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Abstract

Balakrishann et al.1 introduced robust density-based estimators in the context of one-
shot devices with exponential lifetimes under a single stress factor. However, it is usual
to have several stress factors in industrial experiments involving one-shot devices. In this
paper, the weighted minimum density power divergence estimators are developed as a nat-
ural extension of the classical maximum likelihood estimators for one-shot device testing
data under exponential lifetime model with multiple stresses. Based on these estimators,
Wald-type test statistics are also developed. Through a simulation study, it is shown that
some WMDPDEs have a better performance than the MLE in relation to robustness. Two
examples with multiple stresses show the usefulness of the model and, in particular, of the
proposed estimators, both in Engineering and Medicine.
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1 Introduction

One-shot devices, which are products that will get destroyed immediately after use, have been
widely studied in the recent years, mainly motivated by the work of Fan et al.2 In this paper, an
extensive study of the reliability of electro-explosive devices (which are indeed one-shot devices)
is done, taking into account that after a succesfull detonation, the device can not be used
any further, and that in case of failure, the exact time when it failed is unknown. Therefore,
the data from such devices consists of both left censored (failure) and right censored (success)
observations at pre-fixed inspection time points, and the observations are binary data (failure
or not) instead of real failure time data. Other examples of one-shot devices are automobile
air-bags, missiles (Olwell and Sorell3), and fire extinguishers (Newby4). This kind of data is also
known as current status data in the survival analysis literature.

In the paper of Fan et al.,2 a Bayesian approach was presented for the inference on the
failure rate and reliability of devices. They found the normal prior to be the best one when
the failure observations are rare, which is indeed the case when the devices are highly reliable.
Subsequently, Balakrishnan and Ling5 developed an EM algorithm for the determination of the
MLEs of model parameters under exponential lifetime distribution for devices with a single
stress factor. Balakrishnan and Ling6 further extended their work to a model with multiple
stress factors. Balakrishnan and Ling7 developed more general inferential results for devices
with Weibull lifetimes under non-constant shape parameters, while Balakrishnan and Ling8

provided inferential work for devices with gamma lifetimes. Another interesting approach in the
Bayesian framework has been given by Fan and Chang.9

Most of the above results are based on maximum likelihood estimators (MLE) and it is well
known that they are efficient, but also non-robust. Therefore, space testing procedures based
on MLEs face serious robustness problems. To avoid that problem of robustness without a
strong loss of efficiency, Balakrishann et al.1 developed the minimum density power divergence
estimators (MDPDE) in the context of one-shot devices with exponential lifetimes under a single
stress factor. However, it is common in industrial experiments to have several stress factors while
analyzing one-shot devices, overall in accelerated life testing (ALT). An ALT plan implies the
devices to be tested under high stress levels, in order to shorten their lifetimes, which are usually
quite large under normal conditions because of the advances in technology. An experiment with
scarce failures will result in insignificant inferential results. In this sense, stress factors such as air
pressure, temperature or humidity can be easily controlled in an experimental laboratory setup.
Inference and design optimization for the step-stress ALT have attracted great attention in the
reliability and engineering literature. King10 has focused the robustness of asymptotic optimal
test planning for accelerated life testing to small sample setting while Han11 has considered
optimal design of ALT under progressive type I censoring. Some other pertinent references can
be seen in these papers.

In this paper, we extend the results of Balakrishann et al.1 to the more practical and realistic
situation wherein there are multiple stress factors. In contrast with the initial approach, we will
not necessarily consider that all the testing conditions have the same sample weight. In Section 2,
we present the formulation of the problem and then introduce the MLEs. The weighted minimum
density power divergence estimators (WMDPDE), a natural extension of the MLEs, is introduced
in Section 3 and its asymptotic distribution and influence function are then obtained. Based on
WMDPDE, in Section 4, we introduce Wald-type tests for testing hypotheses in relation to the
model under consideration. Section 5 presents the results of a simulation study and in Section 6
two illustrative examples are presented. Finally, some concluding remarks are made in Section
7.
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2 Model formulation and maximum likelihood estimator

Suppose the devices are stratified into I testing conditions and that in the i-th testing condition
Ki units are tested with J types of stress factors being maintained at certain levels, and the
working conditions of those units are then observed at pre-specified inspection times ti, for
i = 1, . . . , I. The data thus observed can be summarized as follows.

For i = 1, . . . , I and j = 1, . . . , J , suppose the lifetimes of devices in the i-th testing condition
are exponentially distributed with failure rate λi, and are subjected to various stress levels wij .
Let us denote wi0 = 1, wi = (wi0, ..., wiJ)T and let a = (a0, a1, . . . aJ)T be the model parameter
vector, that relates λi with stress factors wi by

λi = exp
(
wT
i a
)
.

Then, the probability density function of the lifetimes is given by

f(ti;a,wi) = λi exp(−tiλi) = exp
(
wT
i a
)

exp
(
−ti exp

(
wT
i a
))

(1)

and the corresponding distribution function is

F (ti;a,wi) = 1− exp
(
−ti exp

(
wT
i a
))
. (2)

Then, the reliability at time ti and the mean lifetime under normal operating conditions wi are
given by

R(ti;a,wi) = 1− F (ti;a,wi) = exp
(
−ti exp

(
wT
i a
))

(3)

and

E[Ti] =
1

λi
= exp

(
−wT

i a
)
.

More details about this model can be seen in the work of Balakrishnan and Ling.5,6

The likelihood function based on the observed data, presented in Table 1, is given by

L(a;n1, . . . , nI) ∝
I∏
i=1

Fni(ti;a,wi)R
Ki−ni(ti;a,wi). (4)

We now introduce the following probability vectors

p̂i = (p̂i1, p̂i2)
T , i = 1, . . . , I, (5)

πi(a) = (πi1(a), πi2(a))T , i = 1, . . . , I, (6)

with p̂i1 = ni
Ki
, p̂i2 = 1− ni

Ki
, πi1(a) = F (ti;a,wi) and πi2(a) = R(ti;a,wi).

The Kullback-Leibler divergence measure, (see, for instance, Pardo12), between p̂i and πi(a)
is given by

dKL(p̂i,πi(a)) = p̂i1 log

(
p̂i1

πi1(a)

)
+ p̂i2 log

(
p̂i2

πi2(a)

)
=
ni
Ki

log

( ni
Ki

F (ti;a,wi)

)
+

(
1− ni

Ki

)
log

(
1− ni

Ki

R(ti;a,wi)

)
, (7)

and the weighted Kullback-Leibler divergence measure is given by

I∑
i=1

Ki

K
dKL(p̂i,πi(a)) =

1

K

I∑
i=1

(
ni log

( ni
Ki

F (ti;a,wi)

)
+ (Ki − ni) log

(
1− ni

Ki

R(ti;a,wi)

))
,

where K = K1 + · · ·+KI , is the total number of devices under test.
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Theorem 1 The likelihood function L(a;n1, . . . , nI), given in (4), is related to the weighted
Kullback-Leibler divergence measure through

I∑
i=1

Ki

K
dKL(p̂i,πi(a)) = c− 1

K
logL(a;n1, . . . , nI),

with c being a constant not dependent on a.

Based on Theorem 1, we have the following definition for the MLE of a.

Definition 2 The MLE of a, â, can be defined as

â = arg min
a

I∑
i=1

Ki

K
dKL(p̂i,πi(a)). (8)

Based on (8), in what follows, we shall consider, for the one-shot device model considered in
(4), the WMDPDEs.

3 The Weighted Minimum Density Power Divergence Estima-
tors

Given the probability vectors p̂i and πi(a) defined in (5) and (6), respectively, the density power
divergence (DPD) between the two probability vectors is given, as the function of a single tuning
parameter β ≥ 0, by

dβ(p̂i,πi(a)) =
(
πβ+1
i1 (a) + πβ+1

i2 (a)
)
− β + 1

β

(
p̂i1π

β
i1(a) + p̂i2π

β
i2(a)

)
+

1

β

(
p̂β+1
i1 + p̂β+1

i2

)
, if β > 0, (9)

and dβ=0(p̂i,πi(a)) = limβ→0+ dβ(p̂i,πi(a)) = dKL(p̂i,πi(a)), for β = 0.

We observe that in (9), the term 1
β

(
p̂β+1
i1 + p̂β+1

i2

)
has no role in the minimization with

respect to a. Therefore, we can consider the equivalent measure

d∗β(p̂i,πi(a)) =
(
πβ+1
i1 (a) + πβ+1

i2 (a)
)
− β + 1

β

(
p̂i1π

β
i1(a) + p̂i2π

β
i2(a)

)
. (10)

Definition 3 Based on (8) and (10), we can define the WMDPDE for a as

âβ = arg min
a

I∑
i=1

Ki

K
d∗β(p̂i,πi(a)), for β > 0,

and for β = 0, we consider the MLE, â, defined in (8).

Theorem 4 For β ≥ 0, the estimating equations are given by

I∑
i=1

(KiF (ti;a,wi)− ni) f(ti;a,wi)tiwi

(
F β−1(ti;a,wi) +Rβ−1(ti;a,wi)

)
= 0J+1,

where f(ti;a,wi), F (ti;a,wi) and R(ti;a,wi) are given, respectively, by (1), (2) and (3), and
0J+1 is the null column vector of dimension J + 1.
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In the following result, the asymptotic distribution of the WMDPDE of a, âβ, for one-shot
device testing data, with multiple stresses is presented.

Theorem 5 Let a∗ be the true value of the parameter a, the asymptotic distribution of the
WMDPDE, âβ, is given by

√
K (âβ − a∗)

L−→
K→∞

N
(
0J+1,J

−1
β (a∗)Kβ(a∗)J−1β (a∗)

)
,

where

Jβ(a) =

I∑
i

Ki

K
wiw

T
i f

2(ti;a,wi)t
2
i

(
F β−1(ti;a,wi) +Rβ−1(ti;a,wi)

)
, (11)

Kβ(a) =

I∑
i=1

Ki

K
wiw

T
i f

2(ti;a,wi)t
2
iF (ti;a,wi)R(ti;a,wi)

(
F β−1(ti;a,wi) +Rβ−1(ti;a,wi)

)2
. (12)

3.1 Influence Function of the WMDPDE

Let us denote by Gi the true distribution function of the response variable Yi, for the i−th group
of Ki observations, having mass function gi, and by Fi,a the distribution function associated
with the model, with probability mass function fi,a. In vector notation, we let G = (G1 ⊗
1TK1

, . . . , GI⊗1TKI
) and F a = (F1,a⊗1TK1

, . . . , FI,a⊗1TKI
). We first need to define the statistical

functional Uβ(G) corresponding to the WMDPDE as the minimizer of the weighted sum of
DPDs between the true and model densities.

This is defined as the minimizer of

I∑
i=1

Ki

K

[
πβ+1
i1 (a) + πβ+1

i2 (a)− β + 1

β

(
Ni1

Ki
πβi1(a) +

Ni2

Ki
πβi2(a)

)]
, (13)

whenever it exists. When the assumption of the model holds with true parameter a∗, we have
gi = fi,a∗ and (13) is minimized at a = a∗, implying the Fisher consistency of the WMDPDE
functional Uβ(G) in our model.

One can derive the influence function (IF) of the WMDPDE at F a∗ with respect to the k-th
element of the i0-th group of observations, as

IF(δ(i0,k),Uβ,F a∗) =
∂Uβ(F

(i0,k)
a∗,ε )

∂ε

∣∣∣∣∣
ε=0

(14)

= J−1β (a∗)
Ki0

K
(F (ti0 ;a∗,ωi0)− Λδ(i0,k))

×
[
F β−1(ti0 ;a∗,ωi0) +Rβ−1(ti0 ;a∗,ωi0)

]
f(ti0 ;a∗,ωi0)tiωi0 ,

where the contaminated probability vector F
(i0,k)
a∗,ε = (1 − ε)F a∗ + εΛ

(i0,k)
δ and Λ

(i0,k)
δ is the

degenerate probability at the outlier δ in the position (i0, k) in lexicographical order. The IF
with respect to all the observations is given by
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IF(δ,Uβ,F a∗) =
∂Uβ(F a∗,ε)

∂ε

∣∣∣∣
ε=0

(15)

= J−1β (a∗)
I∑
i=1

Ki

K
(F (ti;a

∗,ωi)− Λδ(i))

×
[
F β−1(ti;a

∗,ωi) +Rβ−1(ti;a
∗,ωi)

]
f(ti;a

∗,ωi)tiωi,

where F a∗,ε = (1− ε)F a∗ + ε
∑I

i=1

∑Ki
k=1 Λδ(i,k) and δ(i) =

∑Ki
k=1 δ

(i,k).

4 Wald-type test statistics

4.1 Definition and asymptotic results

Let us consider the function m : RJ+1 −→ Rr, where r ≤ J + 1. Then, m (a) = 0r represents
a composite null hypothesis. We assume that the (J + 1)× r matrix

M (a) =
∂mT (a)

∂a

exists and is continuous in “a” and with rank M (a) = r. For testing

H0 : a ∈ Θ0 against H1 : a /∈ Θ0, (16)

where Θ0 = {a ∈ Θ0 : m (a) = 0r} , we can consider the following Wald-type test statistics

WK (âβ) = KmT (âβ)
(
MT (âβ) Σ (âβ)M (âβ)

)−1
m (âβ) ,

where Σβ (âβ) = J−1β (âβ)Kβ (âβ)J−1β (âβ) and J−1β (a) and Kβ (a) are as in (11) and (12),
respectively. Wald-type test statistics based on WMDPDEs have been considered previously by
Basu et al.13 and Ghosh et al.14

In the following theorem, we present the asymptotic distribution of WK (âβ).

Theorem 6 We have
WK (âβ)

L−→
K→∞

χ2
r .

Based on Theorem 6, we will reject the null hypothesis in (16) if

WK (âβ) > χ2
r,α, (17)

where χ2
r,α is the upper percentage point of order α of χ2

r distribution.

4.2 Influence Function of the Wald-type tests

The functional associated with the Wald-type statistics, WK(âβ), evaluated at F a∗ is given by,
ignoring the multiplier K

Tβ(F a∗) = WK (Uβ (F a∗))

= m (Uβ (F a∗))T
{
MT (Uβ (F a∗) Σ (Uβ (F a∗))M (Uβ (F a∗)))

}−1
m (Uβ (F a∗)) ,
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with Σ (Uβ (F a∗)) = J−1β (Uβ (F a∗))Kβ (Uβ (F a∗))J−1β (Uβ (F a∗)) . Therefore, the IF of the
functional associated with the Wald-type test statistics for testing the composite null hypothesis
in (16) with respect to the k-th element of the i-th group of observations, is given by

IF(δ(i0,k), Tβ,F a∗) =
∂Tβ(F

(i,k)
a∗,ε)

∂ε

∣∣∣∣∣
ε=0

= 0.

Similary, for all the indices, we have

IF(δ, Tβ,F a∗) =
∂Tβ(F a∗,ε)

∂ε

∣∣∣∣
ε=0

= 0.

It, therefore, becomes necessary to consider the second-order influence function, as presented in
the following result.

Theorem 7 The second-order IF of the functional associated with the Wald-type test statistics,
with respect to the k-th element of the i0-th group of observations, is given by

IF2(δ
(i0,k), Tβ,F a∗) =

∂2Tβ(F
(i0,k)
a∗,ε )

∂ε2

∣∣∣∣∣
ε=0+

= 2IFT (δ(i0,k),Uβ,F a∗)M (a∗)
(
MT (a∗) Σ (a∗)M (a∗)

)−1
MT (a∗) IF(δ(i0,k),Uβ,F a∗),

with IF(δ(i0,k),Uβ,F a∗) being as given in (14). Similarly, in all the indices

IF2(δ, Tβ,F a∗) =
∂2T β(F

(i0,k)
a∗,ε )

∂ε2

∣∣∣∣∣
ε=0+

= 2IFT (δ,Uβ,F a∗)M (a∗)
(
MT (a∗) Σ (a∗)M (a∗)

)−1
MT (a∗) IF(δ,Uβ,F a∗),

with IF(δ,Uβ,F a∗) being as given in (15).

5 Monte Carlo Simulation Study

In this section, Monte Carlo simulations of size 2,000 were carried out to examine the behavior
of the WMDPDEs of the model parameters discussed in Section 3, as well as the Wald-type
tests, based on WMDPDEs, detailed in Section 4.

Based on the simulation experiment proposed by Balakrishnan and Ling,6 we considered the
devices to have exponential lifetimes subjected to two types of stress factors at two different
conditions each, the first one at levels 55 and 70 and the second one at levels 85 and 100,
and tested at three different inspection times IT = {2, 5, 8}. Thus, we can consider a table,
such as in Table 1, with I = 12 rows corresponding to each of the 12 testing conditions. To
evaluate the robustness of the WMDPDEs, we have studied the behavior of this model under the
consideration of an outlying cell (for example, the last one) in this table. As with the concept
of inflated models in distribution theory, this cell will be considered an outlier as, changing the
value of the generating parameter vector, the observed number of successes observed in the cell
will be larger than the expected one under the corresponding model.
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5.1 The WMDPDEs

We carried out a simulation study to compare the behavior of some WMDPDEs with respect
to the MLEs of the parameters in the one-shot device model under the exponential distribution
with multiple stresses. In order to evaluate the performance of the proposed WMDPDEs, as well
as the MLEs, we consider the root mean square errors (RMSEs). The model has been examined
under (a0, a1, a2) = (−6.5, 0.03, 0.03), different samples sizes K ∈ [40, 200], and different degrees
of contamination. The estimates have been computed with values of the tuning parameter
β ∈ {0, 0.2, 0.4, 0.6, 0.8}.

In the top of Figure 2, efficiency of WMDPDEs is measured under different samples sizes
K with pure data (left) and contaminated data (right) where the observations in the i = 12
testing condition have been generated under (a0, a1, ã2) = (−6.5, 0.03, 0.025). Same experiment
is carried outfor a0 = −6 (Figure 4) and by contaminating the last two testing conditions (top
left of Figure 5). The efficiency is then measured for the last-cell-contaminated data, generated
under (a0, ã1, ã2) = (−6.5, 0.025, 0.025) (top right of Figure 5). In the case of pure data, the
MLE (at β = 0) presents the most efficient behavior having the least RMSE for each sample size,
while WMDPDEs with larger β have slightly larger RMSEs. For the contaminated data, the
behavior of the WMDPDEs is almost the opposite; the best behavior (least RMSE) is obtained
for larger values of β. In both cases, as expected, the RMSEs decrease as the sample size
increases.

The efficiency is also studied for different degrees of contamination of the parameters a1
(left) and a2 (right), as displayed in the top of Figure 3. Here, K = 100 and the degree of

contamination is given by 4(1 − ãj
aj

) ∈ [0, 1] with j ∈ {1, 2}. In both cases, we can see how the

MLEs and the WMDPDEs with small values of tuning parameter β present the smallest RMSEs
for weak outliers, i.e., when the degree of contamination is close to 0 (ãj is close to aj). On the
other hand, large values of tuning parameter β result in the WMDPDEs having the smallest
RMSEs, for medium and strong outliers, i.e., when the degree of contamination away from 0 (ãj
is not close to aj).

In view of the results achieved, we note that the MLE is very efficient when there are no
outliers, but highly non-robust when outliers are present in the data. On the other hand, the
WMDPDEs with moderate values of the tuning parameter β exhibit a little loss of efficiency
when there are no outliers, but at the same time a considerable improvement in robustness is
achieved when there are outliers in the data. Actually, these values of the tuning parameter β
are the most appropriate ones for the estimators of the parameters in the model following the
robustness theory: To improve in a considerable way the robustness of the estimators, a small
amount of efficiency needs to be compromised.

5.2 The Wald-type tests based on WMDPDEs

Let us now empirically evaluate the robustness of the WMDPDE based Wald-type tests for the
model. The simulation is performed with the same model as in Section 5.1, where (a0, a1, a2) =
(−6.5, 0.03, 0.03). We first study the observed level (measured as the proportion of test statistics
exceeding the corresponding chi-square critical value) of the test under the true null hypothesis
H0 : a2 = 0.03 against the alternative H1 : a2 6= 0.03. In the middle of Figure 2, these levels
are plotted for different values of the samples sizes, for pure data (left) and for contaminated
data (ã2 = 0.025, right). Same experiment is carried out by contaminating the last two testing
conditions (middle left of Figure 5). The empirical levels are then measured for the last-cell-
contaminated data, generated under (a0, ã1, ã2) = (−6.5, 0.025, 0.025) (middle right of Figure
5). In the middle of Figure 3, the degree of contamination for both a1 and a2 is changed with a
fixed value of K = 100. Notice that when the pure data are considered, all the observed levels
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are quite close to the nominal level of 0.05. In the case of contaminated data, the level of the
classical Wald test (at β = 0) as well as the proposed Wald-type tests with small β break down,
while the WMDPDE based Wald-type tests for moderate and large values of β provide greater
stability in their levels.

To investigate the power robustness of these tests (obtained in a similar manner), we change
the true data generating parameter value to be a2 = 0.035 and the resulting empirical powers are
plotted in the bottom of Figures 2 and 3 and in the bottom left of Figure 5) (when the last two
cells are contaminated). The empirical powers are then measured for the last-cell-contaminated
data, generated under (a0, ã1, ã2) = (−6.5, 0.035, 0.025) (bottom right of Figure 5). Again, the
classical Wald test (at β = 0) presents the best behavior under the pure data, while the Wald-
type tests with larger β > 0 lead to better stability in the case of contaminated samples. Same
tests are also evaluated with a higher/lower value of reliability (a0 = −6) obtaining the same
conclusions as detailed above (see Figure 4).

These results show the poor behavior in terms of robustness of the Wald-type tests based
on the MLEs of the parameters of one-shot devices under the exponential model with multiple
stresses. Additionally, the robustness properties of the Wald-type test statistics based on the
WMDPDEs with large values of the tuning parameter β are often better as they maintain both
level and power in a stable manner.

6 Illustrative Examples

In this Section, two numerical examples are presented to illustrate the model and the estimators
developed in the preceding sections.

6.1 An application to Medicine: Mice Tumor Toxicological data

As mentioned earlier, current status data with covariates, which generally occur in the area
of survival analysis, can be seen as one-shot device testing data with stress factors and we
therefore apply here the methods developed in the preceding sections to a real data from a study
in toxicology. These data, originally reported by Kodell and Nelson15 (Table 1) and recently
analyzed by Balakrishnan and Ling,7,8, 16 are taken from the National Center for Toxicological
Research and consisted of 1816 mice, of which 553 had tumors, involving the strain of offspring
(F1 or F2), gender (females or males), and concentration of benzidine dihydrochloride (60 ppm,
120 ppm, 200 ppm or 400 ppm) as the stress factors. The F1 strain consisted of offspring from
matings of BALB/c males to C57BL/6 females, while the F2 strain consisted of offspring from
non-brother-sister matings of the Fl progeny. For each testing condition, the numbers of mice
tested and the numbers of mice that developed tumors were all recorded. Note that we consider
mice with tumors as those that died of tumors, sacrificed with tumors, and died of competing
risks with liver tumors.

Let a1, a2 and a3 denote the parameters corresponding to the covariates of strain of offspring,
gender, and square root of concentration of the chemical of benzidine dihydrochloride in the expo-
nential distribution given in (2). The WMDPDEs with tuning parameter β ∈ {0, 0.2, 0.4, 0.6, 0.8}
were all computed and are presented in Table 2. Negative values for â1 and â2 indicate a greater
resistance of F2 strain and male mice. As expected, a greater concentration of benzidine dihy-
drochloride is seen to decrease the expected lifetime.

6.2 An application to Engineering: Balakrishnan and Ling6

These data (Balakrishnan and Ling6), presented in Table 3, consist of 120 one-shot devices that
were divided into four accelerated conditions with higher-than-normal temperature and electric
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current, and inspected at three different times. By subjecting the devices to adverse conditions,
we shorten the lifetimes, observing more failures in a clear example of an accelerated life test
design. This numerical example also served as a basis for the Monte Carlo study carried out
earlier in Section 5.

The estimates of the model parameters are presented in Table 4, for different values of
the tuning parameter β. Reliability at different inspections times and normal testing conditions
w = (25, 35), as well as the mean lifetimes, are also presented. As expected, the reliability of the
devices decrease when the inspection time increases. Figure 1 displays the estimated reliabilities
at a pre-fixed inspection time, t = 30, for different values of temperature and electric current,
and two different tuning parameters: β = 0 (MLE) and a high-moderate value β = 0.6. Let us
denote R̂ij0 and R̂ij0.6 for the estimated reliability at temperature level i and electric current level
j based on the WMDPDEs with tuning parameter β = 0 and β = 0.6, which are represented
in the top left and top right of Figure 1, respectively. As expected, they decrease when the
testing conditions increase, becoming especially low for extreme testing levels. Left bottom of
Figure 1 shows the differences between the two measures, that is, R̂ij0.6− R̂

ij
0 , while right bottom

of Figure 1 shows the standardized differences (R̂ij0.6 − R̂
ij
0 )/R̂ij0 . While in absolute value the

biggest differences are given for moderate values of temperature and current electricity (where
reliabilities are higher), the most remarkable difference (that is measured with independence on
the scale) is obtained for extreme conditions both of current and temperature. Note that these
are the only cases when the estimated reliability based on the MLEs is higher than the one based
on the WMDPDEs with tuning parameter β = 0.6. Table 5 shows the estimated probabilities
of the WMDPDEs with different tuning parameters β ∈ [0, 1], compared with the observed
probabilities. Last row of Table 5 shows the estimated mean absolute error of each WMDPDE
considered here, eβi . MLE (β = 0) seems, in general, to be one of the worst choices to predict
each testing condition. In particular, we can say that WMDPDEs with high or moderate value of
the tuning parameter seem to have a better behavior than the MLEs when higher-than-normal
testing conditions are considered, just as we observed a greater difference in terms of reliability
(Figure 1).

6.3 The choice of the tuning parameter

In the previous sections, WMDPDEs with β > 0 have been shown to be more robust, both the-
oretically and empirically, than the classical MLE, overall when a high degree of contamination
is present in the data. MLE has been shown to be much more efficient instead. Therefore, given
any data set, it would be important to determine what would be the best tuning parameter
to use, and how to select it. It is then necessary to provide a data-driven procedure for the
determination of the optimal choice of the tuning parameter. The idea is as follows: in a grid of,
say R = 100, possible tuning parameters, apply a measure of discrepancy, say Eβ, to our data.
Then, the tuning parameter which leads to the minimum discrepancy-statistic will be chosen as
the “optimal” one (see Algorithm 1).

Balakrishan and Ling8 proposed, in a goodness of fit context, the distance-based statistic of
the form

Eβ = maxi|ni −Kiπi1(âβ)|, i = 1, . . . , I,

as a discrepancy measure for evaluating the fit of the assumed model to the observed data. For
example, in our first example data, the MLE (β = 0) will be chosen as the optimal estimator,
while in the second example, β = 0.48 would be selected.

Balakrishnan et al.1,17 applied the method originally presented in Warwick and Jones18

and discussed subsequently in Ghosh and Basu19 in the context of one-shot devices, by mini-
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Algorithm 1 General algorithm for the data-driven selection of β

Goal: Optimal fitting of the model given any data set
1: for each β in a grid of [0, 1] do
2: Compute the discrepancy measure Eβ
3: end for
4: return βopt = arg min

β
Eβ.

5: compute θ̂βopt as the final estimate with optimally chosen tuning parameter.

mizing the estimated mean square error through a grid of possible estimators. This estimated
mean square error is computed as the sum of the estimated squared bias and the variance. A
similar procedure could be applied in the proposed model. However, this method implies the
computation of complex matrices and would also depend on the choice of a pilot estimator for
the bias estimate, which usually leads to the choice of an optimal tuning parameter near to
it. The approach presented by Hong and Kim20 avoids the problem of the selection of a pilot
estimator, but does not take into account the model misspecification, leading sometimes to quite
non-robust estimators. Most robust procedures require the choice of a tuning parameter, and
so it seems that further work needs to be done in this regard.

7 Concluding Remarks

Multiple stress factors are common when dealing with one-shot devices, overall in the context
of ALT plans. In this article, we have developed the WMDPDEs for one-shot device testing
data under exponential lifetime with multiple stresses. Through a simulation study and two
numerical examples, these estimators, as well as the Wald-type tests derived from them, are
shown as an useful alternative to the classical MLEs in terms of robustness. However, most of
the literature regarding one-shot device models assumes that there is only one possible cause of
device failure. In lifetime data analysis, it is often the case in which the products under study
can experience any one of various possible causes of failure. It will, therefore, be of interest
to develop robust estimators and Wald-type tests based on data from one-shot devices under
competing risks. Work in this direction is currently under progress and we hope to report these
findings in a future paper.
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Table 1: Typical form of data observed.
Test Inspection Number of Number of Covariates

condition Time Devices Failures Stress 1 · · · Stress J

1 t1 K1 n1 w11 · · · w1J

2 t2 K2 n2 w21 · · · w2J
...

...
...

...
...

...
I tI KI nI wI1 · · · wIJ
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Table 2: Point estimation of parameters in the mice tumor toxicological data.
β â0 â1 â2 â3
0 -4.452 -0.126 -1.201 0.133
0.2 -4.821 -0.195 -1.300 0.148
0.4 -4.784 -0.184 -1.291 0.145
0.6 -4.753 -0.176 -1.282 0.143
0.8 -4.731 -0.170 -1.275 0.141
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Table 3: Data on 120 one-shot devices subjected to 2 stress factors and inspected at 3 different
times.

i ITi Ki ni Temeperature (xi1) Electric current (xi2)
1 2 10 0 55 70
2 2 10 4 55 100
3 2 10 4 85 70
4 2 10 7 85 100
5 5 10 4 55 70
6 5 10 7 55 100
7 5 10 8 85 70
8 5 10 8 85 100
9 8 10 3 55 70
10 8 10 9 55 100
11 8 10 9 85 70
12 8 10 10 55 100
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Table 4: Point estimation of parameters and reliabilities at time t ∈ {10, 30, 60} and mean
lifetimes for different tuning parameters at normal conditionsw = (25, 35) for the data presented
in Table 3.

β â0 â1 â2 R(10, 25, 35) R(30, 25, 35) R(60, 25, 35) T̂
0 −6.5128 0.0301 0.0340 0.9018 0.7334 0.5379 96.74

0.1 −6.6100 0.0308 0.0346 0.9069 0.7460 0.5565 102.38
0.2 −6.7178 0.0315 0.0354 0.9123 0.7594 0.5767 109.00
0.3 −6.8327 0.0323 0.0362 0.9178 0.7730 0.5975 116.51
0.4 −6.9549 0.0332 0.0370 0.9232 0.7868 0.6190 125.09
0.5 −7.0759 0.0340 0.0379 0.9282 0.7997 0.6395 134.21
0.6 −7.1920 0.0348 0.0387 0.9327 0.8115 0.6585 143.60
0.7 −7.2915 0.0355 0.0394 0.9364 0.8211 0.6742 152.17
0.8 −7.3740 0.0361 0.0400 0.9393 0.8287 0.6867 159.65
0.9 −7.4387 0.0365 0.0404 0.9415 0.8345 0.6964 165.79

1 −7.4869 0.0369 0.0407 0.9430 0.8387 0.7034 170.52
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Table 5: Estimated probabilities for different WMDPDEs for the data presented in Table 3.
π̂βi

i ni

Ki
β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1

1 0 0.154 0.152 0.150 0.148 0.146 0.144 0.142 0.141 0.139 0.138 0.137
2 0.4 0.338 0.340 0.343 0.346 0.348 0.351 0.354 0.356 0.358 0.359 0.360
3 0.4 0.371 0.373 0.376 0.378 0.381 0.384 0.387 0.389 0.391 0.393 0.394
4 0.7 0.681 0.691 0.703 0.715 0.728 0.740 0.752 0.761 0.769 0.776 0.780
5 0.4 0.342 0.338 0.335 0.331 0.327 0.322 0.319 0.315 0.312 0.310 0.309
6 0.7 0.644 0.647 0.650 0.654 0.657 0.661 0.664 0.667 0.669 0.671 0.672
7 0.8 0.686 0.689 0.692 0.695 0.699 0.703 0.706 0.709 0.711 0.713 0.714
8 0.8 0.943 0.947 0.952 0.957 0.961 0.965 0.969 0.972 0.974 0.976 0.977
9 0.3 0.488 0.484 0.479 0.474 0.469 0.464 0.459 0.454 0.451 0.448 0.446

10 0.9 0.808 0.811 0.814 0.817 0.820 0.823 0.825 0.828 0.830 0.831 0.832
11 0.9 0.843 0.846 0.848 0.851 0.854 0.856 0.859 0.861 0.863 0.864 0.865
12 1 0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.997 0.997 0.997

eβi 0.082 0.080 0.078 0.077 0.077 0.076 0.076 0.076 0.075 0.075 0.075
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Figure 1: Estimated reliabilities based on WMDPDEs with tuning parameters β = 0 (top left)
and β = 0.6 (top right) and their differences (bottom left) and standardized differences (bottom
right) for the data presented in Table 3.
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Figure 2: RMSEs (top panel) of the WMDPDEs of a, the simulated levels (middle panel)
and powers (bottom panel) of the Wald-type tests under the pure data (left) and under the
contaminated data (right).
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Figure 3: RMSEs (top panel) of the WMDPDEs of a, the simulated levels (middle panel) and
powers (bottom panel) of the Wald-type tests under the a1-contaminated data (left) and under
the a2-contaminated data (right).
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Figure 4: Empirical levels (left) and powers (right) under the pure data and under the contam-
inated data when parameter a0 = −6
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Figure 5: RMSEs (top panel), empirical levels (middle panel) and empirical powers (bottom
panel) of two-cells contaminated data (left) and a1-a2-contaminated data (right), when param-
eter a0 = −6.5.
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