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This paper describes the key system components of a team of three tractors in a peat
moss harvesting operation. The behavior and actions of the tractors were designed to
mimic manual harvest operations while maintaining a safe operating environment. To
accomplish this objective, each of the three tractors was equipped with a bolt-on automa-
tion package, and a human operator (team leader) was given a remote user interface to
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command and monitor the mission. The automation package included positioning, plan-
ning, and control, as well as coordination and perception systems to preserve field har-
vesting order, detect obstacles, and report physical changes in the operating environment.
The system performed more than 100 test field harvesting missions during one season in
a working peat bog, including three complete system tests with the end users. © 2009 Wiley

Periodicals, Inc.

1. INTRODUCTION

A team of robots performing tasks in an optimal, co-
ordinated manner has been a goal of robotic research
for many years. Only recently have robotic technolo-
gies matured enough to explore the possibility of
developing multirobot systems that can reliably per-
form tasks in outdoor, real-world applications over
an extended timeframe. Multirobot systems are com-
plex examples of systems engineering, which require
the integration and implementation of factors such
as coordination, perception, path planning, obstacle
avoidance, and a number of additional subsystems.
This paper describes the design, implementation,
and initial deployment of three autonomous tractors
(Figure 1) for the purpose of harvesting peat moss.
Peat moss is accumulated, partially decayed
plant material found in bogs and is the main ingre-
dient in many potting mixes and professional grow-
ing media. The ability of peat moss to retain wa-
ter and still allow oxygen to plants makes it very
useful for horticulture applications. An active peat
bog is divided into smaller, rectangular fields that
are surrounded by drainage ditches on three sides

Figure 1. Autonomous tractor with sensor pod and peat
moss vacuum harvester, showing a storage pile in the dis-
tant background.

to facilitate drying (Figure 2). When the top layer
of peat is dry, the fields can be harvested. Weather
permitting, the harvesting process is repeated daily
during the summer months. Originally harvested
by hand (with shovels), this labor-intensive process
took a leap forward in the late 1960s when tractors
pulling power take-off (PTO)-driven vacuum har-
vesters were brought into the peat bogs (Figure 1).
A similar leap forward in efficiency is now possible
with automated vehicles.

2. KEY PROJECT DRIVERS

There were several key drivers for the development
of this system. First, the peat moss industry is expe-
riencing a labor shortage. Because of the remote lo-
cations, long work hours on harvest days, and un-
predictable weather conditions, it is very difficult to
ensure that enough qualified operators are available
and that those same operators have enough consis-
tent work throughout the season. Therefore, an au-
tonomous solution would help alleviate some of the
labor shortage strains that are currently experienced
in the industry. Second, peat bogs offer a fairly well-
structured environment in remote locations. When
drainage ditches are added to a bog, they create a
known fixed layout, which changes only slightly as
new areas of the bog are added to the set of active
fields. Furthermore, the bog is generally kept clear
of obstacles and does not contain vegetation, which
makes the perception challenge more tractable. From
a technical point of view, all of these factors yield a
desirable location and application to develop a fully
automated off-road system.

A final motivation for this effort was that the
existing manual harvesting operation paradigm
lent itself to a smooth transition to automation. In
the manual operation, a single very skilled team
leader supervises a team of three or more tractors
by communicating with the operators of each tractor
via radio and/or hand signals. The team leader is
the main and key decision maker in the field and
is responsible for determining the ground speed of

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. A typical bog layout with small ditches between fields, a pile of material outside a set of fields, and a larger
ditch at the perimeter of the set of fields. In this scene a tractor was paused at the end of the first field while another tractor

unloaded peat at a pile. Note that the figure is not to scale.

the tractors, the engine speed, and where the tractors
should unload the peat, as well as numerous other
settings on the harvesting equipment. By maintain-
ing the same paradigm, the team leader remained in
the loop and instead of communicating with human
operators, he issued commands directly to the indi-
vidual robots and monitored their performance via a
remote user interface.

To achieve success in the transition to automa-
tion, it was necessary to ensure that the automated
system (team of robots) harvested fields at a rate
comparable to that of a human operator. Each
tractor’s movements needed to be coordinated to
minimize idle time and ensure full coverage of each
field. Furthermore, the individual tractors were
required to perform most of the key tasks carried out
by human operators, which included safeguarding
themselves against obstacles and ditches, as well as
detecting unload points at the edge of temporary
storage piles. It is worth noting that this automated
harvest system was only one component of the much
broader peat moss harvesting operation. For exam-
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ple, the stockpiles of peat created by the harvesters
(manually driven or robotic) were loaded onto wag-
ons by a manually operated front-end loader and
hauled to an on-site processing plant. Also, after each
field was harvested, a manually driven tractor would
harrow the area to prepare for the pass of harvesting,
which could occur as soon as 4 h later. Again, the
emphasis of this project was on harvesting the fields,
not all of the other parts of the process.

3. HISTORY AND PRIOR ART

This peat moss harvesting system built on and
benefited from progress in robotics and precision
agriculture from academics and industry alike.
Vision- and global positioning system (GPS)-based
steering systems for tractors have been successfully
demonstrated in experimental environments for a
number of years. Early work included a vision algo-
rithm that could segment cotton rows and determine
heading and offset errors (Reid & Searcy, 1987), and
similar visual guidance approaches have been used
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to track straight row crops at speeds up to 25 km/h
(Billingsley & Schoenfisch, 1995; Gerrish, Fehr, Van
Ee, & Welch, 1997). Instead of using local visual
features, researchers have also developed automatic
tractor steering systems using GPS (Bell, 1999;
O’Conner, Bell, Elkaim, & Parkinson, 1996; Rekow,
2000), and additional work has been done on fusing
vision-based crop row detection with GPS to try to
provide more robust vehicle guidance (Zhang, Reid,
& Noguchi, 1999). A summary of additional research
in the automatic guidance of farm equipment is pro-
vided in Reid, Zhang, Noguchi, and Dickson (2000).

GPS-based guidance has matured to the point
that a number of agricultural equipment and service
providers (e.g., Autofarm, John Deere, and Trimble)
have successfully delivered assisted-steering solu-
tions for agricultural vehicles with “light bar” and
“autosteer” products. Similar to steering control,
implement control has recently seen high levels
of automation-assisted operations in commercially
available precision agriculture products (e.g., John
Deere’s iTec Pro). These operator assist products,
combined with the availability of commercial
tractors equipped with computer-controlled, in-
finitely variable transmissions, provide researchers
with a rugged and reliable platform for pursuing
full-automation solutions.

Researchers have demonstrated several fully
automated agricultural systems that included ob-
stacle detection in which a human operator was
not needed. For example, an automated harvester
used an adaptive vision-based classifier to track the
cut/uncut line in an alfalfa field (Ollis & Stentz,
1997). This system was able to autonomously harvest
hundreds of acres of crop in various fields and light-
ing conditions and included vision-based techniques
for end-of-row detection and simple color-based ob-
stacle detection (Pilarski et al., 2002). Another system
used GPS-based guidance of a tractor in an orange
grove combined with image-based obstacle detection
(Stentz, Dima, Wellington, Herman, & Stager, 2002).
Using a pretaught path, it drove autonomously for
7 km at speeds ranging from 5 to 8 km/h while
pulling a sprayer. In addition to fully autonomous
vehicle applications, there are also early examples
of teams of robots, which include Balch and Arkin
(1995), Chen and Luh (1994), and Parker (1994).
More recently, Zlot and Stentz (2006) demonstrated
a market-based framework for coordinating teams
of robots while performing an outdoor mapping
task. Vail and Veloso (2003) demonstrated their

own market-based approach that included poten-
tial functions in the Robo-Soccer domain. Bochtis,
Vougioukas, Tsatsarelis, and Ampatzidis (2007) pro-
vided a hierarchical decomposition approach to the
problem of complex agricultural tasks and a method
of task allocation that results in an optimal resource
utilization. Finally, Gerkey and Matari¢ (2004)
provide a formal analysis and taxonomy for many
competing multirobot task allocation techniques.

The current work combines a broad range of ca-
pabilities found in fully autonomous vehicle plat-
forms and multiple-robot teams in a team of three au-
tonomous tractors. These capabilities include mature
vehicle guidance and control, multiple-vehicle coor-
dination, run-time path planning, and perception for
obstacle detection and pile estimation. Furthermore,
considerable effort was also allocated to developing
a successful end-user experience by understanding
and clearly defining the role and tasks of the human
operator (or team leader).

4. SYSTEM OVERVIEW

During manual operation of an individual harvester,
an operator completes one lap in a field, vacuuming
a very thin layer of peat off the surface. When the
lap is completed, the operator drives to a nearby pile,
unloads the material, and drives to the next field to
repeat the process. This sequence of events was pre-
served in the automated system and provided the
process framework for this project. The overall sys-
tem architecture is shown in Figure 3. This section in-
troduces the major components of the system.

4.1. User Interface

The team leader, in manual operation, was respon-
sible for assigning tasks to teams of harvesters, in-
cluding the range of fields that needed harvesting
as well as the order in which those fields had to be
harvested. In the automated system, the team leader
utilized the team leader user interface (TLUI) to cre-
ate a scenario, or work plan, for the day. In addition,
the TLUI displayed the individual status (telematics)
of each robotic harvester, as well as the overall team
progress as the scenario was executed. The user inter-
face and its development are discussed in more detail
in Section 5.

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. System block diagram.

4.2. Mission Director

The scenario generated by the team leader through
the TLUI was first communicated to the mission di-
rector module. It was the mission director’s respon-
sibility to allocate individual tasks to each robot and
monitor these tasks to ensure their completion. Dur-
ing the execution of each scenario, the mission di-
rector consulted a list of “rules” to ensure that coor-
dination constraints were being met. As tasks were
completed, the mission director communicated this
progress to the TLUL

In addition to its other responsibilities, the mis-
sion director provided a centralized repository for a
set of maps. The world map was a map of static fea-
tures, including field and ditch boundaries, created at
the start of the season with data collected from a GPS
survey of the bog. A field coverage map (or the field
map) contained waypoints for use during field har-
vest planning. The field map’s waypoints were calcu-
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lated and verified a priori based on these field bound-
aries. Nonstatic objects such as piles were stored in
the pile map and could be updated by the team leader
through the TLUI or by any of the robots in the sys-
tem. The pile map included information on the size
and location of each pile of material used during the
unload phase of a mission. Section 6 provides further
details on the design of the mission director.

4.3. Robots

Each robot in this application included perception
and positioning systems, an intelligent vehicle con-
troller (IVC), vehicle control unit software (VCU), an
AutoTrac™ GPS-based steering system, and a John
Deere 6430 tractor. The perception system fused data
from a variety of sensors to provide the IVC with
vehicle-centric maps of ditches, piles, and obstacles.
Positioning was accomplished by merging real-time
kinematic (RTK) GPS, vehicle odometry, and a model
of the vehicle’s dynamics. The IVC provided a set of
robot behaviors that integrated the information from
the mission director, the perception maps, and the ve-
hicle pose to perform the task assigned to it by the
mission director. The set of behaviors included path
planning, perception driving, and safe-speed obstacle
avoidance.

4.3.1.

All path planning was performed at run time. A
point-to-point planner was used in combination with
the maps from the mission director to find safe and
efficient paths to each objective. Paths included infor-
mation about where to drive, the speed of the vehicle
along a path, and any implement actions that needed
to be performed. Section 7 describes path planning in
more detail.

Path Planning

4.3.2. Perception-Based Driving

During unloading of the harvested peat, it was neces-
sary to perceive the changing location of the continu-
ally growing pile and then control the robotic vehicle
to align with the edge of the pile in order to dump
in the proper location. The perception system is de-
scribed in Section 9.
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4.3.3. Safe Speed and Obstacle Avoidance

All paths that the vehicle drove were continuously
checked for obstacles using the perception maps. The
obstacle avoidance behavior for this application re-
duced the vehicle speed to avoid hitting obstacles
(path replanning was not used). Additional informa-
tion on the safe-speed obstacle avoidance behavior is
described in Section 8.

The IVC determined the low-level actions to be
executed by the robot and communicated those to the
VCU. The VCU translated these low-level commands
to signals that were interpreted by the AutoTrac path
tracking system and the tractor for steering, as well
as transmission and implement commands.

During this test phase of the project, each robot
had a safety rider onboard at all times. The safety
rider had the ability to pause and resume that spe-
cific robot as well as take manual control of all tractor
functions at any time.

5. HUMAN FACTOR CONSIDERATIONS

The form and design characteristics for the user
interface of an autonomous or semiautonomous ve-
hicle largely depend on its level of automation. At its
most basic state, the semiautonomous vehicle is fully
controlled by a human operator who is in a remote
location but has visual contact with it. With such a
system, information about the vehicle’s intent is not
necessary. However, in systems with high levels of
automation, it is critical to provide all information
that will help ensure that the human operator (super-
visor) maintains a high level of situational awareness
(Endsley, 1995). This is particularly important in
systems in which there is more than one vehicle.
Over the past 15 years, the body of research
that has investigated potential human—computer in-
teraction issues with highly unmanned vehicle sys-
tems has grown steadily. Although a large portion of
this work has been focused on unmanned air vehi-
cles, several researchers have begun using unmanned
ground vehicles as their main platform. Furthermore,
human factors researchers have begun to examine
the challenges associated with one human operator
controlling and/or supervising a team of vehicles
(Adams, 2007; Humphrey, Gordon, & Adams, 2006;
Humphrey, Henk, Sewell, Williams, & Adams, 2007;
Vig & Adams, 2006). Regardless of the application,
the aim of these efforts has been directed at providing
human operators with an intuitive interface to moni-

tor and/or control a team of vehicles. Much attention
has been allocated to developing visualization solu-
tions to represent the vehicles” location in the envi-
ronment and vehicle intention, as well as the presen-
tation of diagnostic information. In the current effort,
those challenges were met successfully, as the human
team leader was able to easily monitor vehicle posi-
tion information and information about the state of
each individual robot.

5.1. Developing the TLUI

As automation is introduced into any system, it is im-
portant to consider the performance impact on any
humans who remain in the loop. Specifically, it is crit-
ical to ensure that the operation of the system remains
safe and the human interaction with the automation
is driven by intuitive and error-free design. To ac-
complish this objective, a detailed task analysis of the
manual peat moss harvesting operation was initially
conducted. A task analysis is a method to identify
the individual elements that make up a task, their
relationship to one another, and the logical or time-
sequence structure of these elements (Luczak, 1997).

The task analysis results yielded a list of items
that highlighted the sensing, information processing,
decision making, and/or control action requirements
for the automation; in other words, the tasks that
were performed by humans in the manual system but
now would have to be performed by the automation.
Furthermore, the task analysis results provided a list
of information items that the team leader required for
the successful supervision of the autonomous vehi-
cles and the natural sequence of tasks in his typical
interaction with the manual system.

The data from the task analysis were a key driver
of the TLUI design. A screenshot of the main TLUI
page is shown in Figure 4. The TLUI was housed
in a 10”-in. (25.4 cm), rugged, tablet personal com-
puter (PC) with a stylus pen as the primary input
device. The left-hand side of the screen contains di-
agnostic information for each vehicle (ground speed,
rpm, and vacuum height). This diagnostic informa-
tion was deemed to be the most important and time
critical for the team leader. The main portion of the
page illustrates a map of the peat fields and, within
that map, the real-time location of the vehicles. The
fields were also color coded to represent different
field conditions. For example, red fields are fields that
the team leader has designated as “keep-out” zones.
To navigate within this portion of the screen, a set of

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Screenshot of main TLUIL.

tools shown on the top-left-hand corner of this sec-
tion were available. At the top of the page, a set of
navigation tabs were available to access other screens
and functionality.

5.2. Emergent Display Features of the TLUI

One of the challenges in designing a user interface to
supervise and control multiple vehicles was incorpo-
rating all of the necessary information about the state
of the vehicles and the operational environment. En-
suring that the team leader had easy access to all of
this information was one of the keys to guaranteeing
high situational awareness. However, to achieve this
goal, information needed to be included in a limited
amount of screen real estate and its layout and visual-
ization had to minimize the team leader’s workload
and cognitive demands.

A design feature of the TLUI that enhanced its
overall usability was the use of emergent display in-
formation. An emergent display is one in which in-
dividual data elements are grouped such that their
emerging features convey information inherent to
their relationship. A unique characteristic of emer-
gent displays is the reduction of information process-
ing time, because the human does not have to sense
and interpret each individual element but rather can
use the overall emerging patterns to draw informa-
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tion about the system (Treisman, 1986). In the TLUI,
the concept of emergent displays was used to rep-
resent the diagnostic information for each vehicle,
as well as the real-time location of the vehicles in
the map. For the diagnostic information, the speed,
rpm, and vacuum height indicators for each tractor
were connected by a line. As the value of any of
these indicators changed, the connecting line would
adjust accordingly. Therefore, the user was able to
quickly assess the performance of each vehicle by
simply looking at the emerging pattern of the lines,
rather than gazing at each parameter of the vehicle.
For example, Figure 5 illustrates a pattern represent-
ing the desired settings of speed, rpm, and vacuum
height for the morning (when material is moist) and
the afternoon. After time, users learn to recognize the

-

Morning
settings

Afternoon
settings

Figure 5. Example pattern representing machine parame-
ters in the morning and afternoon.
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specific patterns and can make judgments about the
performance of the vehicles more efficiently than if
attending to each piece independently. Similarly, the
user was able to rapidly establish the real-time lo-
cation of the vehicles in the map, by looking at the
emergent triangular shape created by the vehicle in-
dicators.

5.3. TLUI Navigation

A common outcome when introducing automation
into an existing system is that the nature of the tasks
required from the human changes, mainly because
the cognitive and physical demands on the human
are impacted. Because this transition in task demands
can sometimes lead to confusion, as the user is not
clear on his/her new role, it is important to develop
a system that is consistent with the mental model of
the current operation and system to ensure a smooth
transition. Figure 6 illustrates the natural sequence of
tasks that the team leader was accustomed to per-
forming with the manual system configuration. The
navigation scheme of the TLUI for setup and startup
of the autonomous system was designed to mimic
this sequence.

Bog Selection

Bog Configuration

Hew File
Configuration

Existing Pile

Field Selection Configuration

Mission
Configuration

L]

Vehicle
Configuration

Figure 6. Natural task sequence for the team leader with
manual system.

5.4. Safety Features

During the initial deployment of this system, one
requirement was to have safety riders in the au-
tonomous tractors/harvesters. Safety riders were
responsible for “taking over” control from the
automation in situations that they deemed unsafe.
Therefore, a visual display was installed in the tractor
cabs to convey the intended path of the tractor in
autonomous mode and provide control functionality
that allowed the operator to stop the vehicle and
restart movement. In addition to the many safety
considerations and design features, one of the fun-
damental safety elements of the autonomous system
was the allocation of control for the stop/start of the
vehicles during operation. The underlying design
philosophy was that only the agent who commanded
a stop had the authority to restart the vehicle. How-
ever, both agents had authority to stop the vehicle at
any point. Furthermore, when any vehicle was com-
manded to restart movement by the team leader, the
safety rider was notified and given 10 s to override
the command. Finally, information about the current
intentions of the vehicles was displayed in both
the TLUI and the in-cab displays. This information
helped set the expectations of the team leader and
safety riders about the behavior of the vehicles.

6. MULTIVEHICLE CONTROL

One of the initial decisions that was made during the
early design stages was to allocate a great deal of on-
board autonomy to the tractors. Each tractor had a
high-level controller that was capable of performing
its own behaviors such as path planning, mission exe-
cution, and obstacle avoidance. However, the coordi-
nation of these tractors was handled by a centralized
component known as the mission director.

6.1.

The mission director’s primary purpose was to pro-
vide the system with a mechanism for multirobot co-
ordination by acting as a gateway between all of the
pertinent vehicle telemetry and the TLUI. Addition-
ally, it provided a central repository for shared data
and configuration information, as well as a mission
generator (task allocator). It was the responsibility of
the mission director to allocate tasks to the individ-
ual robots as well as maintain overall coordination
between robots. To accomplish this goal, the mission

Mission Director

Journal of Field Robotics DOI 10.1002/rob
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director maintained a database that represented the
overall state of the system (i.e., all pertinent individ-
ual robot states, as well as the overall team’s har-
vesting progress). To avoid collisions, deadlocks, and
other basic coordination problems, the mission direc-
tor implemented a set of rules that queried from this
state database and placed constraints on the individ-
ual robots.

6.2. Data Repository

The world, field, and pile maps were all housed and
maintained in the mission director. At startup, the
mission director sent each IVC the current version of
these maps. In addition, any updates to these maps
were replicated to all IVCs.

6.3. Scenarios

The TLUI communicated the team leader’s intentions
via a scenario data structure. A scenario specified the
set of fields and the order that the fields should be
harvested. It also specified the set of vehicles selected
to perform the harvesting and a set of piles to unload
the peat. The scenarios referenced fields and piles
simply by named keys. Later these keys were used
to look up the exact coordinates from the field or pile
maps.

6.4. Mission Generation

Once a scenario was defined by the TLUI and was
sent to the mission director for execution, the mission
director generated a set of “missions” or tasks for all
IVCs referenced in the scenario. These missions were
a sequence of parameterized commands for perform-
ing one of four simple tasks: drive to a given field,
harvest a given field, drive to a given pile, or dump
at a given pile.

6.4.1.

Each IVC instantiated a point-to-point planner that
was used to generate a path from the robot’s cur-
rent position to the entrance point of a given field.
The entrance points for all fields were known a priori
and stored in the field map. The point-to-point plan-
ner used the world map to locate any obstacles be-
tween the robot’s current position and its goal. Once a
path was generated, the IVC instantiated a path track-
ing behavior that utilized the robot’s StarFire GPS re-

Drive to a Field

Journal of Field Robotics DOI 10.1002/rob

ceiver to track the vehicle to its goal position. During
this period, the vehicle vacuum was disengaged.

6.4.2. Harvest a Field

Once in a field, the IVC utilized a list of stored way-
points in the field map to plan a lap of harvesting.
Once the path had been generated, the IVC instanti-
ated its path tracking behavior to traverse the path.
When the vehicle reached the top of a field, it raised
its vacuum brooms before making a U-turn and then
lowered them after it completed this maneuver.

6.4.3. Drive to a Pile

After making a full lap of a field, a vehicle planned
a route to a pile to unload its newly harvested peat.
Again the IVC instantiated its point-to-point planner
to generate a path from the end of a field to a point
near the expected dump point of a given pile (stored
in the pile map) as well as a path tracking behavior
to move it to its goal. During this period, the vehicle
vacuum was disengaged.

6.4.4, Dump at a Pile

Once near the pile, the vehicle utilized a perception-
based behavior to locate the true end of the pile and
generated a path to position the vehicle’s vacuum at
the proper orientation. Perception information was
also used to update the pile’s dump point in the
shared pile map.

6.5. Rules

Before the mission director commanded an IVC to
perform a task, it checked the task against a list of
rules, which can be classified into two types, pas-
sive and active. Passive rules were checked only once
prior to a new task being assigned to an IVC, whereas
active rules were continuously checked. The identi-
fier of the IVC and the task it had been assigned were
both passed on with each rule. The rule queried the
mission director’s state database for any other details
needed to determine whether that task could be per-
formed safely. If the task passed all the rule checks,
it was sent to the IVC for execution. If even one rule
failed, the task was placed in a queue and rechecked
at a later time. Meanwhile the IVC waited idle until
its task had passed all of the mission directors’ rules.
If an active rule failed, the mission director sent a
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Figure 7. Harvesting order.

pause signal to the “offending” vehicle(s) until the
condition that caused the rule to fail no longer ex-
isted. The mission director implemented the follow-
ing set of rules.

6.5.1.

Three full laps were required to completely harvest
each field (Figure 7). Each lap required a different
vacuum broom height. The current implementation
required that each vehicle use a fixed vacuum broom
height. Therefore, three different vehicles types (A, B,
and C) were associated with each vehicle, depending
on the height of the vehicle’s brooms. Complete har-
vesting of a given field required not only that all three
types of vehicles complete a lap but that the order of
the laps (A followed by B followed by C) also is en-
forced. The “harvesting order” rule guaranteed that
the vehicle ordering was preserved. It also ensured
that only one vehicle was in a given field at a time.
This rule was checked prior to an IVC performing a
“drive to field” task.

Harvesting Order

6.5.2. Only One Robot out of a Field

To avoid collisions and deadlock situations, only a
single robot from the team was allowed to leave a

Field #3 Field #2 Field #1

L

Figure 8. Example of “one robot out of a field” rule.

field at any given time. In Figure 8, tractor B is paused
waiting in field 1 while tractor A dumps at the pile.
This rule was checked prior to an IVC performing a
“drive to pile” task.

6.5.3. Next Field Ready

To avoid a possible deadlock situation around the
piles, the “next field ready” rule required that before
a vehicle left a field, the next field it planned to enter
was not occupied by another vehicle. This rule pre-
vented vehicles from sitting idle at the pile’s unload
points while waiting to enter their next field. Instead,
the vehicles waited at the exit point of their last har-
vested field. In Figure 9, tractor B waits for tractor A
to finish field 2 and dump at the pile before leaving
field 1.

6.5.4. No Robot Left Behind

To facilitate the team leader’s monitoring task, it was
important that all vehicles in a team harvest the same
general region of the bog. Therefore it was important

Journal of Field Robotics DOI 10.1002/rob
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Field#3 Field#2 Field#1

Figure 9. Example of “next field ready” rule.

to prevent any one vehicle from getting too far ahead
of the other two. This rule required that an A-type ve-
hicle not leave its current field unless a B-type vehicle
was within two fields behind it (see Figure 10). In ad-
dition a B-type vehicle could not leave its field unless
a C-type vehicle was within two fields behind it.

6.5.5. Minimum Safe Distance

This is the only active rule. This rule required that
any two vehicles maintain a minimum safe distance
between them. If this rule was broken, the lower pri-
ority vehicle (e.g., an A-type vehicle was higher pri-
ority than a B, which was higher than a C-type) was
paused. If the distance between two vehicles dropped
below a critical distance, then both vehicles were
paused and the safety drivers and team leader were
alerted to the problem.

7. PATH PLANNING

Each autonomous tractor performed real-time, point-
to-point path planning for each of the four tasks:
drive to field, harvest a field, drive to a pile, and

Journal of Field Robotics DOI 10.1002/rob

Field #3 Field #2

Figure 10. Example of “no robot left behind” rule.

dump at a pile. Two methods of point-to-point path
planning were utilized to provide planning for these
four tasks. The two methods were a visibility graph
planner and a grid-based planner.

7.1. Visibility Graph Planner

The visibility graph planner was based on a visibility
graph, which was generated from polygonal features
of the world map and the pile map (Figure 11). Before
visibility graph construction, the planner expanded
the keep-out areas of the map by at least half the
width of the vehicle. In addition, terrain boundaries
were shrunk on all sides by at least half the width
of the vehicle. Because the vehicle had a minimum
turning radius, the corners of the boundary and keep-
out areas were rounded to ensure that the minimum
turn radius requirement was not violated. For narrow
objects, the sides were expanded so that a minimum
turn radius could be employed between adjacent cor-
ners. All of these steps facilitated the inclusion of
drivable path segments around obstacles into the fi-
nal solution. Figure 11 shows rounded shapes repre-
senting the expanded obstacles in the map.
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Figure 11. Visibility graph from peat bog area for point-
to-point planning. Dashed lines represent the edges of the
graph. The chosen path from the dump location to the field
is shown by a boldface line.

After the expansion/contraction of the map ob-
jects, the visibility graph was constructed. The graph
consisted of nodes and edges, where the edges repre-
sent drivable paths through free space and the nodes
represent points where paths merge or split. For plan-
ning in free space (off-road, no roads in the map),
nodes represent the starting point, ending point, and
tangent connections to the obstacles from the start-
ing and ending points. Tangent connections between
obstacle pairs would also be considered node points.
Figure 11 shows the edges of the graph (dashed lines)
connecting node points.

The edges generated from the visibility graph are
searched using the A* algorithm to find the optimal
path from the start location to the stop location. The
computed path either connects the start location with
the goal location directly or connects the start loca-
tion to the nodes surrounding each of the obstacles
until arriving at the goal location. Figure 11 shows the
edges connecting the vertices of each polygon. The re-
sultant optimal path calculated by the A* algorithm is
shown in boldface.

There are strengths and weaknesses with the
visibility graph approach. The strengths include its
ability to maintain start- and end-point location and
heading accuracy. Also, the minimum turn radius of
the vehicle is considered at all times. The weaknesses
of the approach include its algorithm complexity
when faced with multiple and/or complex obstacles,
which results in long planning times. Also, in plan-
ning paths to/from each field, the start/end points of
these paths are often required to be near an obstacle
that is not much farther than the half-width of the
vehicle. This presents a problem with the visibility
graph approach because the first step of its algo-
rithm is to grow the keep-out areas according to its
vehicle dimensions as well as its turning radius. The
minimum turning radius of this vehicle/implement
pair was approximately 6 m; therefore, obstacles that
were long and narrow, such as ditches and some-
times piles, tended to grow by an additional amount
because of the turning radius of the vehicle. This led
the visibility planner to fail when planning a path in
which the start/end point was along the side of a pile
or a ditch. Another shortcoming with the visibility
graph approach is that it grows the obstacles by
an amount based on a static vehicle model. The
vehicle/implement pair in this application is asym-
metric about the center of the vehicle (the left-hand
vacuum nozzles stuck out much farther than the
right-hand side of the implement). One could give
the planner the half-width corresponding to the left-
hand side, giving the right-hand side ample room
as well, but then paths arriving at obstacles on the
vehicle’s right-hand side could not get sufficiently
close to the obstacle. Likewise, if the obstacles are
grown according to the right-hand-side dimensions,
paths would be planned where the left-hand side of
the implement would get hit by the obstacle.

7.2. Grid-Based Planner

The grid-based planner subdivided the entire local
region where the robotic vehicle was positioned into
a two-dimensional (2D) grid of cells. The size cho-
sen for each cell in this application was 1 x1 m. A
graph was constructed in a fashion similar to the vis-
ibility graph approach. In this case, the nodes of the
graph represent the center point of each of the grid
cells. The edges of the graph represent straight-line
trajectories to each nearest neighbor of a grid cell. In
this application, eight nearest neighbors to each cell
were chosen so that the edges represented horizontal,
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vertical, and diagonal connections to the next grid cell
neighbor. The cost of travel to a neighboring cell was
calculated by adding the distance required to travel
to this cell and the cell costs of all the cells that the ve-
hicle model would occupy during travel. Free-space
cells were given a cost of 0, and cells with obstacles
were given a max cost value. The A* algorithm was
used to search this graph for the optimal path from
the start location to the final location. The result of
the A* algorithm would provide an optimal path that
would not allow the vehicle model to intersect any
obstacles. This path was then smoothed to get driv-
able path segments.

Two of the key strengths of this planning ap-
proach were its efficiency in the presence of multiple
obstacles and its ability to plan paths very close to
its left- or right-hand side. The latter is possible by
calculating the cost to travel to an adjacent cell by
taking into account the vehicle’s shape and dimen-
sions across all grid cells as it makes the transition to
the next cell. However, there are three shortcomings
with this approach. One is that the final goal posi-
tion accuracy is limited by the resolution of the grid.
Another is that to guarantee end-point heading accu-
racy, virtual obstacles are placed in the map to force

the planner to calculate the start/stop heading appro-
priately. This adds clutter in the map that should not
be needed. Finally, for minimum turning radii that
significantly exceed the half-width of the vehicle, the
path plans become undrivable. This final problem did
not affect the peat moss application significantly be-
cause of the large size of the implement.

7.3. Planning Tasks

By taking into account the strengths and weaknesses
of both path planners, an acceptable solution was de-
veloped for the path planning of this application. For
“planning in a field,” shown as path 1 in Figure 12,
end-point accuracy was needed. Also, a map with
no obstacles was used, because safe field waypoints
required to produce the desired pattern were pre-
planned and present in the field map. Therefore, the
visibility graph approach was used for this task. Be-
cause obstacles were not present in the planner’s
map, fast execution times were possible with this
approach.

For the task “planning to a pile,” shown as path
2 in Figure 12, multiple obstacles (6+) needed to

o Planning in a held
a Planning to a pile

9 Planning at a pile

0 Planning to a ficld

16b @b

Figure 12. Four path planning operations during typical field operations.
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be considered. Also, the planner needed to plan to
positions that included an obstacle near the right-
or left-hand side of the vehicle. Therefore, the grid-
based planner was used for this task to take advan-
tage of its fast execution with multiple obstacles and
its ability to plan near keep-out areas.

For the task “planning at a pile,” shown as path
3 in Figure 12, only the pile obstacle that needed con-
sideration in the planner’s map and end-pose accu-
racy was critical. Therefore, the visibility-based plan-
ner was used for its superior end-point accuracy.
With only one obstacle in the planner’s map, the exe-
cution speed was sufficient.

For the task “planning to a field,” shown as path
4 in Figure 12, multiple obstacles needed to be consid-
ered. Again, the planner needed to plan to positions
that included an obstacle near the right- or left-hand
side of the vehicle. Therefore, the grid-based planner
was used for its fast execution with multiple obstacles
and ability to plan near keep-out areas.

8. SAFE-SPEED CONTROL

During autonomous operation, the system monitored
the commanded turning angle of the vehicle. Us-
ing the perception map information along with the
vehicle model, it calculated the distance the vehi-
cle needed to travel before hitting an obstacle (or
reaching the edge of the map). The calculated dis-
tance to the obstacle was reduced by the length of the
nose of the vehicle, a speed-dependent distance that
accounted for system lag and a user-defined safety
buffer. This new calculation provided the distance
that the vehicle had to come to a complete stop. Based
on a conservative deceleration factor, the safe speed
to travel to ensure that the vehicle could decelerate to
a stop was calculated. If the current speed of travel
exceeded this calculated safe speed, then the vehicle
speed was reduced until it was equal to or less than
the computed safe speed. This procedure allowed the
tractor to gracefully slow to a stop when approach-
ing an obstacle in its path, and it caused only a brief
slowdown if it was a false obstacle.

The various objects detected by the perception
system were reported in separate maps, and each was
treated differently by the speed control algorithm.
Obstacles such as people or other vehicles were a haz-
ard for both the tractor and the implement, and an ex-
tra safety buffer was required so that the tractor and
implement did not get close to these obstacles. Piles
were also a hazard for both the tractor and the imple-

ment, but during a dump the tractor and implement
travel extremely close to the pile so there was no extra
safety buffer for the pile. Ditches were a hazard for
the tractor, but the vacuum heads of the implement
had to travel over the ditch during turns, so the side
section of the implement was allowed to intersect the
ditch map.

9. PERCEPTION

Although GPS was used for mission planning and ve-
hicle control, a fully autonomous system required on-
board perception to detect unmapped obstacles and
also to estimate the changing location of the pile used
for determining where to dump a load of harvested
peat moss. As described above, three different maps
were generated by the perception system:

Obstacle map: people, tractors, loader, ATV

e Pile map: estimation of pile location for
dumping

® Ditch map: drainage ditches between fields

These output maps were produced using a National
Robotics Engineering Center (NREC)-designed sen-
sor pod and set of perception algorithms. Figure 13
shows the sensor pod and perception modules, de-
scribed below, that were used to produce the required
output maps.

901 *

As shown in Figure 13, the NREC sensor pod used
for perception included a number of different sens-
ing modalities. The primary sensor was a SICK laser
range finder (LADAR) that produced a 180-deg hor-
izontal scan of range measurements of the area in
front of the tractor. This LADAR was mounted on
an actively controlled nodding mechanism to pro-
duce three-dimensional (3D) range data by rotating
the LADAR from 5 to 45 deg below horizontal (one
full sweep up and down every 2 s). The sensor pod
also contained a thermal infrared camera and a pair
of color cameras with a neutral density filter on one
of the color cameras to produce a higher effective dy-
namic range.

The sensor pod also included an inertial measure-
ment unit that was combined with the tractor speed
sensor to produce a smooth local pose estimate. The
tagged range points from the nodding LADAR were

Sensor Pod
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Figure 13. Sensor pod mounted on tractor cab and perception system modules that process the sensor pod data to produce
pile, ditch, and obstacle maps. (The fixed side LADAR sensor that feeds the SideLadar module is not shown here but is

visible above the right rear tire in Figure 1.)

tightly synchronized with this local vehicle pose es-
timate, allowing the system to accumulate data over
time into a 3D point cloud. The nodding LADAR was
also calibrated with respect to the cameras to allow
the 3D range points to be projected into the camera
images and tagged with color and infrared informa-
tion, as shown in Figures 14(a) and 14(b). Note that
color information was not used in the final fielded
system described below.

9.2. Ground Height Estimation

An accurate ground estimate was required for find-
ing piles and ditches and differentiating between ob-
stacles on top of the ground from rises in the ground
(such as the pile). However, ground height estimation
was difficult for several reasons. Range points did not
align perfectly due to sensor noise and drift in the po-
sition estimate. There were gaps in the data from the
limited density of measurements and because of oc-

clusion. Finally, the observed lowest range measure-
ments were only an upper bound on the true ground
height because the range sensor was not always able
to measure the ground surface directly.

To handle these challenges, the system used a
Markov random field (MRF) probabilistic model
for smooth ground based on previous work
(Wellington, Courville, & Stentz, 2006). This ap-
proach uses a 2D grid to represent the ground
surface as shown in Figure 14(c). The MRF models
the noise in the sensor data and also includes spatial
correlations between neighboring patches of ground
to enforce the assumption that the ground surface is
generally smooth. The approach can be visualized as
trying to conform a rubber sheet to the lowest range
data in each ground patch.

Although the MRF smoothing naturally handles
noisy sensor data, data expiration is used to further
limit the effect of data misalignment. In addition to
the range points, the ray from the LADAR sensor

{a) View from tractor

(b) Colorized 3D point cloud data

(c) Perception output

Figure 14. Example autonomous run where the system had acquired the pile for dumping but then had to stop because
the Gator ATV was in its desired path. The perception output shows a visualization of the computed ground height, the

pile map, and the obstacle map.
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to the range point is included as an inferred up-
per bound on the ground height to help fill in gaps
in the range measurements. However, these inferred
measurements are often significantly above the true
ground surface in occluded areas behind obstacles so
the MRF smoothes areas with inferred measurements
much more than areas with actual range measure-
ments.

Figure 14(c) shows an example of the ground
height estimation output. The ground surface is
smooth, which results in accurate pile detection, and
the algorithm found the correct ground height under
the obstacle to allow it to be differentiated from the
pile. A simple approach that uses the lowest range
data in each ground patch or uses a spatial median
filter on the lowest range data results in a rise in the
ground estimate near the all-terrain vehicle (ATV) be-
cause the sensor does not directly sense the ground
there. This false rise in the ground height causes a
false pile to be detected and therefore could result in
incorrect autonomous behavior.

9.3. Obstacle Detection

As shown in Figure 13, a number of different mod-
ules were combined to find obstacles. Because of the
complementary nature of the different algorithms, an
obstacle was reported if any of the following detec-
tors was above a threshold.

9.3.1. Tall Obstacle (TallObs)

This detector looked for regions of hits above the
ground. This was a simple detector that found obsta-
cles larger than 1 m tall, even if they were moving.
Because it was looking for hits above the ground, it
was important that the ground height estimate was
correct underneath obstacles.

9.3.2. Tall Hot Obstacle (Tall[HotObs)

Using the infrared-tagged range points, this detector
looked for regions above the ground that had a high
temperature. The ground surface often gets very hot,
but any object above the ground that has a high tem-
perature is likely to be an obstacle. This detector was
useful for differentiating between warm objects such
as people or vehicles and objects that stay cool such
as weeds or other vegetation.

(a) Obstacle

by File

Figure 15. Obstacle and pile and obstacle maps for exam-
ple from Figure 14.

9.3.3. Density

A 3D grid of voxels (small volumes of space)
was maintained around the vehicle, and then each
LADAR measurement was ray traced through this
grid to maintain the number of hits and passes for
each voxel of space. The ratio hits/ (hits 4 passes) was
then used as the density score for that voxel. Density
measurements have been used in the past to differen-
tiate between vegetation and solid obstacles (Lacaze,
Murphy, & DelGiorno, 2002; Wellington et al., 2006),
but in this application they were used to detect sta-
tionary obstacles shorter than the 1-m threshold used
by TallObs without suffering from false positives due
to poor data registration or dust near the ground. In
either of the latter cases the data near the ground
tend to be a mixture of hits and passes and result in
a low density score that can be discriminated from
a short solid obstacle. However, a moving obstacle
also will result in a mixture of hits and passes, so the
TallObs and TallHotObs detectors are required to de-
tect moving obstacles. This density-based approach
was able to filter out many false LADAR returns
caused by light dust, but heavy dust appeared solid
to the LADAR and often resulted in a false positive.

The obstacle maps in Figures 14(c) and 15(a)
show that the combination of these modules detects
both the tall part of the ATV in the center and the
dense shorter rear section.

9.4. Pile Detection

The piles were generally maintained by the loader to
have a characteristic shape as shown in Figures 1 and
14(a), but there was often a secondary mound at the
edge of the pile right after another tractor/harvester
had unloaded, as shown in Figure 16(a).

Journal of Field Robotics DOI 10.1002/rob



Johnson et al.: Development and Implementation of a Team of Robotic Tractors e« 565

{a) View from tractor

(b} Slope

(c) File

Figure 16. Pile detection using slope and blob filter.

Given an accurate ground height map, the pile
detector used the slope operator in Figure 17 to find
locations where the maximum slope 6 over all orien-
tations was within a range that is characteristic for
peat moss piles. The edges of large drainage ditches
often had a similar slope, so the lowest point of any
potential pile location was required to not be signifi-
cantly below the ground under the tractor.

Because of the multiple ridges in a pile after a
dump, there were areas of the pile that did not match
the characteristic slope range, as shown by the low-
slope region in the center of the pile in Figure 16(b).
Figure 16(c) shows the results of a blob filter that
was used to connect regions of high slope into a sin-
gle pile estimate. To reduce false piles due to sen-
sor noise or small terrain features, the resulting pile
estimate had to cover a minimum required area.
Figure 15(b) shows the output pile map for the exam-
ple in Figure 14.

9.5. Ditch Detection

As shown in the background of Figure 14(a), there
were drainage ditches between the fields in the peat

Slope Operator Ditch Operator

Figure 17. Side profile of an example ground surface
showing slope and ditch operators used to find maximum
slope 6 and ditch depth d.

Journal of Field Robotics DOI 10.1002/rob

bog. These ditches were known hazards, and their
GPS coordinates were included in the world map
used for path planning, but as an added safety mea-
sure the ditches were detected using the onboard per-
ception system.

The ditch operator shown in Figure 17 was con-
volved over the ground height map over all orien-
tations to find ditches with some required depth d.
Figure 18 shows the ground height map and the re-
sult of the ditch operator.

9.6. Implement Protection

As shown in Figure 1, there was an area in front of
the vacuum heads of the implement that was behind
the field of view of the sensor pod on the cab (dur-
ing a left turn, this area is even larger). Static obsta-
cles could be detected by the sensor pod, but a per-
son or vehicle could enter this area without being
sensed. To protect against this case, a fixed side-facing
LADAR was mounted above the right rear wheels

(b} Ditch

{a) Ground

Figure 18. Ditch detection for the area behind the pile in
Figure 14.
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Figure 19. Automated tractors performing turns at the end of fields 1 and 2 during harvest.

and pointed slightly down from horizontal to act as
a safety curtain (see Figure 1). The SideLadar module
in Figure 13 reported obstacles to the side of the trac-
tor just like the other algorithms detect obstacles in
front of the tractor.

During turns, the position of the implement rela-
tive to the tractor changed. Instead of adding a sensor
to measure this angle, the implement kinematics from
Bevly (2001) were used to track the location of the im-
plement vacuum heads based on the known vehicle
motion, and then obstacles were detected only within
the portion of the side LADAR scan that was in front
of the implement.

10. FIELD TESTING

The automated peat moss harvesting system was de-
ployed and tested under the supervision and control
of the authors, for one complete season of peat har-
vesting. Figures 19 and 20 show examples of the sys-
tem operating autonomously. To minimize the impact
on the day-to-day harvesting operations at the farm, a
majority of the testing was conducted without an im-
plement attached to the robots. This facilitated testing
in wet conditions and allowed other manually driven
tractors to use the implements while the autonomous
system was being developed. Including tests with-
out the implement, these robots autonomously “har-
vested” more than 100 fields of peat moss. Harvest-
ing, in this case, included making a lap through a

field, planning to an unload point that is updated
by perception, unloading, and navigating to the next
field.

Position estimate logs were collected for many of
the harvesting sequences. Figure 21 shows the posi-
tion estimates collected during a customer test, over-
laid on a plot of the world map and pile map used
during the mission. This figure shows the distinct
patterns driven by each member of the team as in-
troduced earlier in Figure 7. During this test, tractor
1 began in field 1 (the field farthest to the right), har-
vested the field, and unloaded at the left-most pile
(the pile to the right had been closed by the team
leader). The first tractor then continued to the second
field (left of the first field) and began to harvest. At
this point, tractor 2 began to harvest the first field,
driving nearly on top of the first tractor’s path but in
the opposite direction (see implement coverage pat-
tern in Figure 7). Once the first tractor finished the
second field, it unloaded material at the pile and con-
tinued to the third field for harvest. As the first tractor
moved into the third field, the second tractor made
its way to the pile, unloaded, and transported to the
second field. This progression was repeated as trac-
tor 3 entered field 1, bringing the full system into
operation. In the data log used to create Figure 21,
each tractor was stopped at the end of its respective
field; however, during normal operation this cover-
age pattern was continued to the left as the tractors
harvested the fields planned for that day.
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Figure 20. Tractor autonomously dumping at a storage pile that had been acquired using perception.
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Figure 21. Plot of vehicle position logs shown on the world map. The horizontal boxes near the bottom represent the
positions of two peat piles. The long vertical lines mark the locations of drainage ditches between fields. The large white
spaces between gray areas are the harvestable fields.
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Although the collection of quantitative perfor-
mance data over extended test runs was not a pri-
ority for this phase of the project, limited data were
available from the final three customer tests. Results
from the full season testing and customer tests are
presented below by subsystem.

10.1.

One of the key elements of the successful implemen-
tation of this system was to provide a natural and
simple transition for the team leader from the task
of managing a manual peat harvesting operation to
supervising a team of peat harvesting robots. To that
end, it was critical for the TLUI to facilitate a rapid
learning curve, as well as promote high situational
awareness and an error-free user experience. The first
exposure of the team leader to the TLUI occurred in
the first customer test, during which a brief (5 min)
training session was provided. The purpose of this
training was to familiarize the team leader with the
features of the tablet PC and the general functional-
ity of the user interface. Overall, the training session
was successful, as the team leader assimilated all the
relevant information and appeared comfortable with
the idea of “controlling” the vehicles via the TLUL
The only hesitation on his part was not being sure
that the system was going to have a significant impact
on the sequences of tasks he was used to perform-
ing. The main instruction provided to the team leader
was “follow the same steps as if you were managing a
manual operation, but instead of calling the harvester
operator on the radio or signaling him to change
the configuration of the vehicles, you can make the
changes through here [TLUI].” After a couple of trial
runs with all the robots, the team leader’s interaction
with the system appeared effortless. Specifically, the
concept of being able to command the vehicles to stop
and start, as well as set their engine speed, was very
appealing to him.

At the start of the second customer test, which
was approximately 1 week later, another short train-
ing session to review the functionality of the TLUI
was provided to the team leader. During these trials
the comfort level of the team leader with the TLUI
was noticeable, as he was able to interact with the dis-
play without errors and while moving (in his ATV).
A key issue that came up during the second test was
his inquiry about the safeguarding capabilities of the
robots. The team leader asked, “Will the harvester
know to stop if I drive in front of it?” During man-

Human Factors

ual operation, the harvester operators have full con-
trol of the vehicle, so the team leader has specific ex-
pectations about how close he can safely maneuver
around those harvesters. The authors proceeded to
explain that although the robots were equipped with
perception and obstacle detection technology, safe-
guarding his vehicle (and himself) was his responsi-
bility. Therefore, any time he needed to drive or park
in front of the robot, he should acquire the habit of
stopping the vehicle through the TLUIL. An impor-
tant safety feature of this system was that if a robot
was stopped via the TLUI, it could be restarted only
through the TLUI

Future work should also document the “trust in
automation” of the human by capturing behaviors
such as his willingness to forfeit line of sight with the
autonomous harvesters for extended periods of time.
The development of appropriate trust (Lee & See, 2004)
is likely the greatest human factors challenge for the
implementation of this type of system in a commer-
cial application. The critical issue associated with ap-
propriate trust is the extent to which the automation
is used (or relied on) by the human. To achieve ap-
propriate trust, the human has not only to have an
accurate perception of the overall reliability of the au-
tomation but also to understand the capabilities and
limitations of the automation and use it accordingly.
A well-documented impact of introducing automa-
tion into many systems is that when the automation
operates without noticeable failures, for extended pe-
riods of time, humans become overcomplacent and
begin to overrely on it (Parasuraman & Riley, 1997).

10.2. Multivehicle Control

The task allocation and constraint rules allowed mul-
tiple vehicles to perform the harvesting operation in a
coordinated and safe manner. The rule set was tested
in simulation prior to field testing and continued to
work as expected throughout the full season and cus-
tomer tests.

Each of the vehicles spent the majority of operat-
ing time executing the field coverage and harvesting
task. The harvesting task is run at a constant ground
speed for both automatic and manual operation and
therefore was completed by the automated system in
a time approximately equal to that of the manual op-
eration.

Pile dumping data from the final customer test
showed that the automated dump procedure typi-
cally took around 1 min, whereas a skilled human
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operator was able to complete a dump operation in
approximately a quarter of this time. Unlike with hu-
man operators, the automated dump was a sequence
of discrete actions. The system drove slowly near
the pile, used the perception system to update the
pile location information, planned a dump path, and
drove forward while raising and then lowering the
storage tank. Skilled human operators quickly drove
to the pile and minimized the time spent dumping
based on the actual amount of peat that had been col-
lected. Although the automated dump took substan-
tially longer than the manual dump, it represented
a small portion of the overall field operation for any
given vehicle. For both manual and automated oper-
ations, a nonstop complete harvesting cycle took be-
tween 15 and 21 min for a single vehicle to complete,
depending on the field length.

The technical challenge remaining in the task al-
location and constraint rules is to relax constraints
that caused unnecessary delays not present in the
manual operation. Specifically, the rules restricting
the start-up sequence and access to the road need to
be relaxed. Throughout the testing season, at system
start-up, the harvesting order rule set forced the vehi-
cle start times to be staggered by as much as 20 min.
Similarly, the restriction on the number of vehicles al-
lowed outside of the fields created scenarios in which
a tractor would sit idle for up to 5 min while waiting
for the other tractor(s) to clear the road.

10.3. Path Planning

The utilization of the two path planning methods to
satisfy the four types of mission tasks worked well.
Depending on the complexity of the map (number
and complexity of keep-out areas) and the start and
stop locations, execution times varying from less than
1sto 5 s were observed.

Early customer tests revealed that 5-s delays be-
tween the completion of one task and the start of the
next task were unacceptable from the safety rider’s
point of view. These planning delays were present in
the “plan to pile” and “plan to field” tasks due to the
relatively complex maps and vehicle model used by
the grid-based planner that was employed for these
tasks. The final system initiated these two planning
tasks several seconds before the path solution was re-
quired by the vehicle to ensure no noticeable delay by
the team leader or safety riders.

For the final customer tests, the path planning
system experienced no problems. All generated paths
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were qualitatively reasonable, and the execution
times required to generate those paths were accept-
able when combined with the preplanning strategy
described above.

10.4. Perception

The perception subsystem was responsible for pile
detection and safeguarding the vehicle. Reliable pile
detection was critical in this operation because the lo-
cation of the edge of the pile continually changed as
more peat was unloaded. By probabilistically model-
ing the noise characteristics of the range sensor data
and the smoothness of the ground, the perception
system was able to reliably estimate the ground sur-
face and find piles effectively. The system accurately
detected the edge of the pile for dumping in all op-
erating conditions including heavy dust and rain (al-
though actual harvesting would not happen during
rain). Additionally, the performance of the pile edge
detection was consistent, without any failures noted
during the months of field testing.

In general, the fields were clear of hazards, and
the coordination rules prevented the automated har-
vesters from being near each other. However, the har-
vesters operated in the same area as the team leader
on his ATV and the loader driver that maintained
the piles. Therefore, obstacle detection was required
for safe operation. During system testing, the authors
performed a number of obstacle tests with standing
and walking people, other tractors, trucks, and ATVs.
For this class of relevant obstacles that the system
was designed to detect, the robots always detected
the hazard and stopped at a safe distance.

As described above in Section 10.1, the operating
procedure for the team leader was to stop the vehicles
before approaching them, so the obstacle detection
system primarily operated as a backup. For this rea-
son, there generally were no obstacles present during
operation for customer tests (other than placing an
ATV in front of the tractor as a demonstration). Dur-
ing one of the customer tests, the team leader drove
quickly past the front of an active autonomous trac-
tor to pass it. The tractor came to a stop and then re-
sumed its mission a few seconds later once the range
data from the passing ATV cleared away.

The majority of peat moss harvesting occurs
during dry conditions with low wind. Under these
conditions, the obstacle detection system had very
few persistent false positives that stopped the vehi-
cle and required human intervention. Occasionally,
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some dust or sensor data misalignment would result
in a false obstacle in front of the vehicle and the safe-
speed algorithm would gently slow the tractor down.
Additional sensor updates would generally eliminate
the false positive and allow the system to seamlessly
continue on its mission. During the customer tests,
these slowdowns were infrequent, so they did not
bother the safety rider or meaningfully increase the
time to complete the harvesting operation. The auto-
mated system did not have any persistent false pos-
itives that required human intervention during the
customer tests.

During windy conditions, there was a lot of dust,
which caused problems for the obstacle detection sys-
tem. Dust was sometimes detected as an obstacle and
would result in a tractor slowdown. On occasion, this
dust caused an obstacle to be detected close to the ve-
hicle at the limits of the sensor field of view so that
new sensor data were not able to clear out the false
obstacle. In this case the harvester required human in-
tervention to continue the mission. The side LADAR
in particular produced many false obstacles due to its
proximity to the wheels and the dust being produced
during operation, and it often needed to be disabled.
There were a few times when the wind caused so
much dust that the entire obstacle detection system
needed to be disabled to allow continued testing of
the other components of the system (the safety oper-
ator in the cab was still present in this case).

Although the system was not set up to record the
total number of false positives during all of the field
tests, we did collect a set of perception logs, including
some complete autonomous runs. Over four harvest-
ing missions logged during typical calm conditions
that included approximately an hour of operation
and over 4 km of autonomous driving, the system
had one brief false positive that caused a momentary
slowdown. Conversely, during one 15-min, 1.2-km
harvesting mission in very windy conditions, the sys-
tem had six false positives, with five of them near the
pile where the dust was worst. These numerical re-
sults match our qualitative experience that the system
performed well during calm conditions but suffered
from false positives in windy, dusty conditions.

The main technical challenge remaining for the
perception component is increased robustness to
dusty conditions, while maintaining good detection
of obstacles. This is particularly challenging with
moving obstacles because the laser signatures of dust
and moving obstacles are similar. As described in Sec-
tion 9.3.3, maintaining density measurements was an

effective way to detect stationary obstacles and ig-
nore light dust, but moving obstacles have low den-
sity similar to that of dust, so additional detectors
were needed to reliably find moving obstacles and
these detectors were more sensitive to dust. Future
work includes the use of cameras and radars in addi-
tion to the LADAR sensors to improve performance
in dusty conditions.

11. CONCLUSION

A system of three tractors for coordinated au-
tonomous peat moss harvesting was successfully de-
veloped and tested in a working peat bog. The sys-
tem and user interface were built to mimic existing
manual processes, which made it easy for the human
operators to use and integrate them into the rest of
their operations. A set of coordination rules was ap-
plied to a combination of surveyed map data and on-
board perception output to safely perform field mis-
sions. Although the current implementation does not
yet match the speed of the manual operations, the ex-
tensive field testing of the system showed the poten-
tial viability of this approach.
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