−73.9 , −59.4) (−56.4 , −23.3) (−46.5 , 37.2) 0.3 (−73.3 , −59.5) (−56.8 , −26.7) (−46.4 , 27.0) 0.3 (−74.1 , −59.7) (−57.9 , −29.8) (−45.6 , 17.6)
0.4 (−75.4 , −60.9) (−58.7 , −29.4) (−47.3 , 21.3) 0.4 (−75.9 , −61.1) (−60.1 , −32.4) (−47.2 , 13.0) 0.4 (−74.8 , −61.1) (−61.2 , −35.2) (−47.3 , 5.3)
0.5 (−75.6 , −62.4) (−61.8 , −35.8) (−49.0 , 6.0) 0.5 (−76.1 , −62.6) (−63.4 , −38.5) (−50.0 , −1.0) 0.5 (−75.9 , −62.6) (−63.1 , −40.9) (−50.6 , −7.7)

n = 15 n = 15 n = 15

0.1 (−72.4 , −54.4) (−49.6 , 5.7) (−61.6 , 148.2) 0.1 (−72.3 , −55.1) (−49.9 , 1.3) (−59.0 , 128.1) 0.1 (−73.3 , −55.8) (−50.7 , −2.6) (−56.1 , 106.6)
0.2 (−73.2 , −55.6) (−50.6 , 0.3) (−58.5 , 118.7) 0.2 (−72.8 , −56.2) (−52.3 , −3.3) (−55.9 , 102.3) 0.2 (−72.7 , −56.7) (−52.5 , −7.3) (−53.4 , 87.8)
0.3 (−74.3 , −57.3) (−53.3 , −7.1) (−54.1 , 89.8) 0.3 (−75.2 , −57.8) (−54.2 , −10.4) (−52.0 , 76.0) 0.3 (−74.6 , −58.4) (−54.6 , −13.9) (−50.0 , 66.3)
0.4 (−75.6 , −59.4) (−55.7 , −15.6) (−51.5 , 61.6) 0.4 (−75.5 , −59.8) (−56.8 , −18.7) (−49.9 , 52.0) 0.4 (−75.8 , −60.3) (−57.8 , −21.7) (−48.3 , 43.0)
0.5 (−76.3 , −61.5) (−59.1 , −24.4) (−49.7 , 37.4) 0.5 (−76.5 , −61.9) (−60.4 , −27.1) (−49.3 , 30.1) 0.5 (−76.8 , −62.3) (−60.3 , −29.7) (−49.4 , 22.2)

Table 10: Performance comparison between the EWMA and the MCV charts. Each cell contains the relative difference in ARL (in percent) of the EWMA chart with
respect to the MCV chart, followed by the relative difference in SDRL (in percent). Only the cases considered by Yeong et al. 17 are included in the comparison.

p = 2 p = 3

γ0 τ = 1.10 τ = 1.25 τ = 1.50 γ0 τ = 1.10 τ = 1.25 τ = 1.50

n = 5 n = 5

0.1 (−62.5 , −48.1) (−54.4 , −23.8) (−41.9 , 5.8) 0.1 (−58.4 , −47.0) (−58.6 , −31.3) (−41.5 , −3.5)
0.3 (−61.4 , −48.3) (−59.9 , −28.5) (−41.9 , 3.8) 0.3 (−57.2 , −46.8) (−58.5 , −34.3) (−44.2 , −7.5)
0.5 (−57.1 , −46.8) (−57.1 , −32.5) (−48.6 , −2.5) 0.5 (−53.4 , −45.2) (−58.6 , −39.4) (−52.2 , −18.2)

n = 10 n = 10

0.1 (−66.7 , −42.5) (−49.3 , 2.3) (−42.5 , 41.3) 0.1 (−65.7 , −43.4) (−50.9 , −2.4) (−42.1 , 35.2)
0.3 (−67.4 , −45.6) (−51.2 , −3.7) (−43.0 , 34.1) 0.3 (−66.6 , −46.3) (−52.4 , −8.3) (−42.3 , 34.1)
0.5 (−66.4 , −48.4) (−53.9 , −12.3) (−42.8 , 30.2) 0.5 (−65.8 , −48.9) (−53.5 , −16.1) (−44.4 , 23.5)

Table 11: Performance comparison between the EWMA and the RS charts. Each cell contains the relative difference in ARL (in percent) of the EWMA chart with
respect to the RS chart, followed by the relative difference in SDRL (in percent). Only the cases considered by Lim et al. 18 are included in the comparison.
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R1 R2 R3 R4 R5 X̄ S γ̂2 Z

S1 17.8 25.2 18.1 19.0 19.0 19.82 9.3320 1.3540 0.1205
2000 S2 42.0 40.7 35.5 42.0 40.5 40.14 1.3540 7.2230 1.1710 0.004082 0.001574

S3 8.3 9.4 8.6 10.5 12.1 9.78 0.1205 1.1710 2.4070

S1 21.5 22.5 22.0 18.1 19.1 20.64 3.7180 3.6455 0.0435
2001 S2 40.5 36.9 42.0 36.2 35.1 38.14 3.6455 8.7530 4.1410 0.001739 0.001612

S3 11.9 8.5 12.8 11.4 9.3 10.78 0.0435 4.1410 3.2770

S1 17.5 18.9 19.1 21.8 22.7 20.00 4.7000 −0.5675 0.3900
2002 S2 39.9 38.2 38.0 39.8 37.8 38.74 −0.5675 1.0480 −0.0355 0.000539 0.001364

S3 8.9 11.0 7.8 9.6 9.5 9.36 0.3900 −0.0355 1.3530

S1 19.1 18.7 21.4 20.8 18.9 19.78 1.5170 0.5765 0.4550
2003 S2 38.8 42.4 42.5 39.6 39.5 40.56 0.5765 3.0730 0.6325 0.001422 0.001377

S3 9.7 10.3 11.0 10.4 10.1 10.30 0.4550 0.6325 0.2250

S1 19.0 21.6 19.5 19.0 19.2 19.66 1.2180 1.2920 −0.1385
2004 S2 39.4 40.8 35.9 35.0 41.6 38.54 1.2920 8.6780 −2.0265 0.002000 0.001522

S3 8.2 9.7 12.6 10.5 10.9 10.38 −0.1385 −2.0265 2.6070

S1 18.9 19.1 21.3 17.0 20.2 19.30 2.5750 3.3900 −0.6550
2005 S2 41.1 38.1 42.8 36.2 39.2 39.48 3.3900 6.5970 −0.1985 0.001470 0.001510

S3 10.8 9.5 8.7 9.6 9.2 9.56 −0.6550 −0.1985 0.6030

S1 17.9 20.0 20.5 18.5 19.4 19.26 1.1330 −1.6770 −0.5400
2006 S2 43.0 41.2 36.5 39.1 41.0 40.16 −1.6770 6.0930 2.0675 0.000603 0.001300

S3 8.2 9.6 6.3 9.6 9.8 8.70 −0.5400 2.0675 2.2100

S1 20.6 18.7 18.5 23.6 19.7 20.22 4.2770 3.6525 3.8680
2007 S2 40.3 36.9 35.4 40.8 41.6 39.00 3.6525 7.2650 3.9925 0.001834 0.001423

S3 9.0 8.7 6.8 12.4 9.5 9.28 3.8680 3.9925 4.0870

S1 19.0 20.4 21.6 20.3 18.4 19.94 1.5880 1.0640 1.3085
2008 S2 37.3 44.8 40.5 38.9 40.6 40.42 1.0640 7.8170 4.2605 0.001383 0.001414

S3 8.3 11.7 10.7 7.0 8.2 9.18 1.3085 4.2605 3.7870

S1 21.2 16.5 18.2 21.2 21.2 19.66 4.8080 1.9075 0.2025
2009 S2 38.9 39.6 36.8 40.6 41.6 39.50 1.9075 3.3200 −0.9650 0.001305 0.001389

S3 10.9 8.6 9.1 7.0 8.9 8.90 0.2025 −0.9650 1.9350

S1 9.6 8.8 8.4 6.9 7.4 8.22 1.1720 −2.0755 −2.4445
2010 S2 19.5 17.9 18.9 23.7 21.6 20.32 −2.0755 5.4020 4.0830 0.000499 0.001183

S3 2.2 5.0 5.3 8.9 6.0 5.48 −2.4445 4.0830 5.7470

S1 11.0 11.8 15.6 11.2 10.3 11.98 4.3820 −1.7770 −0.5615
2011 S2 18.9 21.6 19.0 20.1 22.5 20.42 −1.7770 2.5370 0.7490 0.002599 0.001510

S3 4.6 6.2 4.8 6.1 5.5 5.44 −0.5615 0.7490 0.5330

S1 9.5 10.0 8.3 8.8 12.3 9.78 2.4070 2.2845 −0.6710
2012 S2 22.1 17.1 19.6 23.4 25.2 21.48 2.2845 10.1570 1.0565 0.007852 0.002978

S3 4.5 3.8 6.2 5.8 5.0 5.06 −0.6710 1.0565 0.9380

S1 10.0 8.0 8.2 11.5 7.1 8.96 3.1230 −1.5155 −1.8780
2013 S2 21.1 21.0 21.2 17.9 20.0 20.24 −1.5155 1.9430 2.0330 0.001588 0.002656

S3 4.4 7.0 7.3 3.0 4.0 5.14 −1.8780 2.0330 3.6380

S1 12.2 9.6 7.7 11.3 13.2 10.80 4.7550 −1.3900 −0.4325
2014 S2 20.0 18.2 18.4 19.6 14.8 18.20 −1.3900 4.2000 0.2850 0.004144 0.003000

S3 4.6 4.5 4.4 3.5 3.8 4.16 −0.4325 0.2850 0.2330

S1 11.6 9.8 12.4 11.0 9.4 10.84 1.5480 0.6550 0.7060
2015 S2 17.2 20.1 21.5 18.6 18.1 19.10 0.6550 2.9050 1.8425 0.003456 0.003106

S3 4.6 6.4 6.4 4.7 3.3 5.08 0.7060 1.8425 1.7570

S1 11.2 5.4 9.4 8.4 6.9 8.26 4.9980 −0.5210 1.9820
2016 S2 20.0 22.1 24.5 17.2 20.6 20.88 −0.5210 7.2470 1.8835 0.006183 0.003818

S3 5.8 4.0 7.3 4.7 4.9 5.34 1.9820 1.8835 1.6130

Table 12: Illustrative example. Rates of return (in %) from 2000 to 2016 for p = 3 industrial sectors {S1, S2, S3} and n = 5
world regions {R1, R2, R3, R4, R5}.
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Figure 2: Values of γ̂ (top) and values Z of the EWMA γ2 chart (bottom) corresponding to the data in Table 12.
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properties of the sample MCV. A practical example from the financial domain
was provided to illustrate how our chart can be used to monitor the MCV and to
successfully detect unwanted shifts in the joint relative variability of the system
being considered.

According to the computational experiments carried out, the chart is
shown to clearly outperform the existing alternatives for monitoring the MCV
(including a run-sum approach), especially when aimed at detecting relatively
small shifts, as usually happens with SPM tools based on an EWMA scheme.
Consequently, our proposal provides practitioners with an enhanced, yet simple
tool to monitor the MCV in an efficient way.

The optimisation of the chart proposed with regards to an unknown shift τ
to be detected was not dealt with in this paper due to writing space constraints.
This would be an interesting alternative for practitioners. It can be addressed
by assuming a certain probability distribution for (the undesired) τ and then
looking for the values of the chart parameters λ and K that minimise the so-
called expected ARL (EARL) of the chart while ensuring a required in-control
ARL. More details about this approach can be found in Castagliola et al. 32 for
instance.

Future research on control charts for the MCV could also benefit from
adapting another well-known monitoring scheme such as the cumulative sum
chart (CUSUM;38). Avoiding the normality constraints by using a nonparametric
approach is another interesting path to be explored for both the univariate and
the multivariate case.
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Appendix A. First and second raw moments of the doubly noncentral F dis-
tribution

The doubly noncentral F distribution F(ν1, ν2, δ1, δ2) arises as the ratio of two
independent noncentral χ2 variables; more precisely:

F(ν1, ν2, δ1, δ2) ≡
χ2(ν1, δ1)/ν1

χ2(ν2, δ2)/ν2
. (A.1)

Here, χ2(ν, δ) stands for the noncentral χ2 distribution with ν > 0 degrees
of freedom and noncentrality parameter δ ≥ 024; ν1 and ν2 are not restricted
to integers, although they are traditionally considered so27. The distribution
resulting from δ2 = 0 is referred to as the (singly) noncentral F. The case δ1 = 0
(as it happens for γ̂2; see (11)) can be regarded as the reciprocal of a singly
noncentral F. Finally, the case in which both δ1 and δ2 equal zero reduces to the
ordinary F distribution.

Walck 28 gives the following expressions for µ′1(F′′) and µ′2(F′′), the first and
second raw moments of a F(ν1, ν2, δ1, δ2) variable:

µ′1(F′′) =
ν2

ν1
· ν1 + δ1

ν2 − 2
e−

δ2
2 1F1

(
ν2

2
− 1 ;

ν2

2
;

δ2

2

)
, if ν2 > 2, (A.2)

µ′2(F′′) =
(

ν2

ν1

)2 δ2
1 + (2δ1 + ν1)(ν1 + 2)

(ν2 − 2)(ν2 − 4)
e−

δ2
2 1F1

(
ν2

2
− 2 ;

ν2

2
;

δ2

2

)
, if ν2 > 4.

(A.3)
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The values of µ′1(F′′) and µ′2(F′′) are undefined for ν2 ≤ 2 and ν2 ≤ 4,
respectively. The so-called confluent hypergeometric function of the first kind 1F1

39 is
defined as

1F1(a; b; z) =
+∞

∑
k=0

(
zk

k!
· (a)k

(b)k

)
, (A.4)

where (c)k = Γ(c + k)/Γ(c). Recall that the gamma function is defined as

Γ(a) =
∫ +∞

0
ta−1e−tdt, (A.5)

for any a ∈ C except for a ∈ {0,−1,−2, . . . }. A deeper insight into the gamma
and the hypergeometric functions can be obtained from Lebedev 40 , for instance.

Using some properties of 1F1, we can express Equation (A.3) as a function
of 1F1(ν2/2− 1 ; ν2/2 ; δ2/2), like Equation (A.2). Specifically, the following
equivalence holds (as seen in41 Equation 13.3.1):

(b− a)1F1(a− 1; b; z) + (2a− b + z)1F1(a; b; z)− a1F1(a + 1; b; z) = 0, (A.6)

for any values a, b and z. Using Equation (A.6) with b = a + 1 and taking into
account that 1F1(b; b; z) = ∑+∞

k=0 (z
k/k!) = ez for any b (see also41 Equation 13.6.1),

it can be deduced that

1F1(a− 1; a + 1; z) = aez − (a− 1 + z)1F1(a; a + 1; z). (A.7)

Applying Equation (A.7) to Equation (A.3) with a = ν2/2− 1 and z = δ2/2, we
obtain:

µ′2(F′′) =
(

ν2

ν1

)2 δ2
1 + (2δ1 + ν1)(ν1 + 2)

(ν2 − 2)(ν2 − 4)
e−

δ2
2

(
ν2 − 2

2
e

δ2
2 −

(
ν2 − 4

2
+

δ2

2

)
1F1

(
ν2

2
− 1 ;

ν2

2
;

δ2

2

))
=

(
ν2

ν1

)2 δ2
1 + (2δ1 + ν1)(ν1 + 2)

2(ν2 − 4)

(
1− ν2 + δ2 − 4

ν2 − 2
e−

δ2
2 1F1

(
ν2

2
− 1 ;

ν2

2
;

δ2

2

))
,

(A.8)

which finally lets us express the second raw moment µ′2(F′′) as a function of
1F1(ν2/2− 1 ; ν2/2 ; δ2/2) instead of 1F1(ν2/2− 2 ; ν2/2 ; δ2/2).

Numerically evaluating expressions (A.2) and (A.8) with enough accuracy
can be really challenging under some concrete settings. We suggest applying
the following approach to numerically calculate 1F1 in an effective way:

a−1ez
1F1(a ; a + 1 ; −z) = ezz−aΓL(a, z) = C(a, z), (A.9)

where ΓL stands for the lower incomplete gamma function, defined as ΓL(a, z) =∫ z
0 ta−1e−tdt, and C(a, z) can be computed as the following continued fraction:

C(a, z) =
f0(a, z)

g0(a, z) + f1(a,z)

g1(a,z)+ f2(a,z)
g2(a,z)+···

, (A.10)
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with

fk(a, z) =



1, if k = 0
k
2

z, if k is even, k 6= 0

−
(

a +
k− 1

2

)
z, if k is odd

(A.11)

and
gk(a, z) = a + k, for k ≥ 0 (A.12)

(see also (15)). The leftmost equality in Equation (A.9) comes from Olver et al. 41,
Equation 8.5.1, while the expression of ΓL as a continued fraction can be found
in Olver et al. 41, Equation 8.9.1, and is valid except for a ∈ {−1,−2, . . . }. By
applying Equation (A.9) in Equations (A.2) and (A.8), we reach the following
workable expressions for µ′1(F′′) and µ′2(F′′):

µ′1(F′′) =
ν2(ν1 + δ1)

2ν1
C
(

ν2

2
− 1,− δ2

2

)
, (A.13)

µ′2(F′′) =
(

ν2

ν1

)2 δ2
1 + (2δ1 + ν1)(ν1 + 2)

4(ν2 − 4)

(
2− (ν2 + δ2 − 4) C

(
ν2

2
− 1 , − δ2

2

))
,

(A.14)

with C(a, z) calculated as in Equation (A.10). The particular case in which
ν1 = n − p, ν2 = p, δ1 = 0 and δ2 = n/γ2 leads to Equations (13) and (14),
which were to be proven.

Appendix B. On the suitability of using trimmed means for cases p = 2 and
p = 4

When working either with sampled data or with a theoretical probability
distribution, the effect of too extreme or abnormal values on computed statistics
can be minimised by directly truncating or trimming them off, among other
possibilities.

In the case of F′′ ∼ F(n− p, p, 0, n/γ2) with p = 2, the values of the first
and second raw moments µ′1(F′′) = E[F′′] and µ′2(F′′) = E[(F′′)2] compute to
infinity, mainly due to the highly positive skewness of the distribution; and
the same happens to µ′2(F′′) when p = 4. Therefore, calculating an upperly
trimmed version of µ′1(F′′) and µ′2(F′′) —that will be denoted by µ̃′1(F′′) and
µ̃′2(F′′), respectively— when these quantities cannot be computed to a finite
number seems a reasonable strategy. How this can be done has been explained
in Subsection 4.2.2.

This way to replace the nonexistent values of µ′1(F′′) and µ′2(F′′) can be
assumed to be valid for our purposes if the resulting values of µ̃′1(F′′) and
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µ̃′2(F′′) properly fit the gap left by them (see an example of this in Figures
B.1(a)–(b)).

In order to graphically validate this, the trimmed versions of the raw
moments, µ̃′1(F′′) and µ̃′2(F′′), were plotted against their respective original
versions, µ′1(F′′) and µ′2(F′′), as functions of p, the rest of parameters being
fixed (recall that the degrees of freedom of a doubly noncentral F distribution
are not meant to take only integer values). Figures B.1(c)–(d) depict a concrete
example. As shown in the figures, the behaviour of µ̃′1(F′′) and µ̃′2(F′′) only
significantly differs from that of µ′1(F′′) and µ′2(F′′), respectively, in those points
where discontinuities in the nontrimmed moments occur. This allows us to
accept the trimmed versions of the raw moments as valid substitutes in cases
p = 2 and p = 4.

As it should be noted from Figures B.1(c)–(d), µ′1(F′′) in Equation (13) can
be effectively calculated for values p < 2, and µ′2(F′′) in Equation (14) can be
computed for values of p lower than 4 other than 2. This is despite the fact that,
from a mathematical point of view, the first and second raw moments of F′′ do
not formally exist when the second degrees of freedom —p, in our case— are
less than 2 and 4, respectively. This enables the strategy we have proposed to be
followed for p = 1 and p = 3 in Subsection 4.2.2.
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Figure B.1: Example of the use of trimmed raw moments of F′′ ∼ F(n− p, p, 0, n/γ2) to replace the nonexistent nontrimmed counterparts, with n = 10 and
γ = 0.75. Figures (a) and (b) show a discrete plot of the first and second raw moments of F′′, respectively. White-colour dots with a question mark represent
missing points that evaluate to infinity (in p = 2 for the fist raw moment, and in p = 2 and p = 4 for the second raw moment). Figures (c) and (d) represent the
nontrimmed and trimmed first and second raw moments of F′′ as a continuous function of p; ε = 3 · 10−5 was used for trimming. Black dots are used to represent
the values that µ̃′1(F′′) and µ̃′2(F′′) will take to respectively substitute the nonexistent values of µ′1(F′′) and µ′2(F′′).
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