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1. Introduction      

Mini hydro generation is one of the most cost-effective and reliable energy technologies in 
distributed generation systems to be considered for providing clean electricity generation. 
These systems constitute a viable alternative to address generation and electric power 
supply problems to isolated regions or small loads. 
In particular, the key advantages that small hydro has over other technologies considered in 
distributed generation systems, such as, wind, wave and solar power are (BHA, 2005): 
 

 A high efficiency (70 - 90%), by far the best of all energy technologies. 
 A high capacity factor (typically >50%), compared with 10% for solar and 30% for 

wind. 
 A high level of predictability, varying with annual rainfall patterns. 
 Slow rate of change; the output power varies only gradually from day to day (not 

from minute to minute). 
 It is a long-lasting and robust technology; systems can readily be engineered to last 

for 30 years or more. 
 

It is also environmentally benign. Small hydro is in most cases “run-of-river”; in other 
words any dam or barrage is quite small, usually just a weir, and little or no water is stored. 
Therefore run-of-river installations do not have the same kind of adverse effects on the local 
environment as large-scale hydro plants. 
There is no consensus on the definition of mini hydro plants. Some countries like Portugal, 
Spain, Ireland, and now, Greece and Belgium, accept 10 MW as the upper limit for installed 
capacity. In Italy the limit is fixed at 3 MW (plants with larger installed power should sell 
their electricity at lower prices); in France the limit was established at 8 MW and UK favours 
5 MW. Hereunder will be considered as Mini Hydro any scheme with an installed capacity 
of 10 MW or less.  
Today, among all the renewable energies, hydropower occupies the first place in the world 
and it will keep this place for many years to come. Figure 1 shows the electricity generation 
from renewable energies; it can be seen that the hydro generation represents the 94.3% of the 
total of the generation using renewable resources; from this percentage, the 9.3% is 
generated by mini hydro plants. Also, the market for small power plants is more attractive 
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than ever, due to the power market liberalization in the world, which opens the opportunity 
for the industry to generate electricity to full fill its basic needs. 
 

 
Fig. 1. Electricity generation from renewable energy (BHA, 2005) 
 
An important aspect on this type of systems is the planning, design and evaluation of the 
potential energy available in a selected place (Puttgen et al., 2003). The best geographical 
areas for mini hydro plants are those where there are steep rivers, streams, creeks or springs 
flowing year-round, such as in hilly areas with high year-round rainfall. To assess the 
suitability of a site for a mini hydro power system, a feasibility study should be made. 
Feasibility studies show how the water flow varies along the years and where the water 
should be taken to obtain its maximum profit; they also show the power amount that can be 
obtained from the water flow, as well as the minimum and maximum limits of the profitable 
power.  
There are other important factors that should be addressed when deciding if a mini hydro 
plant would work at a specific site: 
 

 The potential for hydropower at the site. 
 The requirements for energy and power. 
 Environmental impact and approvals. 
 Equipment options. 
 Costs and economics. 

 

Keep in mind that each micro-hydropower system cost, approvals, layout and other factors 
are site-specific and unique for each case. 
In the literature concerning the design and selection of the main components of a mini 
hydro plant (Penche, 1998; Khennas et al., 2000; ITDG, 1996), the size of the generator is 
chosen based on the water flow time series organized into a relative frequency histogram, 
and with a pre-selected plant factor, whose value usually varies from 0.70 to 0.85 for this 
type of systems (ITDG, 1996). From this information, it is also possible to calculate the 
theoretical average power and the average annual generation that can be obtained from the 
site (e.g. river).   
In this chapter, forecast methodologies based on data measurements from a monthly water 
flow time series are applied to predict the behaviour of the water for a particular river 
where it is desired to install the mini hydro plant. First, forecast techniques are discussed 
and then a example of the application of the techniques to the water flow time series is 
presented. The proposed procedure aims enhancing the estimation of the generator capacity 
as the historical data of water flow is now complemented with the results obtained via 

 

forecast techniques (Peña et al., 2009). For completeness, a selection of the most important 
electro-mechanical elements of a proposed mini hydro plant is also provided. 

 
2. Water Flow Time Series 

In order to determine the hydro potential of water flowing from the river or stream, it is 
necessary to know the flow rate of the water and the head through which the water can fall.  
The flow rate is the quantity of water flowing past a point at a given time. Typical units used 
for flow rate are cubic metres per second (m3/s), litres per second (lps), gallons per minute 
(gpm) and cubic feet per minute (cfm). The head is the vertical height in metres (m) or feet 
(ft.) from the level where the water enters the intake pipe (penstock) to the level where the 
water leaves the turbine housing.  
The measurements or historical data of water flow can be organized into a water flow time 
series. A time series is a series of measurements, observations, and recordings of a set of 
variables at successive points in uniform time intervals (Hamilton, 1994). 
Fig. 2 shows the water flow time series used in this chapter. This historical data corresponds 
to measurements taken from the Cardel Hydrometric Station, in La Antigua River, 
Veracruz, México. The time series has 420 monthly observations, from the period of January, 
1951 to December, 1985 (CONAE, 2005).  
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Fig. 2. Water flow time series 

 
3. Capacity Estimation: Classic Method 

Records of water flow variations along the years are taken in hydrometric stations located in 
the main rivers. These stations take data about the hydrologic situation of the area including 
the water flow variations of the river; this is periodically measured, in some cases on a day-
to-day basis. The water flow records are very useful to allow forecasting the future 
behaviour of the river. This data is also taken into account to decide if a mini hydro plant 
can be installed in a specific place. 
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Fig. 2. Water flow time series 

 
3. Capacity Estimation: Classic Method 

Records of water flow variations along the years are taken in hydrometric stations located in 
the main rivers. These stations take data about the hydrologic situation of the area including 
the water flow variations of the river; this is periodically measured, in some cases on a day-
to-day basis. The water flow records are very useful to allow forecasting the future 
behaviour of the river. This data is also taken into account to decide if a mini hydro plant 
can be installed in a specific place. 

www.intechopen.com



Distributed Generation 314

 

From historical records of water flow, a Flow Duration Curve (FDC) can be built. The flow 
duration curve is a plot that shows the percentage of time that the water flow in a river is 
likely to equal or exceed a specified value of interest (the area below the curve is a measure 
of the potential energy of the river or stream). For instance, the FDC can be used to assess 
the expected availability of water flow over time and the power and energy at a site and to 
decide on the “design flow” in order to select the turbine. Decisions can also be made on 
how large a generating unit should be. If a system is to be independent of any other energy 
or utility backup, the design flow should be the flow that is available 70% of the time or 
more. Therefore, a stand-alone system such as a mini hydro plant should be designed 
according to the flow available throughout the year; this is usually the flow during the dry 
season. It is possible that some streams could dry up completely at that time. 
Figure 3 shows the FDC for the time series under study. From this figure it is possible to 
observe that for nearly 80% of the time the water flow is equal or below to 28.4  105 m3. 
Also, it shows that if a mini hydro plant is to be installed in this river and it is desirable to 
have it working 70% of the time, then a value of 42.28  105 m3 should be chosen as the 
design water flow. 
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Fig. 3. Flow duration curve  
 
Another important graph derived from the historical data is the relative frequency 
histogram. The relative frequency is defined as the number of times that a value occurs in a 
data set. Figure 4 shows the relative frequency histogram calculated from the historical data 
under study. From this bar chart it is possible to a priori visualize the data concentration, and 
the minimum and maximum values of the time series, e.g. from Figure 4, it can be seen that 
the value with more repetitions in the time series is 24.2  105 m3.    
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Fig. 4. Relative frequency histogram  

 
4. Forecast Techniques 

As mentioned before the water flow time series is frequently used for the design and capacity 
estimation of mini hydro plants. However, records of these variables from a previously 
selected place are not always available or there is just a few historical data. Besides, climate 
changes around the world have provoked, for instance, that drought and rainy seasons are not 
as periodic as they used to be; this makes the water flow levels to change drastically from one 
season to another, and in some cases rivers even tend to dry-out. 
The reasons given before and other unexpected events justify the application of forecast 
techniques to appropriately process the available hydro resources at a specific geographic 
site, so that an adequate capacity estimation of a mini hydro plant can be achieved (and also 
to know the future behaviour of a selected river). 
In order to deal with the forecast problem, various forecast techniques have been used: 
Kalman Filters (Sorensen & Madsen, 2003), Box-Jenkins methodologies (Montañés et al., 
2002), Neural Networks (Xie et al., 2006), etc. most of them providing satisfactory results. In 
this chapter, ARIMA (Zhou et al., 2004), Neural Networks (Azadeh et al., 2007), and Genetic 
Programming (Flores et al., 2005) methodologies are presented and then applied to the 
water flow time series to forecast the behaviour of the water flow in the years to come. The 
best forecast obtained with the application of these methods is then used to estimate the 
capacity of a proposed mini hydro plant.    

 
4.1 ARIMA Model 
The acronym ARIMA stands for “Auto-Regressive Integrated Moving Average”, whose 
model is a generalization of an auto-regressive moving average or ARMA model. These 
models are widely used in the time series forecast problem and they are usually part of the 
Box-Jenkins methodology (Montañés et al., 2002). The ARIMA model is generally referred as 
an ARIMA(p, d, q) model, where p, d, and q are values used to define the number of auto-
regressive, integrated, and moving average terms of the model, respectively. 
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In order to describe the mathematics involved in an ARIMA model, it is important to define 
an ARMA(p, q) model for a data time series X(n), where n is an integer index to indicate a 
specific data within the time series, then an ARMA(p, q) model is given by (Ramachandran 
& Bhethanabotla, 2000) 

                                                     (1-
1

p

i
  i Li) X(n) = (1+

1

q

i
  θi Li) n                                                 (1) 

where L is the lag operator, i  are the auto-regressive parameters of the model, θi are the 
moving average parameters of the model, and n are error terms. The error terms n are 
usually known as white noise and they are assumed to be independent with zero co-
variances, and identically distributed sampled data from a normal distribution with zero 
average. 
The ARIMA(p, d, q) model can be obtained integrating Equation (1). That is, 

                                                 (1-
1

p

i
  i Li ) (1-L)d X(n) = (1+

1

q

i
  θi Li) n                                          (2) 

where d is a positive integer that controls the level of differentiation. Note that if d = 0, this 
model is equivalent to an ARMA model.  
There are three basic steps to the development of an ARIMA model (Brockwell & Davis, 
2002): 
 

1) Identification/model selection: the values of p, d, and q must be determined. The 
principle of parsimony, also known as principle of simplicity, is adopted; most 
stationary time series can be modeled using very low values of p and q. 

2) Estimation: the θ and the  parameters must be estimated, usually by employing a 
least squares approximation to the maximum likelihood estimator. 

3) Diagnostic checking: the estimated model must be checked for its adequacy and 
revised if necessary, implying that this entire process may have to be repeated until 
a satisfactory model is found.   

 

The most crucial of these steps is identification, or model selection. This step requires the 
researcher to use his or her personal judgment to interpret some selected statistics, in 
conjunction with a graph from a set of autocorrelation coefficients, to determine which 
model the data suggest is the appropriate one to  be employed. In this respect the ARIMA 
model is an art form, requiring considerable experience for a researcher to able to select the 
correct model. 
Using the R-Project software (R-Project, 2009), a model that allows the determination of each 
ARIMA parameters was implemented; 370 data points were used to obtain the model and 
the last 50 values of the time series were used to compare the forecast obtained by the model 
with the results from the historical time series. 
For an ARIMA (3, 1, 2) model, e.g. with three auto-regressive parameters (ARX), one 
integrator parameter (INTGX) and two moving average parameters (MAX), the coefficients 
shown in Table 1 were obtained. 
 

AR1 AR2 AR3 MA1 MA2 INTG1 
-0.1559 0.2239 0.0753 -0.5109 -0.4891 -0.4652 

Table 1. ARIMA technique coefficients 
 

 

The calculated forecast data obtained with the ARIMA model and the historic data are 
compared in Fig. 5. The forecasted data satisfactorily matches the original time series, 
however, the form of the curve for the obtained forecast tends to be periodic, that is, it fails 
to adequately reproduce the peaks taking place in the original time series.   
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Fig. 5. ARIMA forecast data 

 
4.2 Neural Networks 
A neural network is a computational model that closely resembles the neuron cell structure 
of the biological nervous system. Neurons in a neural network are linked between them, so 
information can be transmitted from one neuron to others. An artificial neuron is a device 
with many inputs and one output. The neuron has two modes of operation; the training 
mode and the using mode. In the training mode, the neuron can be trained to fire (or not), 
for particular input patterns. In the using mode, when a taught input pattern is detected at 
the input, its associated output becomes the current output. If the input pattern does not 
belong to the taught list of input patterns, the firing rule is used to determine whether to fire 
or not. 
The firing rule is an important concept in neural networks and accounts for their high 
flexibility. A firing rule determines how one calculates whether a neuron should fire for any 
input pattern. It relates to all the input patterns, not only the ones on which the node was 
trained.  
A simple firing rule can be implemented by using Hamming distance technique (Beale & 
Jackson, 1990). The rule goes as follows:  
 

 Take a collection of training patterns for a node, some of which cause it to fire (the 
1-taught set of patterns) and others which prevent it from doing so (the 0-taught 
set). The patterns not in the collection cause the node to fire if, on comparison, they 
have more input elements in common with the 'nearest' pattern in the 1-taught set 
than with the 'nearest' pattern in the 0-taught set. If there is a tie, then the pattern 
remains in the undefined state.  
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Fig. 5. ARIMA forecast data 
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Neurons in a neural network are linked between them, so information can be transmitted 
from one neuron to others. Given a data training set the neural network can learn the 
historic data through a training process and, with a learning algorithm the weights of the 
neurons are adjusted; through this procedure, the neural network acquires the capacity to 
predict answers of the same type of phenomenon. 
 Activation functions are also needed in order to train the neural network; different 
activation functions are frequently used, including step, linear (or ramp), threshold, and 
sigmoid functions. 
In this research, the back-propagation learning algorithm (the most commonly used), was 
employed where the neural network forms a mapping between the inputs and the desired 
outputs from the training set by altering the weights of the connections within the network 
(Hilera & Martínez, 2000). 
Different types of neural networks have been developed depending on the characteristics 
and the type of application. Common applications of this computational model are: speech 
recognition, control systems, classification of patterns, identification of systems, time series 
forecast, etc. (Hilera & Martínez, 2000). 
A general structure of the connections of a neural network can be observed in Figure 6. 
During the phase of training, the connections weights Wij are iteratively calculated; these 
connections link the neurons of the inputs Ei with the neurons of the layer Oj. If an input is 
received, this is sent across the neurons of the layer, and the weights of the connections are 
then adjusted, generating an output S. This output is compared with the real input, 
generating an error, which is back-propagated from the output to the input; this iterative 
process is carried-out until the neural network is able to reproduce the input. 
The mathematical approach of the neural network working is as follows: A neuron in the 
output layer determines its activity by following a two step procedure.  

 First, it computes the total weighted input Ei, using the Equation: 
 

                                                                      Ei = 
j

 yj Wij                                                                 (3) 

where yj is the activity level of the jth neuron in the previous layer. 
 Next, the neuron calculates the activity yi, using a function of the total weighted 

input. Typically the sigmoid function is used:  
 

                                                                     yi = 1/(1 + e-Ei)                                                                (4) 
 

Once the activities of all output neurons have been determined, the network 
computes the error err, which is defined by the expression: 

                                                                err = (1/2)
j

( yj - dj)2                                                         (5) 

 

where dj is the desired output of the ith neuron. 
 

Now, the back-propagation algorithm can be applied; it consists of four steps: 
1) Compute how fast the error changes as the activity of an output neuron is changed. 

This error derivative (EA) is the difference between the actual and the desired 
activity. 

 

 

                                                               EAi = (∂err / 項yi) = yi - di                                                      (6) 
 

2) Compute how fast the error changes as the total input received by an output 
neuron is changed. This quantity (EI) is the answer from step 1 multiplied by the 
rate at which the output of a neuron changes while its total input is changed. 

 

                                  EIi = (∂err / 項Ei) = (∂err / 項yi) × (∂yi / 項Ei) = EAi yi (1 - yi)                          (7) 
 

3) Compute how fast the error changes as a weight of the connection into an output 
neuron is changed. This quantity (EW) is the answer from step 2 multiplied by the 
neuron activity level from which the connection emanates. 

 

                                     EWij = (∂err / 項Wij) = (∂err / 項Ei) × (∂Ei / 項Wij) = EIi yj                            (8) 
 

4) Compute how fast the error changes as the activity of a neuron in the previous 
layer is changed. This crucial step allows back-propagation to be applied to 
multilayer networks. When the activity of a neuron in the previous layer changes, 
it affects the activities of all the output neurons to which it is connected. So, to 
compute the overall effect on the error, we add together all these separate effects 
on output neurons. But each effect is simple to calculate; it is the answer in step 2 
multiplied by the weight on the connection to that output neuron. 

 

                               EAj = (∂err / 項yj) = 
i

 (∂err / 項Ei) × (∂Ei / 項yj) = 
i

EIi Wij                          (9) 
 

By using steps 2 and 4, we can convert the EAs of one layer of neurons into EAs for 
the previous layer. This procedure can be repeated to get the EAs for as many 
previous layers as desired. Once we know the EA of a neuron, we can use steps 2 
and 3 to compute the EWs on its incoming connections. 
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Fig. 6. General structure of the connections in a neural network  
 
For the case under consideration a neural network with 3 layers and 30 neurons for each 
layer was implemented in C language; 370 data from the Cardel Hydrometric station time 
series were used to train the neural network and 50 values were used for the validation of 
the obtained forecast.  
Figure 7 shows the results obtained with this computational technique and the 
corresponding comparison against the historical time series. From this figure it is possible to 
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observe that the neural network is able to forecast future data more accurately than the 
ARIMA method.  
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Fig. 7. Neural network forecast data  

 
4.3 Genetic Programming by ECSID Software 
Genetic Algorithms (GA) (Holland, 1992) and Gene Expression Programming (GEP) 
(Ferreira, 2006) are evolutionary tools inspired in the Darwinian principle of natural 
selection and survival of the fittest individuals. These methods use an initial random 
population and apply genetic operations to this population until the algorithm finds an 
individual that satisfies some termination criteria. 
In order to simulate the evolutionary process both GA and GEP follow the next steps: 
 

1) Initialization: Creates an initial random population. 
2) Evaluation: Evaluates all the individuals and test whether or not the best one 

satisfies the termination criteria. 
3) Selection: Use fitness proportional selection and apply the genetic operations to this 

population. 
 

GA uses a fixed chromosome structure, which can be an array of bits, numbers, characters, 
etc. To use GA the problem is codified as a fixed chromosome and then the problem is 
solved using an evolutionary process. The genetic operations more widely used are 
crossover, selection and mutation. 
GEP is similar to Genetic Programming (GP) (Koza, 1992); it is an evolutionary algorithm 
that evolves computer programs. The basic idea behind GEP is a clever representation for 
the chromosomes (a string instead of a tree), which leads to an easier implementation.  
ECSID stands for "Evolutionary Computation based System IDentification"; it is a program 
that makes mathematical models from an observation data set (Flores et al., 2005).  
ECSID obtains a formula that models the training data set, using a slide window prediction 
method (Jie et al., 2004). The slide window prediction method uses a window of size 16; the 

 

window contains the actual data, and the model computes the synthetic time-series and the 
prediction errors for that time window. 
Equation (10) shows the general models generated by the software, where f(i) represents the 
time series at instant i, e(i) is the vector of prediction errors, h is the window size, and a, b are 
unknown coefficients to be find out by the software. 
 

                                                         f(i+1) = 





1t

i t h
 ai f(i) + 






1t

i t h
 bi e(i)                                                 (10) 

In order to make a forecast with this program, 337 data were used to obtain a model that 
represents the time series, and 83 data for the validation of the forecast obtained with the 
model. 
From the ECSID model, a forecast study was conducted, with the results compared against 
real data. The comparison is shown in Figure 8, where the predicted data tends to an 
irregular triangular waveform, which is repeated in constant oscillation periods of 12 data 
(one year). For the first 50 points, the model achieves an acceptable reproduction of the 
original time series under study.  

 
5. Application to the Capacity Estimation of Mini Hydro Plants 

With the results obtained from the previous section (forecast data) and the available 
historical data, it is possible to determine the design water flow Qi for the turbines of the 
mini hydro plant. It is also necessary to know the plant factor pf, which is the percentage of 
time that the plant is expected to be generating electric power at full capacity. The typical 
plant factor for this type of hydro plants varies from 0.70 to 0.85 (ITDG, 1996).  
The following procedure was used to determine the value of Qi: 

 A ten-year forecast is conducted using the time series; this period usually 
corresponds to the useful life of hydraulic turbines. 

 The obtained forecast data are added to the historical data, in this way, a more 
complete set of data of the river water flow is available. 

 A new flow duration curve can be built using the new data set. 
 Different values of pf are now selected and the respective value of Qi from the 

water flow duration curve is chosen. 
 

A summary of the design water flow obtained for the new time series calculated from the 
different forecast techniques (at different typical plant factors), and the average monthly 
water flow Qm is shown in Table 2; the water flow is in 1105 m3. This Table illustrates that 
the neural network technique provided the most accurate results. The ARIMA and ECSID 
results suggest that the water flow in the river tends to be lower each year, that is, a smaller 
design water flow should be selected. 
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Fig. 8. ECSID forecast data  
 
The theoretical average power Pm obtained from the river can be estimated using Equation 
(11) (IDAE, 1996): 
 

                                                                  Pm = 9.81Qm H η γ                                                            (11) 
 

where H is the height (m); η total efficiency of the system (p.u.); and γ is the specific weight 
of water (1 000 kg/m3). The Average Annual Generation of the system AAG is determined 
by (Penche, 1998), 
 

                                                      AAG = (9.81Qi H η 8760 pf)/1106                                           (12) 
 

Forecast 
Technique Qm 

Qi 
Plant factor (pf) 

0.70 0.75 0.80 0.85 
Historic 

data 147.894 42.283 32.874 28.398 24.414 

ARIMA 115.733 31.326 27.356 23.161 19.488 
Neural 

Network 144.854 40.501 32.793 28.228 23.948 

ECSID 135.733 38.442 30.907 24.918 22.872 
Table 2. Design water flow 
 
For the case study, there are different places close to the Cardel hydrometric station with 
heights varying from 5 m to 15 m. These are locations where the construction of the civil 
work of the mini hydro plant can be built (CSVA, 2008).   
Equations (11) and (12) are applied to obtain the theoretical total generation of the system. 
The parameter η includes the effects of the losses in the whole system, e.g. for our case η is 
assumed to be 1.0 p.u. 

 

Table 3 summarizes the power generation that can be obtained from this river based on the 
results achieved with the neural network method, considering a plant factor of 0.8, and a 
design water flow of 28.228 × 105 m3 at different heights. 
 

 5 m 10 m 15 m 
Pm 355.254 kW 710.509 kW 1.065 MW 

AAG 5.283 GWh 10.567 GWh 15.851 GWh 
Table 3. Average power and average annual generation of the system at different heights 
 
It can be observed from Table 3 that the ideal height to be considered for the design and the 
selection of the mini hydro plant components is between 10 to 15 meters (CSVA, 2008) 
where the maximum power from the river can be obtained. For the case of study a capacity 
of 1 MW was selected which corresponds to the maximum height (15 m). 

 
6. Selections of Electromechanical Equipment 

Fig. 9(a) illustrates the high head scheme of a mini hydro plant; this scheme uses weirs to 
divert water to the intake, from where it is conveyed to the turbines, via a pressure pipe or 
penstock. Fig 9(b) shows the electrical diagram of a mini hydro plant. The basic electro-
mechanical equipment in these plants comprises the turbines, generators, transformers and 
the interconnecting power line. An appropriate design and selection of the mini hydro plant 
components based on the forecast techniques and the results reported in Section 4 and 5, are 
described next. 

 
6.1 Hydraulic Turbine 
For the proposed case of study, the water flow design of 10.890 m3/s and a height of 15 m 
were selected. To know the specific characteristics of the selected turbine, it is necessary to 
have the charts, graphs and characteristics from the turbine manufacturer. In the Alstom’s 
web page (Alstom, 2009), a program that selects and presents the characteristics for the 
turbine-generator group used in a mini hydro plant can be accessed. 
Providing the water flow and height data, the program Mini Aqua Configurator (Alstom, 
2009)  shows a graph with the type of available turbines, as illustrated by Fig. 10, showing 
the exact position and the type of the selected turbine (square in the central part of the 
graph). 
The type of turbine to be selected for this case study can be Kaplan or Francis. The use of the 
Kaplan turbine is recommended since it is generally cheaper. The power generation 
estimated by the program for the turbine-generator group is 1.48 MW. Other relevant data 
are: 720 rpm, 88% of efficiency and 1320 mm for the diameter of the head turbine.  
 
6.2 Generator 
The selection of the generator for the mini hydro plant is mainly based on the turbine 
characteristics. Thus, a synchronous generator was selected with the following 
specifications: 1.5 MVA, 380 V, 60 Hz, 720 rpm and 0.9 power factor. 
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Fig. 9. Mini hydro plant: a) High head scheme, b) Electrical diagram  

 
6.3 Transformers 
For the proposed mini hydro plant, the use of three transformers is assumed; e.g. step-up, 
step-down transformers with a nominal capacity of 1.5 MVA and a transformer of 45 kVA 
for the self services in the plant. The proposed transformers have the following 
characteristics: 380 V / 13.2 kV to 60 Hz, Both the transformers will be connected in delta- 
wye grounded configuration. 
 

 
Fig. 10. Diagram of the available turbines in Alstom for mini hydro plants (Alstom, 2009) 

 
6.4 Interconnection Power Line 
According to CFE (Comisión Federal de Eléctricidad, México) construction norms (CFE, 
1995), for this type of system the following primary distribution arrangement is 
recommended with the following characteristics: 3 phases, star connected, with solid 
connection to ground at the substation site. A simple cross-arm post type (TS) will be used 
for the distribution line. 

 

7. Conclusion 

In this chapter, a procedure for estimating the capacity of distributed generation based on 
mini hydro plants has been presented. This procedure has been successfully applied for a 
practical case where this type of distributed generation can be installed. 
The classic method used to estimate the capacity of a mini hydro plant was also introduced 
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