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Abstract

In experimental situations where observation loss is common, it is important for a
design to be robust against breakdown. For incomplete block designs, with one treat-
ment factor and a single blocking factor, conditions for connectivity and robustness
are developed using the concepts of treatment and block partitions, and of linking
blocks. Lower bounds are given for the block breakdown number in terms of param-
eters of the design and its support. The results provide guidance for construction of
designs with good robustness properties.
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1 INTRODUCTION

Incomplete block designs, with � treatments allocated to b blocks of size k, are widely used in industrial experiments. The aim of

such an experiment is to determine whether the data depend on the specific treatment applied and to obtain estimates of treatment

contrasts. A design which enables these aims to be realised, that is, a design which yields estimates of all treatment contrasts, is

described as connected. Otherwise, the design is disconnected. See Butz (1982)4 for early work on design connectivity.

It is common for observations to be be lost during experimentation. The extent of observation loss will depend on the particular

situation. Thus, when planning an experiment, in addition to checking properties of the planned design, it is prudent to investigate

the properties of potential eventual designs that can arise in the event of some observation loss.

There has been considerable investigation on the robustness of incomplete block designs against missing observations. For

early work, see Ghosh (19798, 19829). Dey (1993)5 introduces criteria for assessing design robustness. In particular, Dey defines

a design as being robust against the loss of b† blocks, according to Criterion 1, if all treatment contrasts are estimable from any

eventual design resulting from the loss of b† blocks. Conditions for assessing design robustness, based on treatment replicate

numbers, block sizes and treatment concurrences, have been developed by Baksalary and Tabis (1987)2, Godolphin and Warren
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(2011)12 and Godolphin and Godolphin (2015)11, amongst others. A key concept is the block breakdown number, which is the

smallest number of blocks that can be removed so there is at least one eventual design from which not all treatment contrasts

are estimable. The breakdown number is similarly defined and relates to the loss of individual observations, rather than whole

blocks. See Latif et al.15 (2009), Bailey et al. (2013)1 and Tsai and Liao(2013)16.

When planning an experiment, practical constraints can have the consequence that incomplete block designs with advanta-

geous properties such as balance, high efficiency and equal replication are not available. For example, limited resources may

mean that b is too small to accommodate designs known to have good properties. Alternatively, factors such as geographic loca-

tion or technical expertise varying between sites might make the grouping of some treatments in a block more economical or

practical than others. This can result in designs with b <
(�
k

)

having repeated blocks, or designs with b ≥
(�
k

)

in which some sets

of k treatments do not appear together in a block. The set of distinct blocks in a design is defined as the support, and the num-

ber of distinct blocks as the support size. The literature on designs with repeated blocks focuses mainly on balanced designs.

Foody and Hedayat (1977)7 and Hedayat and Li (1979)13 give algorithms for constructing balanced incomplete block designs

with common b, � and k but with different support sizes. Hedayat and Pesotan (1985)14 provide a general study on balanced

incomplete designs and the support. Recent work on balanced incomplete designs includes Dobcsányi et al. (2007)6, who derive

bounds for the multiplicities of repeated blocks and give constructions for designs with repeated blocks. Other work focuses on t-

designs. See for example Behbahani et al. (2008)3. There appears to be no work investigating the relationship between Criterion

1 robustness and properties of the design support for balanced designs or indeed for incomplete block designs in general.

The motivation for this work is to develop conditions on connectivity and Criterion 1 robustness for incomplete block designs,

that do not depend on the planned design having properties such as balance. The pattern of observation loss focussed on is the

loss of whole blocks. However, the bounds and conditions developed for robustness in the event of the loss of whole blocks

also apply if the pattern of observation loss involves individual observations: for example any connected design which is robust

against the loss of b† blocks, according to Criterion 1 will also be robust against the loss of b† individual observations. Designs

with blocks of size two are a special case when considering alternative types of observation loss. For such designs the loss of a

single observation is equivalent to the loss of the whole block since no information can be gained from a single observation in

a block. Bailey et al. (2013)1 and Godolphin (2018)10 use methods from graph theory to investigate designs with k = 2. Other

work on designs with k = 2 is found in Tsai and Liao (2013)16.

The paper is structured as follows. The model is introduced in Section 2 along with notation and concepts on connectivity and

robustness. In Section 3, lower bounds for the block breakdown number are obtained in terms of parameters of the design and

its support. Sufficient conditions are given for connectivity, and lower bounds are provided for the block breakdown number.

The bounds on the block breakdown number in Section 3 also apply to the breakdown number. The results are illustrated by
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examples to aid clarity. However, the primary aim of the work is to provide guidance for the construction of designs with good

robustness properties, rather than to obtain properties of specific designs.

2 PRELIMINARIES

Let D denote a binary incomplete block design on � treatments applied to the experimental units arranged in b blocks of size k.

An additive model is assumed with the bk × 1 observation vector Y specified by

E(Y ) = �1bk +X1�1 +X2�2, (1)

where � is a scalar constant, the bk×1 vector with all elements unity is denoted 1bk, and �1 and �2 are �×1 and b×1 parameter

vectors relating to treatments and blocks respectively. The design matrix for (1) is given by X = [1bkX1X2]. Here X1 and X2

are the bk× � and bk× b components of the design matrix pertaining to treatments and blocks. Each row ofX1 has one element

unity and � − 1 zeros and each row of X2 has one element unity and b − 1 zeros. Treatment replication numbers are given in

decreasing order by r[1],… r[�], with

b ≥ r[1] ≥ r[2] ≥ ⋯ ≥ r[�] ≥ 1.

The number of distinct blocks in D, the support size, is denoted by d, thus d ≤ b. The number of copies of each of block in D

is given by

n[1] ≥ n[2] ≥ ⋯ ≥ n[d],

where Σdi=1n[i] = b. The sub-design comprising a copy of each of the d distinct blocks of D is denoted by Dsup. Treatment

replication numbers in Dsup are s[1],… s[�], with

min
{(

� − 1
k − 1

)

, d
}

≥ s[1] ≥ s[2] ≥ ⋯ ≥ s[�] ≥ 1. (2)

The condition s[1] ≤
(�−1
k−1

)

is justified as follows. Consider any treatment: the sets of k−1 treatments occurring with this treatment

in the blocks ofDsup are all distinct sets from the remaining �−1 treatments. The number of such sets is
(�−1
k−1

)

. Thus no treatment

can occur in more than
(�−1
k−1

)

blocks of Dsup. If D has no repeated blocks then b = d ≤
(�
k

)

and n[i] = 1, for i = 1,… , b, and

r[j] = s[j] for j = 1,… , �. Otherwise, b > d and r[j] ≥ s[j] for all j ∈ {1,… , �} with r[j] > s[j] for at least one j ∈ {1,… , �}.

If D is connected, all treatment contrasts are estimable. Conversely, if D is disconnected, some treatment contrasts are not

estimable. The feature of treatment allocation that results in a disconnected incomplete block design can be described using

the concepts of treatment and block partitions. For a design satisfying model (1) and also having � ≥ 2k, a treatment partition,

{1,2}, is defined as an arrangement of the treatments into disjoint non-empty sets, 1 and 2, of sizes u and �−uwith u ∈ U ,

where U = {k,… , [�∕2]} and [.] denotes the integer part of. A block partition, {1,2}, is a partitioning of the blocks into
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disjoint non-empty sets 1 and 2. A disconnected design is characterised by the existence of consistent treatment and block

partitions so that all replicates of treatments in i occur in blocks in i, for i = 1, 2. By comparison, a connected design will

contain at least one linking block for any treatment partition, that is, at least one block which contains treatments from both 1

and 2. The notation Ω(D) is used for the smallest number of linking blocks for a treatment partition in design D. The notions

of treatment and block partitions and of linking blocks are useful in obtaining conditions on connectivity and bounds for the

block breakdown number. For a design with � < 2k, there are no treatment partitions since any treatment partition would need to

contain at least k treatments in each of disjoint sets 1 and 2. It follows immediately that all designs with � < 2k are connected.

Example 1 Design D1 is given by

D1 =

1 1 1 1 3 3 3 5 2 2 2 4

3 5 8 8 5 7 8 7 4 4 4 6

7 7 10 10 10 8 10 10 6 6 9 9

where, as with all designs displayed in this work, columns correspond to blocks. This design has � = 10, k = 3, b = 12 and

d = 10. DesignD1 is disconnected: the treatment partition, 1 = {2, 4, 6, 9},2 = {1, 3, 5, 7, 8, 10} is consistent with the block

partition 1, 2, where the last four blocks are contained in 1 and the first eight in 2. Contrasts in treatment effects involving

treatments in 1 are estimable as are those in 2. However, a pairwise treatment difference involving a treatment from each of

1 and 2, such as the difference in effect of treatments 1 and 2, is inestimable.

Example 2 Design D2 has support D2sup ∶

D2sup =

1 1 1 1 1 1 1 1 2 3 4 4

2 3 3 3 3 5 5 6 3 6 5 6

6 5 5 6 9 7 7 9 9 7 7 9

10 8 9 8 10 9 10 10 10 9 9 10

.

DesignD2 has parameters � = 10, k = 4 and d = 12 and is connected. No treatment partition is consistent with a block partition.

Thus, for any treatment partition {1,2}, there is at least one linking block in D2 (and also in D2sup), containing treatments

from both 1 and 2. Design D2 will be returned to in a subsequent example.

An eventual design realized after the loss of one or more blocks from a planned design, D, is denoted D# and the class of

eventual designs resulting from the loss of every set of p blocks is denoted D(p). The block breakdown number, b0, gives the

smallest number of blocks that need to be lost before the possibility of an eventual design from which not all treatment contrasts

are estimable. Thus, a disconnected design has b0 = 0 and a connected design has b0 > 0. Every design in D(p), for p < b0,

is a connected design in � treatments, but for p ≥ b0 there will be at least one member of D(p) from which some treatment

contrasts will be inestimable. If some treatment contrasts are not estimable inD# then one or both of the following must be true:

all replicates of a treatment are missing; at least one treatment partition exists in D# for which there are no linking blocks. It
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follows immediately that all designs with � < 2k have b0 = r[�]. Henceforth, it will be assumed that � ≥ 2k. The two causes of

inestimable treatment constrasts leads to:

Definition 1. The block breakdown number of design D is given by

b0 = min{r[�],Ω(D)}. (3)

In Example 1, the blocks ofD1 are ordered, so that the disconnected nature of the design can be easily recognised, with blocks

of 1 arranged together and similarly blocks of 2 arranged together. In practice, it can be challenging recognise that a design

is disconnected, and even more challenging to determine if a connected design has a low value of b0. Obtaining an upper bound

for b0 is straightforward, even before allocation of treatments to experimental units. Theorem 1 is given by Bailey et al. (2013)1.

Theorem 1. For any design, b0 ≤ [bk∕�].

Proof. At least one treatment has replication [bk∕�] or smaller. Thus r[�] ≤ [bk∕�] and the result follows directly from (3).

The problem of planning a design to ensure that b0 exceeds a desirable value is challenging. For p < r[�], an eventual design

D# in D(p) is an incomplete block design in � treatments and with b − p blocks of size k. The design matrix of D# is denoted

by X# = [1(b−p)kX1#X2#] and is obtained by removal of kp rows from X and p columns from X2. As with the planned design,

D# is disconnected iff there is a partition of the treatments into 1 and 2 which is consistent with a partitioning of the blocks

of D# into sets #1 and #2, so that all replicates of treatments in i occur in blocks in #i for i = 1, 2.

3 CONNECTIVITY AND ROBUSTNESS CONDITIONS IN TERMS OF SUPPORT

PARAMETERS

In this section, sufficient conditions are developed to guarantee design connectivity. A second focus is the derivation of lower

bounds for Ω(D), and hence b0. The conditions and bounds are based on various levels of information on D and are given

in terms of the design parameters: �, k, d, n[i] and s[i]. Results are illustrated by reference to specific examples. However, the

main value of the results is to provide guidance in planning an experiment, to facilitate construction of designs that have a level

of robustness appropriate to the perceived risk of observation loss associated with the experimental situation. The first result

depends only on parameters �, k, d.

Theorem 2. Consider the class of designs with given �, k and d, where d ≤
(�
k

)

. Then a sufficient condition for all designs in

the class to be connected is given by

d >
(

� − k
k

)

+ 1. (4)
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Proof. Assume that the design class contains a disconnected design,D, and consider the sub-designDsup. A treatment partition

which is consistent with a block partition exists inD, iff the same treatment partition is consistent with a block partition inDsup.

ThereforeDsup is disconnected and there is a treatment partition {1,2}, where 1 contains u treatments with k ≤ u ≤ �∕2 and

2 contains the remaining � − u treatments, which is consistent with a partition, {1S ,2S}, of the d blocks of Dsup. Thus, in

Dsup all replicates of treatments from i occur in blocks iniS for i = 1, 2. Since all blocks in1S are distinct and each contains

k members of the u treatments of 1, set 1S contains at most
(u
k

)

blocks. Similarly, 2S contains at most
(�−u
k

)

blocks, giving

d ≤
(

u
k

)

+
(

� − u
k

)

. (5)

A straightforward algebraic argument establishes that the right hand side of (5) is maximised when u = k. Thus the assumption

that D is disconnected implies that d ≤ 1 +
(�−k
k

)

. Therefore the result follows by contraposition.

Within the class of designs for given �, k and d, Theorem 2 establishes whether or not all designs in the class are connected.

For a design with no repeated blocks, Theorem 2 is expressed as follows.

Corollary 1. Consider the sub-class of designs with given �, k and d, where d = b ≤
(�
k

)

. A sufficient condition for all designs

in the sub-class to be connected is given by

b >
(

� − k
k

)

+ 1.

Example 3 Design D3 is given by

D3 =
1 1 1 1 2 2 2 2 3 3 3 4 4 5 5

2 4 5 7 3 5 7 7 4 6 6 6 6 6 7

blocks. This design has � = 7, k = 2 and d = 12. By Theorem 2, any design with these parameters is connected.

Example 4 Consider the class of designs with � = 8, k = 4, d = 10. By Theorem 2, all designs in the class are connected.

The class of designs of Example 4 will be returned to once further results have been established.

For design classes, specified by �, k, d, satisfying Theorem 2, a lower bound for Ω(Dsup) is given by � = d − 1 −
(�−k
k

)

.

Thus, for any treatment partition, there are at least � linking blocks in Dsup. A lower bound for Ω(D) can be determined with

knowledge of the n[i] values.

Theorem 3. Let design D satisfy the condition of Theorem 2. Let � = d − 1 −
(�−k
k

)

and !� = Σdi=d−�+1n[i]. Then Ω(D) ≥ !� .

Proof. DesignD is connected by Theorem 2. In general, a set of Σdi=d−x+1n[i] blocks ofD is the smallest set that can contain all

copies of x distinct blocks. A lower bound for Ω(Dsup) is given by �. The smallest number of blocks of D that can contain all

copies of � distinct blocks is Σdi=d−�+1n[i]. Thus, Ω(D) ≥ !� as required.

For a design with no repeated blocks, Theorem 3 simplifies to:
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Corollary 2. Let D be such that d = b and d > 1 +
(�−k
k

)

. Then Ω(D) ≥ �.

Example 4 revisited All designs in the class with � = 8, k = 4 and d = 10 have � = 8 and !� = Σ10i=3n[i] by Theorem 3. Thus,

for any design in the class and any treatment partition {1,2}, the design support contains at least eight linking blocks and the

design itself contains at least Σ10i=3n[i] linking blocks. Hence, b0 ≥ min{r[�],Σ
10
i=3n[i]}.

The bound on d to guarantee connectivity ofD and the bound onΩ(D), achieved with Theorems 2 and 3, give useful guidance

in design planning for many �, k combinations. In particular, the bound on d is moderate in size for designs with � close to or

equal to 2k: for a design with � = 2k, by Theorem 2 d ≥ 3 is sufficient to guarantee connectivity. However, unless � is close to

2k, the value of d required to ensure connectivity from Theorem 2 can be prohibitively large as � and k increase.

Additional knowledge of D promotes improved conditions. In particular, knowledge of the treatment replication numbers in

Dsup, that is s[1],… , s[�], enables a lower bound to be established for u, the cardinality of 1, for a treatment partition character-

ising a disconnected design. A set of conditions is now developed, as an alternative to Theorem 2, which guarantee a connected

design without the need for (4) to be satisfied. These conditions are based on s[1],… , s[�]. To achieve this aim, a function is

defined:

Definition 2. For integers  and �, with  ≥ 1 and � ≥ 2, define Φ(, �) be the positive integer such that:
(

Φ(, �) − 2
� − 1

)

<  ≤
(

Φ(, �) − 1
� − 1

)

. (6)

Values for Φ(, �), for  ≤ 30 and 2 ≤ � ≤ 10 are given in Table 1 in the Appendix.

Lemma 1. Let t be a treatment in D with replication s in Dsup. If D is disconnected then, in any treatment partition which is

consistent with a block partition in Dsup, treatment t is contained in a treatment set of cardinality at least Φ(s, k).

Proof. Consider the s blocks of Dsup which contain treatment t. Each of these blocks contains k− 1 treatments in addition to t.

Let the number of treatments occuring in at least one block with t be m. Then, m satisfies

s ≤
(

m
k − 1

)

.

From (6),
(

Φ(s, k) − 2
k − 1

)

< s ≤
(

Φ(s, k) − 1
k − 1

)

.

Thus, Φ(s, k) − 2 < m and Φ(s, k) − 1 ≤ m. It follows that Φ(s, k) − 1 is the smallest number of treatments, which can occur

with t in blocks of Dsup. Hence, in a disconnected design, a lower bound for the cardinality of the treatment set containing t in

any treatment partition consistent with a block partition in D or Dsup is Φ(s, k).

Lemma 1 prompts a range of conditions for connectivity.
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Theorem 4. The inequalities listed each provide a sufficient condition for D to be connected:

(i) Φ(s[1], k) > � − k; (7)

(ii) Φ(s[�+1−k], k) >
[ �
2

]

; (8)

(iii) Φ(s[1], k) + Φ(s[�+1−k], k) > �. (9)

Proof. Assume D is disconnected and let {1,2} be any treatment partition which is consistent with a block partition in D.

The conditions are considered in turn.

(i) Let (7) hold. Consider a treatment with replication s[1] in Dsup. By Lemma 1 this treatment occurs in a treatment set with

cardinality at least Φ(s[1], k), that is, at least �− k+ 1. Since the cardinalities of 1 and 2 are bounded below by k, the sum of

the cardinalities of the two treatment sets is at least (�− k+ 1) + k > �, giving a contradiction and proving thatD is connected.

(ii) Let (8) hold. For any set ofw treatments, say, the largest replication of a treatment from inDsupmust be at least s[�+1−w].

The cardinalities of 1 and 2 are bounded below by k. Thus each set contains a treatment with replication at least s[�+1−k] in

Dsup. Then, by Lemma 1, it follows that 1 and 2 each have cardinality at least Φ(s[�+1−k], k). But 2Φ(s[�+1−k], k) > �, again

providing a contradiction and establishing that D is connected.

(iii) Let (9) hold. In Dsup at least one of 1, 2 contains a treatment with replication s[1] and both sets contain a treatment with

replication at least s[�+1−k]. Thus a lower bound for the sum of the set cardinalities is Φ(s[1], k) + Φ(s[�+1−k], k) > �. This gives

a contradiction and therefore D is connected.

The conditions of Theorem 4 provide guidance in the construction of designs to ensure connectivity. Note that if condition

(iii) is satisfied, then condition (i) is automatically also satisfied since Φ(s[�+1−k], k) ≥ k. However, condition (i) is useful in its

own right because it depends only on s[1].

Example 5 A design, D4, is proposed for an experiment with � = 9, k = 3 and d = 18 with support treatment replication

numbers:

s[1] = 10, s[2] = s[3] = s[4] = s[5] = s[6] = s[7] = 6, s[8] = s[9] = 1.

Connectivity of D4 is not guaranteed by Theorem 2, which requires d ≥ 21 for designs with � = 9, k = 3. Using Table 1, the

conditions of Theorem 4 are considered in turn:

(i) Φ(s[1], k) = Φ(10, 3) = 6 ≯ � − k = 6

(ii) Φ(s[�+1−k], k) = Φ(s[7], k) = Φ(6, 3) = 5 >
[ �
2

]

= 4

(iii) Φ(s[1], k) + Φ(s[�+1−k], k) = Φ(10, 3) + Φ(6, 3) = 11 > � = 9.

Thus, D4 is connected by conditions (ii) and (iii).
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It is useful to define two further functions. These will facilitate identification of design parameters that lead to one or more

conditions of Theorem 4 being satisfied and enable some measure of the robustness of a design satisfying Theorem 4 to be

obtained.

Definition 3. For q ≥ k, define Θ1(q, �) to be the smallest integer 1 such that Φ(1, �) = q. For q ≥ 2k, define Θ2(q, �) be the

set of ordered integer pairs ⟨1, 2⟩ with 1 ≥ 2 such that

Φ(1, �) + Φ(2, �) = q and

Φ(1 − 1, �) + Φ(2, �) < q and

Φ(1, �) + Φ(2 − 1, �) < q.

For example, using Table 1, Θ1(6, 3) = 7 and Θ2(11, 3) = {⟨16, 1⟩ ⟨11, 2⟩ ⟨7, 4⟩}. The functions Θ1(q, �) and Θ2(q, �) aid

in the identification of design parameters that satisfy Theorem 4 and in assessing design robustness. For example, the smallest

value of s[1] that satisfies condition (i) is Θ1(�+1−k, k). Similarly, the set Θ2(�+1, k) contains pairs ⟨s[1], s[�+1−k]⟩ that satisfy

condition (iii), and for which the condition is not satisfied if either replication number is reduced. The function Θ1(q, �) leads to

bounds for Ω(D) for designs satisfying condition (i) or (ii) of Theorem 4. Likewise, Θ2(q, �) gives rise to a bound for Ω(D) for

designs satisfying condition (iii). These are combined in an obvious way in the following result.

Theorem 5. Let design D be connected by Theorem 4. Then let

� = max
{

s[1] − Θ1(� + 1 − k, k), s[�+1−k] − Θ1
([ �
2

]

+ 1, k
)

, max
⟨1,2⟩∈Θ2(�+1,k)

{

min{s[1] − 1, s[�+1−k] − 2}
}

}

and !� = Σdi=d−�+1n[i]. Then Ω(D) ≥ !� .

Example 5 revisited DesignD4 has been established as being connected by conditions (ii) and (iii) of Theorem 4. A bound on

Ω(D4) can be obtained from Theorem 5. For D4:

� = max
{

s[1] − Θ1(7, 3), s[7] − Θ1(5, 3), max
⟨1,2⟩∈Θ2(10,3)

{

min{s[1] − 1, s[7] − 2}
}

}

.

From Table 1, Θ1(7, 3) = 11, Θ1(5, 3) = 4 and Θ2(10, 3) = {⟨11, 1⟩, ⟨7, 2⟩, ⟨4, 4⟩}. This gives

� = max {−1, 2,max{min{−1, 5},min{3, 4},min{6, 2}}} = max {−1, 2, 3} = 3.

Thus, for every treatment partition {1, 2}, the support design D4sup contains at least three linking blocks. Hence, Ω(D4) ≥

Σ18i=16n[i].

The use of the functions Θ1(q, �) and Θ2(q, �) in identifying design parameters that guarantee connectivity is demonstrated

in the next example.
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Example 6 A design is required with � = 10 and k = 4. Support treatment replication numbers can be identified which satisfy

the conditions of Theorem 4. For condition (i), Θ1(� + 1 − k, k) = Θ1(7, 4) = 11. Thus designs with s[1] ≥ 11 satisfy condition

(i). For condition (ii), Θ1([�∕2] + 1, k) = Θ1(6, 4) = 5. Thus, any design with s[7] ≥ 5 will satisfy condition (ii). Finally, for

condition (iii), the set Θ2(� + 1, k) = Θ2(11, 4) = {⟨11, 1⟩, ⟨5, 2⟩} is informative. From this set, it follows that a design with

s[1] ≥ 11 and s[7] ≥ 1 or with s[1] ≥ 5 and s[7] ≥ 2 will satisfy condition (iii).

This information is useful in planning an experiment. For example, design D2 of Example 2, with � = 10 and k = 4, has

support treatment replication numbers

s[1] = s[2] = 8, s[3] = s[4] = 6, s[5] = s[6] = 5, s[7] = 4, s[8] = s[9] = s[10] = 2.

Thus, D2 is connected by condition (iii) of Theorem 4. Also, by Theorem 5, the support contains at least two linking blocks

for every treatment partition and so Ω(D2) ≥ Σ12i=11n[i] and b0 ≥ min{Ω(D2), r[10]}. With only knowledge of the support of D2,

it follows that Ω(D2) ≥ 2 and r[10] ≥ 2, giving b0 ≥ 2.

For experimental situations where there is confidence that observation loss is highly unlikely, the conditions for connectivity

from Theorems 2 and 4 can be improved on.

Lemma 2. Let �0 = k and define

�i+1 = Φ(s[�+1−�i], k) for i = 0,… . (10)

Then �0, �1,… is a non-decreasing sequence of integers which terminates with stop value �∗, where 1 ≤ �∗ ≤ Φ(s[1], k).

Proof. Using (10), �1 = Φ(s[�+1−k], k) ≥ k = �0. Then � + 1 − �1 ≤ � + 1 − k, and so s[�+1−�1] ≥ s[�+1−k] giving �2 =

Φ(s[�+1−�1], k) ≥ �1. A recursive argument establishes that �0, �1, �2, … is a non-decreasing sequence of positive integers.

The sequence is bounded below by k and above by �. A stop value is attained if there is a value for m such that �m+1 = �m; in

this case set �∗ = �m. Otherwise, the stop value is �∗ = Φ(s[1], k).

Lemma 3. Let D be a disconnected design. Then any treatment partition consistent with a block partition has u ≥ �∗.

Proof. Let {1,2} be any treatment partition which is consistent with a block partition in D. Then {1,2} is also consistent

with a block partition in Dsup. Let 1S be the blocks of Dsup that contain all replicates of the u treatments from 1. Since

u ≥ k, the set 1 contains a treatment with replication at least s[�+1−k] in Dsup. From Lemma 1, 1 has cardinality at least

Φ(s[�+1−k], k) = �1, where �1 is defined by Lemma 2. Therefore, 1 contains a treatment of replication at least s[�+1−�1] and,

again using Lemma 1, 1 has cardinality at least Φ(s[�+1−�1], k) = �2. The argument proceeds in the same manner to conclude

that 1 contains at least �∗ treatments, that is, u ≥ �∗.
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The lower bound for u provided by �∗ is used to improve on conditions for connectivity of Theorems 2 and 4. The proofs

mirror those of the earlier results and are not included:

Theorem 6. The inequalities listed each provide a sufficient condition for D to be connected:

(i) d >
(

� − �∗
k

)

+ 1;

(ii) �∗ >
[ �
2

]

;

(iii) Φ(s[1], k) + �∗ > �.

Example 7 Design D5 is proposed for an experiment with � = 9, k = 3 and d = 10. The support design, D5sup, has treatment

replication numbers:

s[1] = s[2] = s[3] = s[4] = s[5] = s[6] = 4; s[7] = s[8] = s[9] = 2.

Neither Theorem 2 or Theorem 4 guarantee the connectivity of D5. The value of �∗ is obtained via Lemma 2: �0 = k = 3;

�1 = Φ(s[7], 3) = Φ(2, 3) = 4; �2 = Φ(s[6], 3) = Φ(4, 3) = 5; �3 = Φ(s[5], 3) = Φ(4, 3) = 5 = �2. Thus �∗ = 5. The conditions

of Theorem 6 are considered in turn:

(i) d = 10 > 5 =
(

4
3

)

+ 1 =
(

� − �∗
k

)

+ 1;

(ii) �∗ = 5 > 4 =
[ �
2

]

;

(iii) Φ(s[1], k) + �∗ = Φ(4, 3) + 5 = 10 > 9 = �.

Design D5 is established as connected by all three conditions of Theorem 6.
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TABLE 1 Values for Φ(, �), for  ≤ 30 and 2 ≤ � ≤ 10

�
 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 11
3 4 4 5 6 7 8 9 10 11
4 5 5 5 6 7 8 9 10 11
5 6 5 6 6 7 8 9 10 11
6 7 5 6 7 7 8 9 10 11
7 8 6 6 7 8 8 9 10 11
8 9 6 6 7 8 9 9 10 11
9 10 6 6 7 8 9 10 10 11
10 11 6 6 7 8 9 10 11 11
11 12 7 7 7 8 9 10 11 12
12 13 7 7 7 8 9 10 11 12
13 14 7 7 7 8 9 10 11 12
14 15 7 7 7 8 9 10 11 12
15 16 7 7 7 8 9 10 11 12

�
 2 3 4 5 6 7 8 9 10
16 17 8 7 8 8 9 10 11 12
17 18 8 7 8 8 9 10 11 12
18 19 8 7 8 8 9 10 11 12
19 20 8 7 8 8 9 10 11 12
20 21 8 7 8 8 9 10 11 12
21 22 8 8 8 8 9 10 11 12
22 23 9 8 8 9 9 10 11 12
23 24 9 8 8 9 9 10 11 12
24 25 9 8 8 9 9 10 11 12
25 26 9 8 8 9 9 10 11 12
26 27 9 8 8 9 9 10 11 12
27 28 9 8 8 9 9 10 11 12
28 29 9 8 8 9 9 10 11 12
29 30 10 8 8 9 9 10 11 12
30 31 10 8 8 9 9 10 11 12
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